
Route Planning and Learning from Execution

Karen Zita Haigh Jonathan Richard Shewchuk Manuela Veloso
khaigh@cs.cmu.edu

(412) 268-7670
jrs@cs.cmu.edu
(412) 268-3778

mmv@cs.cmu.edu
(412) 268-8464

School of Computer Science
Carnegie Mellon University
Pittsburgh PA 15213-3891

Abstract
There is a variety of applications that can benefit from the
ability to automatically find optimal or good routes from real
maps. There have been therefore several efforts to create and
use real maps in computer applications. However, for the
purpose of route planning, maps cannot be seen as static and
complete, as there are dynamic factors and missing informa-
tion that affect the selection of good routes, such as time of
the day, traffic, construction, one versus multi-lane roads, res-
idential areas, etc. In this paper, we describe our method for
route planning and dynamic update of the information avail-
able in a map. We show how we do route planning by reusing
past routing cases that collectively form a good basis for gen-
erating a new routing plan. We briefly present our similarity
metric for retrieving a set of similar routes. The metric effec-
tively takes into account the geometric and continuous-valued
characteristics of a city map. We then present how the planner
produces the route plan by analogy with the retrieved similar
past routes. Finally we show how a real traversal of the route
is a learning opportunity to refine the domain information and
produce better routes. We illustrate our algorithms on a de-
tailed online map of the city of Pittsburgh containing over
18,000 intersections and 25,000 street segments.

Introduction
We are interested in having a computer generate good routes
from an online representation of a map. The fact that this
task is to be performed by a computer on a map of a real city
raises several issues, including:
� The representation of the map: Independent from which

representation we choose to describe the map, it cannot
be static. There will be constant changes to make, which
correct, add, or delete facts from the map description.

� Route planning: The problem involves finding a sequence
of paths to visit multiple locations in the map. This prob-
lem is well known for its complexity. Approximate solu-
tions are sufficient, given that at execution time we will
meet unexpected situations in the real-world.
The path finding task is dynamic and complex and there-

fore learning is necessary. We believe that the best way to
do this is by taking advantage of previous route planning and
execution experience.

Our approach for incorporating learning with planning and
execution within this real-world task consists of:

� Accumulating route planning episodes in a case library,
so that we can reuse previously visited routes, and avoid
unnecessary repetitive search.

� Using execution experience to identify characteristics of
particular routes that are not represented in the map and
update the map to reflect them.

� Using experience gained from changing plans during ex-
ecution failures to acquire an understanding of when par-
ticular replanning techniques are applicable.
In this paper, we show the representation of the real map,

present the methods we have developed to store and retrieve
previously visited paths, and describe the learning mecha-
nisms to update the map from execution experience.

We are implementing our algorithm within the context of
the PRODIGY planning and learning system [2]. Our algo-
rithm consists of a planning part and a learning part. Results
to date show that the planning half of the algorithm markedly
improves plan quality and reduces total planning time [7;
8]. We illustrate the use of the algorithm within the domain
of robotics path planning using a complete map of Pitts-
burgh [1].

Representation of Domain Theory
The domain theory used by PRODIGY consists of a knowledge
base (in this case, the map) and a set of operators — rules
used to model changes in state.

The Map
The map used in our work is a complete map of Pittsburgh
containing over 18,000 intersections and 5,000 streets com-
prised of 25,000 segments. (An entire street is comprised of
several segments corresponding to city blocks.)

The map is represented as a planar graph with the edges
indicating street segments and the nodes indicating inter-
sections. Associated with the intersections are the (x; y)
coordinates of the intersection and a list of segments which
meet at that intersection. Associated with each street seg-
ment is the name of the street containing it, and a range of
numbers corresponding to building numbers on that block.
In addition, there are several addresses of restaurants and
shops in the city. Figure 1 shows a short excerpt from our
files.

The representation, although it describes the map com-

(intersection-coordinates i0 631912 499709)
(intersection-coordinates i1 632883 485117)
(segment-length s0 921)
(segment-street-numbers s0 4600 4999)
(segment-intersection-match s0 i0)
(segment-intersection-match s1 i0)
(segment-street-mapping 0 S Craig St)
(address Great Scot 413 S Craig St)

Figure 1: Excerpt from map database.

pletely in terms of which streets exist, lacks in several areas
important to an executing system. In particular, it does not
indicate:
� direction of one-way streets,
� illegal turning directions,
� overpasses and other nonexistent intersections,
� traffic conditions,
� construction, and
� road quality, determined by factors such as number of

lanes, surface (cobblestone, tarmac), and neighbourhood
designation (residential, business).

