
Interleaving Planning and Robot Execution
for Asynchronous User Requests

Karen Zita Haigh and Manuela Veloso
School of Computer Science
Carnegie Mellon University
Pittsburgh PA 15213-3891

khaigh@cs.cmu.edu mmv@cs.cmu.edu
http://www.cs.cmu.edu/�khaigh http://www.cs.cmu.edu/�mmv

In Proceedings of the AAAI-96 Spring Symposium \Planning with Incomplete Information for Robot Problems"

Abstract

This paper describes Rogue, an integrated planning
and executing robotic agent. Rogue is designed to be
a roving o�ce gopher unit, doing tasks such as pick-
ing up & delivering mail and returning & picking up
library books, in a setup where users can post tasks for
the robot to do. We have been working towards the
goal of building a completely autonomous agent which
can learn from its experiences and improve upon its
own behaviour with time. This paper describes what
we have achieved to-date: (1) a system that can gen-
erate and execute plans for multiple interacting goals
which arrive asynchronously and whose task structure
is not known a priori, interrupting and suspending
tasks when necessary, and (2) a system which can com-
pensate for minor problems in its domain knowledge,
monitoring execution to determine when actions did
not achieve expected results, and replanning to correct
failures.

1. Introduction
We have been working towards the goal of building au-
tonomous robotic agents that are capable of planning
and executing high-level tasks. Our framework consists
of the integration of the Xavier robot agent and the
prodigy planning system in a setup where users can
post tasks for which the planner generates appropriate
plans, delivers them to the robot, and monitors their
execution.

Xavier is a robot developed by Reid Simmons at
Carnegie Mellon [6]. One of the goals of the project is to
have the robot move autonomously in an o�ce building
reliably performing o�ce tasks such as picking up and
delivering mail and computer printouts, returning and
picking up library books, and carrying recycling cans to
the appropriate containers [8]. Our on-going contribu-
tion to this ultimate goal is at the high-level reasoning
of the process, allowing the robot to e�ciently handle
multiple interacting goals, and to learn from its experi-
ence. We are investigating techniques for the robot to
autonomously perform many-step plans, and to appro-
priately handle asynchronous user interruptions with
new task requests. We aim at developing techniques
that will allow the system to use experience to improve

its performance and model of the world.
Integrating planning and real execution by a robot is

a complex task that we believe requires learning from
prior experience to signi�cantly improve the overall per-
formance of the autonomous agent. Other researchers
investigate the problem of interleaving planning and ex-
ecution (including [1; 3; 4; 5]). We build upon this work
and pursue our investigation from three particular an-
gles: that of real execution in an autonomous agent,
in addition to simulated execution, that of challenging
the robot with multiple asynchronous user-de�ned in-
teracting tasks, and that of interspersing execution and
replanning as an additional learning experience.
In this paper, we focus on presenting our current work

on the interleaving of planning and execution by a real
robot within a framework with the following sources of
incomplete information:
� the tasks requested by the users are not completely
speci�ed,
� the set of all the goals to be achieved is not known a
priori,

� the domain knowledge is incompletely or incorrectly
speci�ed, and
� the execution steps sent to the robot may not be
achieved as predicted.

The learning portions of the system is the focus of our
future work and will not be discussed here.
The paper is organized as follows: In Section 2 we

introduce the Rogue architecture, our developed inte-
grated system. We illustrate the behaviour of Rogue
for a single goal when no errors occur during execution
in Section 3. We describe the behaviour of the architec-
ture with multiple goals and simple execution errors in
Section 4. Finally we provide a summary of Rogue's
current capabilities in Section 5 along with a descrip-
tion of our future work to incorporate learning methods
into the system.

2. General Architecture
Rogue

1 is the system built on top of prodigy4.0 to
communicate with and to control the high-level task

1In keeping with the Xavier theme, Rogue is named after
the \X-men" comic-book character who absorbs powers and

planning in Xavier2. The system allows users to post
tasks for which the planner generates a plan, delivers it
to the robot, and then monitors its execution. Rogue
is intended to be a roving o�ce gofer unit, and will deal
with tasks such as delivering mail, picking up printouts
and returning library books.
Prodigy and Xavier are linked together using the

Task Control Architecture [9; 10] as shown in Figure 1.
Currently, Rogue's main features are (1) the ability to
receive and reason about multiple asynchronous goals,
suspending and interrupting actions when necessary,
and (2) the ability to reason about and correct simple
execution failures.

