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Abstract. We present a principled framework for context-dependent
hierarchical connectionist HMM speech recognition. Based on a divide-
and-conquer strategy, our approach uses an Agglomerative Clustering
algorithm based on Information Divergence (ACID) to automatically de-
sign a soft classi�er tree for an arbitrary large number of HMM states.
Nodes in the classi�er tree are instantiated with small estimators of lo-
cal conditional posterior probabilities, in our case feed-forward neural
networks. Our framework represents an e�ective decomposition of state
posteriors with advantages over traditional acoustic models. We evalu-
ate the e�ectiveness of our Hierarchies of Neural Networks (HNN) on the
Switchboard large vocabulary conversational speech recogntion (LVCSR)
corpus.

1. Introduction

In hybrid NN/HMM connectionist speech recognition, parametric mixture den-
sities that are typically applied to model observation probabilities in hidden
Markov models (HMM) are replaced by connectionist estimators of posterior
probabilities. Experiments with such systems (e. g. [1]) indicated an advantage
of hybrid models in terms of discriminative power, required number of parame-
ters and decoding speed. However, despite the success of such models in a wide
range of speech recognition tasks, current state-of-the-art systems for large vo-
cabulary conversational speech recognition (LVCSR) almost entirely rely on
the conventional paradigm for acoustic modeling. What are the reasons for
this preference towards traditional acoustic models?

First, training of connectionist acoustic models usually is computationally
more expensive. Second, context modeling in continuous density HMMs has
evolved signi�cantly since the advent of hybrid NN/HMM models. The appli-
cation of decision trees to the clustering of polyphones recently led to systems
consisting of thousands of HMM states. Since modeling of observation prob-
abilities using mixture densities is independent for each state, an increase in
the number of states imposes no conceptual problem. In contrast, connection-
ist acoustic models jointly estimate posterior state probabilities and are much
harder to scale to larger systems. Often, context-modeling is avoided at all.
Nevertheless, signi�cant improvements in recognition accuracy can be gained
through context modeling in both traditional and connectionist acoustic mod-



eling [3, 5, 7]. However, the number of HMM states and therefore the level of
context-dependence has been limited to medium size systems.

This paper presents the ACID/HNN [4] framework, a highly modular and
scalable approach to connectionist acoustic modeling. Viewing the estima-
tion of posterior state probabilities as a hierarchical process, an automatically
clustered tree structured ensemble of neural networks is applied to estimate
state posteriors. Although similar in spirit, earlier approaches [5, 6, 9] lack a
principled treatment of decomposition. We present experiments on the Switch-
board LVCSR corpus, demonstrating that state-of-the-art performance can be
achieved with our framework.

2. Hierarchical Acoustic Modeling

Connectionist acoustic modeling for hybrid NN/HMM systems is characterized
by the estimation of posterior state probabilities using one or several neural
networks. Integration of this model into the HMM framework is justi�ed by
the application of Bayes rule

p(xjsi) =
p(sijx)

P (si)
p(x)

to get estimates of the state observation likelihood p(xjsi) given an acoustic
feature vector x. Usually, the term p(x) is neglected because it is constant for
all states and does not inuence the outcome of a Viterbi decoder. Therefore,
scaled observation likelihoods can be computed from state posteriors by di-
viding by state priors P (si). For context-independent systems, the number of
HMM states is small enough to apply a single neural network to jointly estimate
the posterior state probabilities. However, introducing context-dependence in-
creases the number of states signi�cantly and training a single neural network
becomes prohibitive. A decomposition can be gained by factoring the posterior
state probabilities [3, 5, 7]. Typically, posterior state probabilities are factored
according to monophone identity. Here, we present a more principled approach
where factoring is guided by an agglomerative clustering process.

Let S denote the set of all (decision tree clustered) HMM states sk. Consider
a partition of S into M disjoint and non-empty subsets Si. A particular state
sk will now be a member of S and exactly one of the subsets Si. Therefore, we
can rewrite the posterior probability of state sk as a joint probability of state
and appropriate subset Si and factor it according to

p(skjx) = p(sk; Sijx) with sk 2 Si

= p(Sijx) p(skjSi;x)

Thus, the global task of discriminating between all the states in S has been
converted into (1) discriminating between subsets Si and (2) independently
discriminating between the states sk contained within each of the subsets Si.
Recursively repeating this process yields a hierarchical tree-organized structure
(see Fig. 1). The e�ectiveness of any such hierarchical decomposition of poste-
riors crucially depends on the tree design method [8] since local estimators of
conditional posterior probabilities can only be trained to approximate the true
distributions.
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Figure 1: Conditional Factoring of Posteriors

3. The ACID/HNN Framework

When dealing with a rather large number of classes, several thousands in our
case, evaluation of all possible con�gurations for a hierarchical decomposition
of the posterior class probabilities becomes intractable. Also, common heuris-
tic top-down approaches based on examination of the class confusion matrix
of pre-trained monolithic classi�ers are problematic. We therefore apply an
agglomerative (bottom-up) clustering scheme using the symmetric information
divergence

d(si; sj) =

Z
x

(p(xjsi)� p(xjsj)) log
p(xjsi)

p(xjsj)
dx

as a measure of acoustic dissimilarity of subphonetic units. Based on this
rather inexpensive distance measure, even large amounts of subphonetic units
can be clustered e�ciently. We typically model the class-conditional likelihoods
using single diagonal covariance multivariate Gaussians with mean vectors �i
and variance vectors �2i . In this case, the symmetric information divergence
between two states si and sj amounts to

d(si; sj) =
1

2

nX
k=1

(�2jk � �2ik) + (�2ik + �2jk)(�ik � �jk)
2

�2ik�
2

jk

Making the simplifying assumption of linearity of information divergence,
we can de�ne the following distance measure between clusters of states Sk and
Sl