This lack of information will lead to many situations in which
the system needs to learn.

The Operators
Domain operators can be conceptually abstracted into three
main categories:
� those that deal with navigation;
� those that deal with higher-level map information, such as

restaurants and shops; and
� those that deal with higher-level goals, for example (buy
milk) or (mail letter).
Navigation operators examine information in the map re-

garding intersections, connected streets, and goal coordi-
nates. These operators also examine any learned domain
knowledge, such as one-way streets and construction. Map
information operators examine the addresses within the map,
placing restaurants, shops and street addresses at specific co-
ordinates so the navigation operators can construct a path.
Goal-oriented operators associate high-level goals to ap-
propriate locations; for example (buy milk) could be
achieved at any of several grocery stores.

Route Planning by Analogy
We apply case-based reasoning (CBR) [9; 11] methods to
path planning because it enables a planner to reuse cases
— solutions to previous, similar problems — to solve new
problems. This technique allows us to take advantage of
prior experience.

A CBR planning system has to first identify cases that may
be appropriate for reuse, and then modify them to solve the
new problem. We follow the case reuse strategy developed
by Veloso [20] within the framework of PRODIGY. The replay
technique involves a closely coupled interaction between
planning using the domain theory (static knowledge of the
world) and modification of similar cases.

The cases are derivational traces of both successful and

failed decisions in past planning episodes, as well as the jus-
tifications for each decision. The case replay mechanism
of PRODIGY/ANALOGY involves a reinterpretation of the jus-
tifications for case decisions within the context of the new
problem, reusing past decisions when the justifications hold
true, and replanning using the domain theory when the trans-
fer fails.

For example, if a case indicated that the next move was
to cross a bridge, PRODIGY/ANALOGY would check that it
believes the bridge is still functional before committing to
the same move. If the bridge was unusable, it would use its
domain knowledge to find an alternate route over the river.

Note that the change in status of the bridge is an example
of a changed situation in the real world that the system is able
to learn and integrate into its domain knowledge – we do not
alter cases since that could be computationally expensive in a
large case library. In addition, a case might become relevant
again at a later date.

If the case library is empty or there are no cases applicable
in the new situation, the system will use its current domain
knowledge to construct a viable solution, and incrementally
expand the case library.

The final portion of our algorithm is the learning phase,
described in more detail below.

Storing and Retrieving Cases
In order for the case identification phase to be efficient, the
planning system must have a clear and easy method to store
and subsequently retrieve past information. The following
subsections describe our method for storing routes. More
detailed information regarding case retrieval (including run-
time and efficiency results) can be found in a previous pa-
per [8].

Case Representation and Indexing
When PRODIGY generates a plan, the detailed derivational
trace of the solution produced is stored as a single case, or
broken into several pieces and stored as a series of cases.
Once we start executing our plans, the representation of each
case will also include a detailed description of the situa-
tions encountered at execution time, including explanations
of any errors that occurred and all replanning that was done
to correct the problems.

For our path planning domain, each case is also approx-
imated by a line segment in a two-dimensional graph, and
line segments are allowed to intersect only at their endpoints.
This graph acts as an index into the case library so that cases
can be easily retrieved.

When PRODIGY generates a plan that intersects existing
cases, the plan and the cases it intersects are broken into
smaller cases at the intersection points to maintain these
constraints. The resulting graph, which we call the case
graph, is illustrated in Figure 2b. Figure 2a is a map. Solid
line segments are previously visited streets; dotted segments
are unvisited streets. Figure 2b shows the abstract manner in
which these paths are stored in the CBR indexing file. Note
that Case 20 oversimplifies the path, but the bend in the road

45

46

47

48

49

50

51

y
co

or
di

na
te

, x
10

00
0

62 63 64 65 66 67 68 69 70 71 72

x coordinate, x10000

(a) Map.