Request

Task Status

Feedback

TCA

Base

(sonar,laser)
Speech Vision

SAY

[Reid Simmons]

Navigate

User InteractionPlan Steps

Monitor

Execution

(asynchronous)

User Request
PRODIGYROGUE

Xavier

Plan Step

User Request

User Request

(Task Control Architecture)

Success/Fail

Figure 1: Rogue Architecture

Xavier

Xavier is a mobile robot being developed at CMU [6]
(see Figure 2). It is built on an RWI B24 base and in-
cludes bump sensors, a laser range �nder, sonars and a
color camera. Control, perception and navigation plan-
ning are carried out on two on-board Intel 80486-based
machines. Xavier can communicate with humans via
an on-board lap-top computer or via a natural language
interface; however speech recognition occurs o�-board
and is therefore slower.
Beyond its research abilities, Xavier can au-

tonomously perform one of a number of sim-
ple tasks for users via it's on-line WWW page:

experience from those around her. The connotation of a
wandering beggar or vagrant is also appropriate.

2We will use the term Xavier when referring to features
speci�c to the robot, prodigy to refer to features speci�c
to the planner, and Rogue to refer to features only seen in
the combination.

Figure 2: Xavier the robot

http://www.cs.cmu.edu/�Xavier. To date, Xavier
has been operational more than 60 hours, covering al-
most 20km and completing 90% of its tasks.
The software controlling Xavier includes both reac-

tive and deliberative behaviours, integrated using the
Task Control Architecture (TCA) [9; 10]. TCA pro-
vides facilities for scheduling and synchronizing tasks,
resource allocation, environment monitoring and excep-
tion handling. The reactive behaviours enable the robot
to handle real-time local navigation, obstacle avoid-
ance, and emergency situations (such as detecting a
bump). The deliberative behaviours include vision in-
terpretation, maintenance of occupancy grids & topo-
logical maps, and path planning & global navigation.
All modules and behaviours operate independently,

concurrently and in a distributed manner; they can also
be modi�ed or added incrementally without a�ecting
existing behaviours. The clear separation between reac-
tive and deliberative behaviours increases system pre-
dictability by isolating di�erent concerns: the robot's
behaviour during normal operation is readily apparent,
while strategies for handling exceptions can be individ-
ually analyzed.
Xavier has a simulator whose primary function is to

test and debug code before running it on the real robot.
Figure 3 shows an image of the simulator and the navi-
gate module. The navigate module performs path plan-
ning (an A� algorithm), global navigation and position
estimation. The existence of this simulator allows soft-
ware to be developed, extensively tested and then de-
bugged o�-board before testing and running it on the
real robot. The simulator is functionally equivalent to
the real robot: it creates noisy sonar readings, it has
poor dead-reckoning abilities, and it gets stuck going
through doors. Most of these \problems" model the
actual behaviour of the robot, allowing code developed
on the simulator to run successfully on the robot with
no modi�cation. The simulator of course has limited

Figure 3: Simulator (left window) and Navigate (right window) in action

capabilities for dynamism: currently only doors can be
opened and closed at the whim of the user. The simula-
tor also has the ability to replay recorded data, and so
actual data collected on the robot can be used by the
simulator.

Prodigy

Prodigy is a domain-independent problem solver that
serves as a testbed for machine learning research [2;
13]. Prodigy4.0 is a nonlinear planner that uses
means-ends analysis and backward chaining to reason
about multiple goals and multiple alternative operators
to achieve the goals.
The planning reasoning cycle involves several decision

points, including which goal to select from the set of
pending goals, and which applicable action to execute.
Prodigy provides a method for creating search con-

trol rules which reduces the number of choices at each
decision point by pruning the search space or suggest-
ing a course of action. In particular, control rules can
select, prefer or reject a particular goal or action in a
particular situation. Control rules can be used to fo-
cus planning on particular goals and towards desirable
plans. Dynamic goal selection from the set of pending
goals enables the planner to interleave plans, exploit-
ing common subgoals and addressing issues of resource