D(Sk; Sl) =
X
si2Sk

p(sijSk)
X
sj2Sl

p(sj jSl)d(si; sj)

The ACID algorithm uses the above distance measure in a standard bottom-
up agglomerative clustering method. Note that this algorithm clusters HMM



states without knowledge of their phonetic identity solemnly based on acoustic
dissimilarity. Fig. 2 illustrates ACID clustering on a very small subset of
initial clusters. The ordinate of the dendrogram plot shows the information
divergence at which the merger occured. Names encode monophone, state
(begin,middle,end) and context id (numeric).
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Figure 2: Partial Dendrogram of ACID Clustering

Each node in an ACID-clustered tree structure represents conditional pos-
teriors when interpreted as a hierarchical decomposition. Estimators such as
polynomial regressors, radial basis functions or feed-forward networks can po-
tentially be trained to estimate such posteriors. We are currently experimenting
with 2-layer MLPs, trained in the framework of a generalized EM algorithm
using error backpropagation. Therefore, we term the complete connectionist
acoustic model a Hierarchy of Neural Networks (HNN), see Fig. 3.

Challenging aspects of such an architecture are model complexity and adap-
tation of learning rates during training. While the network in the root node is
trained on all of the training data, networks deeper down the tree receive less
training data than their predecessors. We found that it is advantageous to re-
duce the number of networks in an HNN by applying a greedy bottom-up node
merging algorithm as a second step of ACID clustering. Using this strategy,
we typically increase the average arity of the HNN tree from 2 to about 8.

4. Experiments

Experiments with the ACID/HNN approach were carried out on the Switch-
board LVCSR corpus. We chose Switchboard, because it consists of very noisy
spontaneous speech in telephone quality requiring excessive modeling of coar-
ticulation to achieve state-of-the-art performance. Switchboard also is a compa-
rably hard speech recognition task. Current best systems based on traditional
HMM approaches achieve word error rates in the vicinity of 30-40% while typ-
ically running 150-300 times slower than real time.
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Figure 3: ACID clustered Hierarchy of Neural Networks

The following table summarizes results for various hybrid NN/HMM models
focusing on the ACID/HNN framework. The models were trained on 170 hours
of Switchboard training data corresponding to roughly 60 million patterns.
Recognition experiments were performed with the Janus-RTk [2] Switchboard
recognizer on the 1997 development test set, consisting of 40 unseen speakers.
The �rst two rows give earlier results that we obtained with hybrid HME/HMM
models [5]. CI denotes context-independent, CD context-dependent modeling.
Apart from word error rates, the table gives number of HMM states, e�ective
number of evaluated networks per frame, number of parameters and real time
factors for each system.

acoustic model # states # NNs # params xRT word error

CI HME/HMM 166 59 220k 80 58.6 %
CD HME/HMM 10000 224 1.2M 130 37.3 %

CD ACID/HNN 6000 962 1.6M 120 35.7 %
CD ACID/HNN 24000 4046 2.8M 145 33.3 %
adapted ACID/HNN 24000 4046 2.8M 130 31.8 %
pruned ACID/HNN 24000 �500 2.8M 26 33.6 %

Obviously, context-dependent modeling improves performance vastly. We
trained two ACID/HNN acoustic models with 6k and 24k tied states, respec-
tively, to demonstrate the scalability of the proposed approach. Furthermore,
our results indicate that going from 6k to 24k HMM states improves perfor-
mance signi�cantly. Unsupervised speaker adaptation can be applied very eas-
ily to our model by simply retraining those networks in the HNN that receive
more than a certain amount of adaptation data (the ones at the top of the
tree). An additional gain of 1.5% in accuracy was achieved using this simple
algorithm. Finally, ACID/HNN models allow to trade o� accuracy against de-
coding speed by simply pruning the evaluation of the HNN tree in each frame



based on partial posteriors. This way, a signi�cant amount of network evalua-
tions can be omitted with almost no loss in accuracy. In contrast, traditional
acoustic models usually require much more e�ort to achieve the same goal.

5. Conclusions

We present a novel framework for connectionist acoustic modeling and demon-
strate its viability on the Switchboard LVCSR task. Based on the principle
of divide and conquer, it allows to build and robustly estimate connection-
ist acoustic models for arbitrary large sets of context-dependent HMMs. Our
approach maintains the advantages of discriminatively trained acoustic mod-
els while circumventing the limitations of standard hybrid NN/HMM architec-
tures. On the 1997 Switchboard development test set, we achieve a competitive
word error rate of 31.8% with an ACID/HNN based acoustic model. Further-
more, our approach simpli�es important algorithms such as speaker adaptation
and scoring speed-up.
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