45

46

47

48

49

50

51

y
co

or
di

na
te

, x
10

00
0

63 64 65 66 67 68 69 70 71
x coordinate, x10000

C
as

e
1

C
as

e
2

Case 3

C
as

e
4

Case 5

C
as

e
6

Case 7

Case 8

C
ase 9Case 10
Case 11

Case 12
Case 13

Case 14

C
ase 15

C
as

e
16

C
as

e
17

Case 18

Cas
e 1

9

Case 20

(b) Case graph representation of map.

Figure 2: Marked streets and intersections in the map (a
part of the total Pittsburgh map) are locations visited during
previous planning. Straight line approximations are used to
create the representation by cases. Several case segments
may together describe one route, and several streets may be
contained in one case segment.

would not change the final routing (since there are no inter-
sections along the route), so this abstraction is acceptable.

These abstractions are heuristically generated. When a
route is planned, we break it up into pieces which approxi-
mate straight lines. Each of these pieces becomes a segment
in the case graph. When a sinuous route has few intersec-
tions it is abstracted into a single straight line. This heuristic
is not always guaranteed to be correct, but the planner can
compensate.

Similarity Metric and Retrieval
Identifying cases relevant to the new problem is done by the
use of a similarity metric, which estimates the similarity of
cases to the problem at hand. An ideal metric might:
� take into account the relative desirability of different cases;
� suggest how multiple cases may be ordered in a single

new solution; and
� identify which part(s) of a case are likely to be relevant.
Finding a similarity metric that is both effective and fast is a
difficult task for the researcher. It is sufficiently difficult that
many existing CBR systems identify neither multiple cases
nor partial cases at all. The metric developed by Haigh and

Shewchuk [8] effectively takes into account the geometric
and continuous-valued characteristics of a city map, and can
generate multiple and partial cases.

Suppose we undertake to plan a route on our map from
some initial location i to some goal location g. Although we
want to reuse cases, we are willing to traverse unexplored
territory to avoid long, meandering routes. It is important
to find a reasonable compromise between staying on old
routes and finding new ones. Hence, we assign each case an
efficiency value �, which is a rough measure of how much
a known case should be preferred to unexplored areas. � is
an indicator of the “quality” of a road, and is independent of
the road’s length.

In the map domain, the efficiency of a particular case
might depend on such factors as road conditions or traffic.
The efficiency satisfies � � 0, and may vary from case to
case; low values of � correspond to more desirable streets.
Values of � > 1 correspond to undesirable streets.

We assume that the cost of traversing an unknown region
of the plane is equal to the distance travelled, while the cost
of traversing a known case is equal to � times the distance
travelled. Define a route to be a continuoussimple path in the
plane. A route may include several case segments (or parts
thereof), and may also traverse unexplored regions. Assign
each route a cost which is the sum of the costs of its parts.

The problem of finding a good set of cases is reduced to
a geometric algorithm in which one finds an optimum route
(that is, a route with the lowest cost) from the initial vertex
i to the goal vertex g in the case graph. Our algorithm is an
approximation algorithm that finds a close to optimal route.

The case segments found in the shortest route are returned
to the planner, which creates a detailed plan using the cases
for guidance.

Our similarity metric consists of several steps.

Delaunay Triangulations First we form a Delaunay trian-
gulation [3] which will allow us to take advantage of locality,
the principle that one is most likely to travel from vertices
to other nearby vertices. This saves computational effort
because we can ignore interactions between distant vertices
and segments. A correct algorithm might need to consider
all interactions.

Delaunay triangulations have several desirable properties:
� They provide a structure that makes it possible to quickly

determine the edge costs of the case graph;
� Local modifications of the triangulation can easily be

made; and
� They form a good approximation of which vertices are

closest to each other. Take for example Figure 3.
This figure shows a small set of points and the Delaunay

HHHA
A
A

��@@

�
�
�

����
@
@
@@ ��

A
A
A
................................