contention.
Prodigy maintains an internal model of the world

in which it simulates the e�ects of selected applicable
operators. Applying an operator gives the planner ad-
ditional information (such as consumption of resources)
that might not be accurately predictable from the do-
main model. Prodigy also supports real-world exe-
cution of its applicable operators when it is absolutely
necessary to know the outcome of an action; for ex-
ample, when actions have probabilistic outcomes, or
the domain model is incomplete and it is necessary to
acquire additional knowledge. During the application
phase, user-de�ned code is called which can map the
operator to a real-world action sequence [11]. Some
examples of the use of this feature include shortening
combined planning and execution time, acquiring nec-
essary domain knowledge in order to continue planning
(e.g. sensing the world), and executing an action in
order to know its outcome and handle any failures.

3. Base-line Behaviour
This section describes Rogue's underlying architecture
in more detail, describing the interface for users to cre-
ate task requests, and then, through the use of an ex-
ample, describes how the planner generates a plan to
achieve the request and executes it, successfully mak-

Figure 4: User Request Interface

ing an o�ce delivery. The features described here were
developed using the Xavier simulator and then tested
on the actual robot.
Any user can create and send a goal request to

Rogue via a simple user interface, shown in Figure 4.
These requests can come in asynchronously, and include
information about what item needs to be moved, where
it needs to be picked up, where it needs to be delivered,
and who is making the request. Rogue is able to iden-
tify and handle incomplete goal information by utilizing
default values and accessing various on-line information
sources (such as finger), or requesting them from the
user.
Consider a simple problem where a single request

is made: the request is from Figure 4 where the user
mitchell would like his mail taken from room 5303 to
room 5313. Figure 5 shows the search tree generated
by prodigy. Figure 6 shows a detailed trace of the
complete interaction.
When the request arrives at the Rogue module,

Rogue translates it into a prodigy state and goal de-
scription and then spawns a prodigy run. Prodigy

uses its domain knowledge to create a series of ac-
tions that will achieve the goal. When the planner has
mapped out the plan with enough detail to know its
�rst action (node 18), it informs Rogue, which sends a
command to Xavier who starts executing the plan. The
�rst action can be determined when prodigy knows
that the step will be useful in achieving the goal, and
will not be dis-achieved by another action. There are
four actions that need to be executed in order to achieve
the goal, namely deliver-item (node 7), acquire-item
(node 10), goto-pickup-loc (node 13), and goto-deliver-
loc (node 17). The structure of the goal tree indicates
that nodes 7 and 10 should be executed after nodes 13
and 17. Simple reasoning shows that achieving node
17 would be pointless since the action would be imme-
diately undone. As a result, Rogue starts to execute

has-item mitchell delivermail

deliver-item r-5313 delivermail

robot-in-room r-5313robot-has-item mitchell delivermail

acquire-item r-5303 mitchell delivermail

robot-in-room r-5303

n10

n11

n13

n17

n14n8

n7

n5

goto-deliver-loc r-5313

goto-pickup-loc r-5303

Solution:
<goto-pickup-loc mitchell r-5303>
<acquire-item r-5303 mitchell delivermail>
<goto-deliver-loc mitchell r-5313>
<deliver-item r-5313 mitchell delivermail>

Figure 5: Search Tree and Solution for single task problem;
goal nodes in ovals, executed actions in rectangles.

(goto-pickup-loc). The solution shown in Figure 5 shows
the complete ordering of the executed actions.
Each of the actions described in the domain model

is mapped to a command sequence suitable for Xavier.
These commands are executed in the real-world during
the operator application phase of prodigy, as described
above. They may be executed directly by the Rogue
module (e.g. an action like finger), or sent via the
TCA interface to the Xavier module designed to handle
the command. For example, the action (goto-pickup-
loc room) is mapped to the commands (1) �nd out the
coordinates of the room, and (2) navigate to those co-
ordinates. Each line marked SENDING COMMAND (from
Figure 6) indicates a direct command sent through the
TCA interface to one of Xavier's modules. The com-
mand navigateToGoal creates a (shortest) path from

Listening for incoming requests...