..

a b

e

f i

d

c

h

g

Figure 3: A set of points and their triangulation

45

46

47

48

49

50

51

y
co

or
di

na
te

, x
10

00
0

63 64 65 66 67 68 69 70 71
x coordinate, x10000

i

g

(a) Dijkstra path on triangulation

45

46

47

48

49

50

51

y
co

or
di

na
te

, x
10

00
0

62 63 64 65 66 67 68 69 70 71 72

x coordinate, x10000

i

g

(b) Dijkstra path on map

45

46

47

48

49

50

51

y
co

or
di

na
te

, x
10

00
0

62 63 64 65 66 67 68 69 70 71 72

x coordinate, x10000

i

g

(c) Final path
Figure 4: (a) The path found by Dijkstra’s algorithm in the Delaunay triangulation; solid lines represent case edges, dashed lines
represent triangulation edges, thick lines represent the path. (b) Dijkstra’s path superimposed on the real map. (c) Dijkstra’s
path modified by PRODIGY to conform to real world constraints.

triangulation of those points. Imagine that each of the
points a through h are endpoints of case segments, and
that i is the initial point. In each direction around i, the
triangulation indicates what case is closest to i. Any cases
outside the hexagon centered at i (such as those involving
g and h) are further away, and are less likely to be directly
connected to i in the final solution path. It is these more
distant cases that we ignore in our heuristic.
The conforming Delaunay triangulation of the set of cases

from Figure 2b, plus a new initial point and goal point, is
shown in Figure 4a.

Edge Costs Once the triangulation has been formed, we
calculate the edge costs for the edges in the triangulation.

Where two vertices are connected by a case segment, the
edge cost is simply the value � for that case times the Eu-
clidean distance between the vertices. Under other condi-
tions, the calculation is not always so simple. To see why,
consider Figure 5.

Case Segment
Path of Minimum Cost

cost(xy) = cost(xa) + cost(ay)

y
z

x

a

�

Figure 5: Finding the route of minimum cost.

Imagine that yz is a highway, and you wish to navigate
your way from x to y. It is faster to take the highway for part
of the route than to go directly from x to y. The best place
to merge with the highway is at point a. (Note that there
may not be an entrance at a in the real world; it is PRODIGY’s
responsibility to find some legal merge point close to a.)

In this figure, yz is a case segment. The optimum route
between x and y is hxa; ayi, for some point a that depends
on the value of �. The cost of the optimum route is equal to
length(xa)+��length(ay). Let � represent the angle 6 xaz;
the position of a is computed from the fact that � = cos�1 �.
In the limiting case where � = 0, xa is perpendicular to yz.

(a) (b)

(c) (d)

g

i

g

i

g

i

g

i

Figure 6: Sample paths for routes between i and g with
varying � values of the cases. (a) � = 0:00. (b) � = 0:25. (c)
� = 0:50. (d) � � 1:00.

Case Segment
Triangulation Edge
as a function of beta values of case segments
Potential Path of Minimum Cost

cost(xc)+cost(cz))
cost(xb)+cost(bz),

cost(xz) = MIN(cost(xa)+cost(az),

y
z

x

a

w

b

c

Figure 7: Cost calculation for edge (x;z) contained in two
triangles

Figure 6 shows some sample paths generated for different
� values on a case.

We assign a cost to each edge (x; y) of the triangulation
by considering a number of possible routes between x and
y, and taking the route with minimum cost. The first route
we consider is a straight line between x and y. Then we
need to consider all routes between x and y that use case
segments. Taking advantage of the locality principle, we
consider only the case edges that occur in the triangles in
the vicinity of (x; y). Usually we need only examine the
two triangles adjacent to (x; y). Figure 7 illustrates some of
the possibilities. To determine the cost of edge (x; z), only a
small number of alternative routes need be considered, taking
only constant time.

For each edge (x; z) in the triangulation, we record which
simple route from x to z had the minimum cost so that the
entire route (and set of cases) can be reconstructed later.

Shortest Paths The final step of the similarity metric is to
treat the triangulation as a graph and use Dijkstra’s shortest
path algorithm [4] to find the optimum route through the
triangulation.

Figure 4 shows a path chosen by Dijkstra’s algorithm be-
tween the labelled initial (i) and goal (g) points and some
� value assigned to each case in the triangulation. Fig-
ure 4a shows the path through the triangulation and Figure 4b
shows the same path – as it is handed to PRODIGY/ANALOGY
– superimposed on the real map. Note that the path given
to PRODIGY/ANALOGY would not be executable in the real
world because it traverses several regions where there are
no streets. It is the planner’s job to knit this information
together into a plan, taking into account details such as one-
way streets and illegal turns that cannot be resolved by the
geometric algorithm (this process is described in the section
Route Planning by Analogy). Figure 4c shows the path after
it has been modified by the planner to conform to constraints
not known by the similarity metric.