Message from interface: "mitchell" "delivermail" "Oct 1 12:51" "Wed Oct 1 13:48" "r-5303" "r-5313"
2 n2 (done)
CALCULATING PRIORITIES
Request: #<HAS-ITEM MITCHELL DELIVERMAIL> Rank: 5

4 n4 <*finish*>
5 n5 (has-item mitchell delivermail)
7 n7 <deliver-item r-5313 mitchell delivermail>
8 n8 (robot-has-item mitchell delivermail)

10 n10 <acquire-item r-5303 mitchell delivermail>
11 n11 (robot-in-room r-5303)
13 n13 <goto-pickup-loc mitchell r-5303>
14 n14 (robot-in-room r-5313)
15 n15 goto-pickup-loc ...no choices for bindings (I tried)
16 n17 <goto-deliver-loc mitchell r-5313>

17 n18 <GOTO-PICKUP-LOC MITCHELL R-5303>
SENDING COMMAND (TCAEXPANDGOAL "navigateToG" #(TASK-CONTROL::MAPLOCDATA 567.0d0 2316.5d0))
...waiting...
Action NAVIGATE-TO-GOAL-ACHIEVED finished.

Verifying Location: R-5303
SENDING COMMAND (TCAEXECUTECOMMAND "C_say" "Am I really at the door of room R-5303?")
SENDING COMMAND (TCAEXECUTECOMMAND "C_say" "Please answer on my keyboard.")

Am I really at the door of room R-5303? (y/n): y
COMPLETED-ACTION (GOTO-LOCATION 1 R-5303)

18 n19 <ACQUIRE-ITEM R-5303 MITCHELL DELIVERMAIL>
SENDING COMMAND (TCAEXECUTECOMMAND "C_say" "Please place Tom Mitchell's mail delivery on my tray.")
SENDING COMMAND (TCAEXECUTECOMMAND "C_say" "Please indicate on my keyboard when you are finished.")

Are you finished placing Tom Mitchell's mail delivery on my tray? (y/i(mpossible)): y
COMPLETED-ACTION (ACQUIRE-ITEM 1 "Tom Mitchell's mail delivery")

19 n20 <GOTO-DELIVER-LOC MITCHELL R-5313>
SENDING COMMAND (TCAEXPANDGOAL "navigateToG" #(TASK-CONTROL::MAPLOCDATA 567.0d0 4115.0d0))
...waiting...
Action NAVIGATE-TO-GOAL-ACHIEVED finished.

Verifying Location: R-5313
SENDING COMMAND (TCAEXECUTECOMMAND "C_say" "Am I really at the door of room R-5313?")
SENDING COMMAND (TCAEXECUTECOMMAND "C_say" "Please answer on my keyboard.")

Am I really at the door of room R-5313? (y/n): y
COMPLETED-ACTION (GOTO-LOCATION 1 R-5313)

19 n21 <DELIVER-ITEM R-5313 MITCHELL DELIVERMAIL>
SENDING COMMAND (TCAEXECUTECOMMAND "C_say" "Please take Tom Mitchell's mail delivery from my tray.")
SENDING COMMAND (TCAEXECUTECOMMAND "C_say" "Please indicate on my keyboard when you are finished.")

Are you finished taking Tom Mitchell's mail delivery from my tray? (y/i(mpossible)): y
COMPLETED-ACTION (DELIVER-ITEM 1 "Tom Mitchell's mail delivery")

Achieved top-level goals.

Listening for incoming requests...

Figure 6: Sample Run

De�ne: DK domain knowledge
De�ne: G top-level goal
De�ne: PG pending goals cache (unsolved top-level goals and their subgoals)

At each prodigy interrupt point:
Let R be the list of pending unprocessed requests
For each request 2 R, turn request to goal:

- DK (DK [f (needs-item request-userid request-object)
(pickup-loc request-pickup-loc)
(deliver-loc request-deliver-loc) g

- G((and G (has-item request-userid request-object))
- PG((and PG (has-item request-userid request-object))
- request-completed (nil

Figure 7: Integrating new goal requests into the search tree.

the current location to the requested location, and then uses probabilistic reasoning to navigate to the requested
goal. The model performs reasonably well given in-
complete or incorrect metric information about the en-
vironment and in the presence of noisy e�ectors and
sensors. The command C say sends the string to the
speech board, and the response is used by Rogue while
monitoring execution (described in more detail below).
There is a large variety of available commands, includ-
ing those to request or update current location infor-
mation, to acquire images through the vision camera,
and to notice landmarks.
The complete procedure for achieving a particular

task is summarized as follows:
1. Receive task request
2. Add knowledge to state model, create top-

level goal
3. Create plan
4. Send execution commands to robot, moni-

toring outcome
Xavier successfully executes the plan, stopping at the

requested doors, asking for and then delivering the mail.
This behaviour was developed in the simulator and then
tested on the robot. Despite a few hardware problems
and a slow network connection, the robot successfully
and completely executed the plan.
We have described above Rogue's behaviour in the

face of a single goal request when no errors occur. The
sections below describe how Rogue handles multiple
goal requests, reasoning about prioritizing and inter-
rupting actions, and also how it handles simple plan
failures.

4. Additional Behaviours
The capabilities described in the preceding section are
su�cient to create and execute a simple plan in an un-
changing world. The real world, however, needs a more

exible system that can monitor its own execution and
compensate for problems and failures. In addition, sim-
ple single-goal plans such as the one described above
are overly simplistic and do not address the needs of
the people who will be using these robotic agents. This

section describes the extensions we have implemented
to the base-line system in an attempt to start address-
ing real-world issues.

Interrupts & Multiple Goals

It is very possible that while Rogue is executing the
plan to achieve its �rst goal, other users may submit
goal requests. Rogue does not know a priori what
these requests will entail. One commonmethod for han-
dling these multiple goal requests is simply to process
them in a �rst-come-�rst-served manner; however this
method ignores the possibility that new goals may be
more important or could be achieved opportunistically.
Rogue has the ability to process incoming asyn-

chronous goal requests, prioritize them and identify
when di�erent goals could be achieved opportunisti-
cally. It is able to temporarily suspend lower priority
actions, resuming them when the opportunity arises;
and it is able to successfully interleave similar requests.
This section describes how these capabilities are imple-
mented.
The requests arrive via the TCA message interface,

and wait on a communications socket until they are pro-
cessed. By using prodigy4.0's interrupt mechanism,
Rogue is able to introduce the new goal request into
the planning search tree. A prodigy interrupt is user-
de�ned code that is executed by the system at least
once per decision; in Rogue, the interrupt is imple-
mented as a routine to check the socket for incoming
messages. Pseudocode for doing the full goal integra-
tion is shown in Figure 7. The important points are
that (a) the relevant information about the request is
added to prodigy's domain model, and (b) the new
goal is added to the list of pending goals { the goals
that must be achieved before the planning is complete.
When prodigy reaches the next decision point, it

�res any relevant search control rules. Search control
rules force the planner to focus its planning e�ort on
selected or preferred goals, as described above. Fig-
ure 8 shows Rogue's goal selection control rule which
forces prodigy to examine all of its remaining unsolved
goals; it is at this point when prodigy �rst starts to
reason about the newly added task request. This par-
ticular control rule selects those goals with high priority
and those goals which can be opportunistically achieved
without compromising the main high-priority goal.
The function (ancestor-is-top-priority-goal)

calculates whether the goal is a subgoal of a high prior-
ity goal. Rogue prioritizes goals according to a simple,
modi�able metric. This metric currently involves look-
ing at the user's position in the department and at the
type of request: Priority = PersonRank+TaskRank.
The request also contains deadline information and a
\why" slot for additional reasoning to be implemented
in the future; this information would allow goal prior-
ities to change with time or situation-dependent fea-
tures.
The function (compatible-with-top-priority-

goal) allows Rogue to identify when di�erent goals
have similar features so that it can opportunistically
achieve lower priority goals while achieving higher pri-
ority ones. For example, if multiple people whose o�ces
are all in the same hallway asked for their mail to be
picked up and brought to them,Rogue would do all the
requests in the same episode, rather than only bringing
the mail for the most important person. Compatibil-
ity is currently de�ned by physical proximity (\on the
path of") with a �xed threshold for being too out of the
way, although other features of the domain could (and
should) be taken into account.

The control rule feature of prodigy permits plans
and actions for one goal to be interrupted by another
without necessarily a�ecting the validity of the planning
for the interrupted goals. Prodigy simply suspends the
planning for the interrupted goal, plans for and achieves
the new goal, then returns to planning for the inter-
rupted goal. By using its domain model, prodigy is
able to identify whether the suspended plan has been
invalidated; if so, then it will replan the invalid portion
of the plan.