Traversal of the Route
After the set of cases is retrieved and modified into a work-
able plan, the plan needs to be translated into a language that
the executor understands. Once the plan has been executed –
as well as possible – learning can take place: successes and
failures need to be identified, domain knowledge modified,
� values of cases need to be adjusted, and the execution trace
needs to be added to the case library.

Language Translation
Before being executed, the fine-grained plan must be trans-
lated into a language that can be understood by the executor.
Plan-level commands must be converted into execution-level
commands.

We have been exploring this translation process within the
framework of Xavier [13], an autonomous robot built for
indoor tasks that has competed in recent AAAI robot com-
petitions. The Task Control Architecture [14], an operating
system for robots, is used as a basis for the communication
between the planner and the robot controller. It provides the
mechanisms needed to control goals and actions as well as
to monitor the environment.

Under this architecture, a plan-level command such as
turn-right would be turned into:

tcaExecuteCommand(CTR TURN, 90.00).
All movements must be expressed in terms of precise dis-
tances or (x; y) goal coordinates (which can be relative to
the current position or absolute within the world). Xavier
also has the ability to recognize landmarks such as doors or
bar codes.

The planner must also decide at what speed to send com-
mands to the executor. The planner cannot simply give the
entire plan to Xavier and expect it to be executed — since the
real-world is constantly changing, there are enough potential

failures along the route that blindly executing the plan is un-
likely to lead to success. Therefore PRODIGY must break the
plan into small pieces, each of which has an easy-to-identify
success condition. We are currently exploring methods of
breaking down the plan in this fashion.

PRODIGY/ANALOGY can use the time spent executing each
step to do contingency planning for more probably failures.

Learning from Execution
Failure Identification When the system does not detect a
success within a given time-limit, the system starts trying
to identify a failure and categorize it according to severity.
Some failures will involve simple replanning to avoid tem-
porary obstacles, others will require modification of the �
values in the case-base, and still others will require modifi-
cations to the map knowledge.

For example, if a street does not exist when the map be-
lieves one does, then the permanent domain knowledge needs
to change. If rush-hour traffic, weather or major construc-
tion caused the failure, then � values of the cases involved
in creating the failed plan need to be changed (see below). If
a road is blocked for a parade, then the system needs to only
replan to achieve its goals.

In addition, failures that occur during execution are them-
selves learning opportunities. When replanning is needed,
learning mechanisms (such as cases or control rules) can
accumulate knowledge on efficient repair strategies for the
plan. This knowledge will help improve contingency plan-
ning and other replanning situations in the future.

Since the learning part of the system has not yet been
implemented, we are currently manually telling the system
whether the failure was general or not. In the future, we will
explore methods for automatic identification and classifica-
tion of failures.

Once the system has identified and internalized the learned
knowledge, it will try to generate a new plan under the new
constraints.

Adjustment of � Values As experience with particular
routes increases, so should the system’s knowledge and con-
fidence in using the route. When a case is first placed in
the case library, it is assigned an initial � value dependent
on established ‘norms’ of driving (currently arbitrary: we
suspect that they will also be learnable).

Each time the route is used in future episodes, the system
can adjust this belief up or down, depending on the outcome
of execution: if the new execution of the segment revealed
that it was better than the original� value, then � will be low-
ered slightly, and if the execution revealed that the segment
was worse, � will be raised slightly.

Since certain failures suggest that � values are not the
same at all times, there is also a method for storing multiple
� values for one case, and then for choosing which � value
is applicable when planning next occurs. For example, we
might want to have a higher � value at rush hour:

if (15:00 � current time � 18:00)
then � = 1.5

else � = 0.6

1. Given a new problem, find a set of similar cases, using stored � values. : : : : : : : : : : : : Fully implemented.
2. Modify case(s) into new plan. :Fully implemented.
3. Execute plan. :Not implemented yet.
4. If execution of plan is successful:

Add new case to library. :Partially implemented.
Assign appropriate � values. :Fully implemented.

Otherwise:
Identify reason for failure. : Not implemented yet.
Modify world knowledge as applicable.

� modify domain knowledge (permanent or long-term changes) : : : : : : : : : : Not implemented yet.
� modify � values (specific situations) :Partially implemented.
� leave database unchanged (for temporary failures)

Add any successful parts of plan to case library :Not implemented yet.
Figure 8: Our integrated planning and learning route-planning algorithm. Current status of the various stages are marked in
italics.

Other possible comparisons might involve specific dates (eg.
construction), season or weather (eg. impassability due to
potholes, snow or mud), or direction (eg. one-way streets).

Adding Cases to the Library At the end of any problem
solving episode, successful solutions are added to the case
library and to the indexing file. We can efficiently update the
indexing file (the triangulation) to reflect any newly learned
cases. Haigh and Shewchuk [8] describe this process in more
detail. This incremental behaviour is one of the benefits of
using Delaunay triangulations.

Initial � values are assigned to each new case, reflecting
the system’s belief in the usefulness of the case.

If a particular route involves several turns or is in some
other way very sinuous, the case will be indexed by a set of
straight-line segments that approximate the curve. If each of
these segments is derived from new planning (and not from
cases), then each segment will have the same � value.

Those portions of the plan that were derived from cases
(and therefore were already in the indexing graph) will have
this new path added to their association lists, and potentially
have a slight modification to their � values as described
above.

We are currently investigating the issue of how much re-
dundant information to add to the case library: it could be
more work to retrieve and merge several non-overlapping
cases than to store several cases with overlapping informa-
tion thereby reducing merge cost. The tradeoff between re-
trievel and modification costs have been discussed at length
elsewhere [10; 19].

We are also investigating the effect of adding failure cases
to the library. These cases might aid in creating contingency
plans (i.e. by identifying situations where contingency plans
were necessary) and in determining efficient replanning tech-
niques (i.e. by identifying which techniques related to which
failures).

Similarly, there might be occasions to “forget” cases, such
as cases that are rarely used, or cases in which an important
piece of domain knowledge changed, making a case irrele-
vant. Factors that may influence the decision to forget a case
might include a high � value, the length of time the case

remains unused, and the likelihood that the case will become
relevant again (eg. temporary construction).

Related Work
Most robotics path planners (eg. Dyna [15], COLUMBUS [18],
Xavier [6], NavLab [16; 17]) don’t remember paths or their
quality, and typically use shortest path, dynamic program-
ming or decision theoretic algorithms to determine routes.

Long Ji Lin [12] used experience replay within the frame-
work of reinforcement learning to speed up the acquisition
of knowledge about the world. The agents learned to survive
in a dynamic world, and had to do basic path planning in
order to achieve goals. The experiences were integrated into
the domain knowledge of the agent, but not stored for future
reference.

ROUTER (developed by Goel et. al [5]) is the only other
case-based route-planningsystem the authors are aware of. It
however has an extremely simple retrieval and modification
algorithm, considerably reducing the transfer rate of prior
experience. In addition, it does not remember quality of
paths in an attempt to improve case retrieval.

Conclusion
In this paper, we have described our approach to route plan-
ning using a complete online map of the city of Pittsburgh.
We motivated the need for an integrated planning and learn-
ing system. We presented a similarity metric that takes ad-
vantage of the geometric characteristics of the map and re-
turns a set of similar previously traversed routes. We briefly
discussed how the system creates a new route plan by inte-
grating information from retrieved cases and planning from
the map description and the routing operators. Finally, we
introduced a learning algorithm that uses execution experi-
ence to update the map. We capture map changes into case
parameters that are used by the similarity metric. There-
fore, the system will incrementally retrieve better cases and
generate more accurate route plans with experience.

The entire integrated planning and learning algorithm is
summarized in Figure 8.

Our future work includes implementing each of the un-

finished portions of the algorithm, creating a system that
can deal with situations when all the goals are not initially
known, and comparing the behaviour of the system (in each
stage of development) to both classical planners as well as
to those created by by humans.

Any system that interacts with the real-world will have to
deal with a changing environment. We hope that our system
will form a good basis for future exploration in this area.