The search tree shown in Figure 9 shows how
prodigy expands the two goals (has-item mitchell
delivermail) and (has-item jhm deliverfax). The
second user (jhm) is a more important person, mak-
ing a more important request. The request arrives via
the TCA message interface while Xavier is moving to-
wards room 5303. Rogue examines the new request
and identi�es that it is more important than the origi-
nal (current) goal. However, the current goal not only
shares a delivery point with the new goal, but also the
physical path of the original goal subsumes that of the
new goal. Rogue decides therefore that the two goals
are compatible and that it can achieve the lower prior-
ity goal without seriously compromising the new goal.
It continues along its path to room 5309, acquires the
�rst object, then moves to room 5311 where it acquires
the second object, then completes the delivery of both
items to room 5313.

Figure 10 shows how two plans might be merged.
If the two plans are compatible, Rogue identi�es the
order which most exploits the similarity between the
two plans, and merges the steps accordingly (orderings
other than the one shown are possible, and steps may be
elimintated if appropriate). If however, the two plans
are not compatible, Rogue suspends execution of the
lower priority plan until the higher priority one is com-
plete. When it resumes execution of less important
plan, it does not re-execute unnecessary parts. If, for
example,Rogue had already acquired the item in ques-
tion, it would not attempt to reacquire it; the knowl-
edge of having acquired the object is not forgotten (see
Figure 11).

At each prodigy decision point
(control-rule SELECT-TOP-PRIORITY-AND-COMPATIBLE-GOALS

(if (and (candidate-goal <goal>)
(or (ancestor-is-top-priority-goal <goal>)

(compatible-with-top-priority-goal <goal>))))
(then select goal <goal>))

Figure 8: Goal selection search control rule

has-item mitchell delivermail

deliver-item r-5313 delivermail

robot-in-room r-5313robot-has-item mitchell delivermail

acquire-item r-5303 mitchell delivermail

robot-in-room r-5303

acquire-item r-5311 jhm deliverfax

robot-has-item jhm deliverfax

robot-in-room r-5311

goto-pickup-loc r-5311

has-item jhm deliverfax

deliver-item r-5313 deliverfax

n22

n23

n20

n25

n26

n28

robot-in-room r-5313

n14

finish

n5

n10

n11

n13

n17

n14n8

n7

goto-deliver-loc r-5313

goto-pickup-loc r-5303

Solution: <goto-pickup-loc mitchell r-5309> - executed.
<acquire-item r-5309 mitchell delivermail> - executed.
<goto-pickup-loc jhm r-5311> - executed.
<acquire-item r-5311 jhm deliverfax> - executed.
<goto-deliver-loc mitchell r-5313> - executed.
<deliver-item r-5313 jhm deliverfax> - executed.
<deliver-item r-5313 mitchell delivermail> - executed.

Figure 9: Search Tree and Solution for two task problem; goal nodes in ovals, executed actions in rectangles.

Monitoring Execution, Detecting Failures
& Replanning

Any action that is executed by any agent is not guar-
anteed to succeed in the real world. Probabilistic plan-
ners may increase the probability of a plan succeeding,
but the domain model underlying the plan is bound to
be incompletely or incorrectly speci�ed. Not only is
the world more complex than a model, but it is also
constantly changing in ways that cannot be predicted.
Therefore any agent executing in the real world must
have the ability to monitor the execution of its actions,
detect when the actions fail, and compensate for these
problems.
The TCA architecture provides mechanisms for creat-

ing exception handlers which can monitor speci�c events
as they are noticed by the system. These exception
handlers can be added incrementally, and are invoked
by TCA whenever a message regarding the monitored
event appears. Currently, Rogue monitors the events
that indicate when the command navigateToG succeeds
or fails. navigateToGmay fail under several conditions,

including detecting a bump, detecting corridor or door
blockage, and detecting lack of forward progress. The
command is able to compensate for certain failures, in-
cluding obstacle avoidance and missing important fea-
tures of the environment; if it manages to successfully
compensate for these failures, it does not report the
failure.