References
[1] Bernd Bruegge, Jim Blythe, Jeff Jackson, and Jeff

Shufelt. Object-oriented system modeling with OMT.
In Proceedings of the OOPSLA ’92 Conference, pages
359–376. ACM Press, October 1992.

[2] Jaime G. Carbonell, Craig A. Knoblock, and Steven
Minton. PRODIGY: An integrated architecture for plan-
ning and learning. In K. VanLehn, editor, Architectures
for Intelligence. Erlbaum, Hillsdale, NJ, 1990. Avail-
able as Technical Report CMU-CS-89-189.

[3] L. Paul Chew. Constrained Delaunay triangulations.
Algorithmica, 4:97–108, 1989.

[4] E. W. Dijkstra. A note on two problems in connex-
ion with graphs. Numerische Mathematik, 1:269–271,
1959.

[5] Ashok Goel, Michael Donnelan, Nancy Vazquez, and
Todd Callantine. An integrated experience-based ap-
proach to navigational path planning for autonomous
mobile robots. In Working notes of the AAAI Fall
Symposium on Applications of Artificial Intelligence to
Real-World Autonomous Mobile Robots, pages 50–61,
Cambridge, MA, October 1992.

[6] Richard Goodwin and Reid Simmons. Rational
handling of multiple goals for mobile robots. In
J. Hendler, editor, Artificial Intelligence Planning Sys-
tems: Proceedings of the First International Confer-
ence (AIPS92), June 1992.

[7] Karen Haigh and Manuela Veloso. Combining search
and analogical reasoning in path planning from road
maps. In Case-Based Reasoning: Papers from the 1993
Workshop, pages 79–85, Washington, D.C., July 1993.
AAAI Press. Available as Technical Report WS-93-01.

[8] Karen Zita Haigh and Jonathan Richard Shewchuk. Ge-
ometric similarity metrics for case-based reasoning. In
Case-Based Reasoning: Working Notes from the AAAI-
94 Workshop, pages 182–187, Seattle, WA, August
1994. AAAI Press.

[9] Kristian J. Hammond. Case-based planning: A frame-
work for planning from experience. Cognitive Science,
(14):385–443, 1990.

[10] M. T. Harandi and S. Bhansali. Program derivation
using analogy. In Proceedings of IJCAI-89, pages 389–
394, 1989.

[11] Janet L. Kolodner. Case-Based Reasoning. Morgan-
Kaufmann Publishers, Inc., San Mateo, CA, 1993.

[12] Long-Ji Lin. Self-improving reactive agents based on
reinforcement learning, planning and teaching. Ma-
chine Learning, 8(3-4):293–321, 1992.

[13] Joseph O’Sullivan and Karen Zita Haigh. Xavier.
Carnegie Mellon University, Pittsburgh, PA, July 1994.
Manual, Version 0.1, unpublished.

[14] Reid Simmons, Richard Goodwin, Chris Fedor, and
Jeff Basista. Task Control Architecture: Programmer’s
Guide. Carnegie Mellon University, School of Com-
puter Science / Robotics Institute, Pittsburgh, PA, 7.7
edition, May 1994.

[15] Richard S. Sutton. Planning by incremental dynamic
programming. In Machine Learning: Proceedings of
the 8th International Workshop, pages 353–357. Mor-
gan Kaufmann, 1991.

[16] Charles Thorpe and Jay Gowdy. Annotated maps for
autonomous land vehicles. In 1990 IEEE International
Conference on Systems, Man and Cybernetics Confer-
ence Proceedings, Los Angeles, CA, November 1990.

[17] Charles E. Thorpe, editor. The CMU Navlab. Kluwer
Academic Publishers, Boston, MA, 1990.

[18] Sebastian B. Thrun. Exploration and model building in
mobile robot domains. In Proceedings of the IEEE In-
ternational Conference on Neural Networks, San Fran-
cisco, CA, March 1993.

[19] Manuela M. Veloso. Variable-precision case retrieval in
analogical problem solving. In Proceedings of the 1991
DARPA Workshop on Case-Based Reasoning. Morgan
Kaufmann, May 1991.

[20] Manuela M. Veloso. Learning by Analogical Reason-
ing in General Problem Solving. PhD thesis, School of
Computer Science, Carnegie Mellon University, Pitts-
burgh, PA, 1992. Available as technical report CMU-
CS-92-174.