Whenever the navigation module reports that it has
completed a command, either with success or with fail-
ure, Rogue veri�es the location. Currently, the inter-
action is strictly with nearby people: Rogue sends a
SAY command to the speech board, and expects a re-
ply to questions on the keyboard of its onboard laptop
computer. It is intended that this human interaction
only occur as a last resort, when other autonomous be-
haviours do not su�ce.

If Rogue detects that in fact the robot is not at the
correct goal location, prodigy's domain knowledge is
updated to re
ect the actual position, rather than the
expected position. This update has the direct e�ect of
indicating to prodigy that the execution of an action

Plan 1: Goto

Plan 1: Acquire

Plan 2: Goto

Plan 2: Goto

Plan 2: Deliver

Plan 1: Goto

Plan 1: Deliver

Plan 2: Acquire

Plan 1: Goto

Plan 1: Acquire

Plan 1: Deliver

Plan 1: Goto

Plan 2: Goto

Plan 2: Acquire

Plan 2: Goto

Plan 2: Deliver

Plan 1: Goto

Plan 1: Acquire

Plan 1: Deliver

Plan 1: Goto

Plan 2: Goto

Plan 2: Acquire

Plan 2: Goto

Plan 2: Deliver

?

?

NoYes

?Compatible?

Figure 10: Merging Two Plans

Plan 2: Goto

Plan 2: Acquire

Plan 2: Goto

Plan 2: Deliver

Plan 1: Deliver

Plan 1: Goto

Merge

Plan 2: Goto

Plan 1: Goto

Plan 1: Deliver
Plan 2: Goto

Plan 2: Deliver

Plan 2: Acquire

Plan 1: Goto -- executed

Arrival of second request

Plan 1: Acquire -- executed

Figure 11: Merging Two Plans, �rst partially executed

failed, and it will attempt to �nd another action which
can achieve the goal. prodigy exhibits this replanning
behaviour as an inherent part of its design: the outcome
of an action must be the same as the expected outcome.
When this expectation is invalidated, prodigy will at-
tempt to �nd another solution. This behaviour can ef-
fectively be described by the following steps:

1. Select appropriate action that will achieve
or partially achieve the goal

2. Execute action
3. If action succeeded

Then: Continue planning
Else: Goto step 1

The process is described in more detail by Stone [11].
In this manner,Rogue is able to detect simple execu-

tion failures and compensate for them. The interleaving
of planning and execution reduces the need for replan-
ning during the execution phase and increases the like-
lihood of overall plan success. However, Rogue cannot
autonomously decide whether it has in fact achieved the
goal location nor can it nor can it deal with any form of
hardware failure or software crash. For those failures it
can identify, it has simple hard-wired correction tech-
niques, and persistently tries to achieve the goal until
all possible options are exhausted. Our research plan
includes �nding methods of more informed replanning.

5. Summary
This paper has described Rogue, an integrated plan-
ning and execution robot architecture. Rogue's cur-
rent capabilities include:
� receiving asynchronous goal requests from multiple
users

� determining simple characteristics about particular
users and tasks (such as o�ce numbers and position
within the department)

� being able to prioritize goals and focus planning on
high priority goals until they are achieved, and then
later work on lower priority goals;

� recognizing similar goals and opportunistically
achieve them;
� interrupting actions to deal with a more important
action, and then restart interrupted action appropri-
ately;

� interleaving planning & execution to acquire data and
monitor execution;

� dealing with simple plan failures, such as arriving at
an incorrect location;

� interacting with people
This work is the basis for machine learning research

with the goal of creating an agent that can reliably per-
form tasks that it is given. We intend to implement
more autonomous detection of action failures and learn-
ing techniques to correct those failures. In particular,
we would like to learn contingency plans for di�erent sit-
uations and when to apply which correction behaviour.
We also intend to implement learning behaviour to no-
tice patterns in the environment; for example, how long

a particular action takes to execute, when to avoid par-
ticular locations (eg. crowded hallways), and when sen-
sors tend to fail. We would like, for example, to be able
to say \At noon I avoid the lounge", or \My sonars
always miss this door: : :next time I'll use pure dead-
reckoning from somewhere close that I know well", or
even something as apparently simple as \I can't do that
task given what else I have to do."

Prodigy has been successfully used as a test-bed
for machine learning research many times (eg. [7; 14;
12]), and this is the primary reason why we selected it
as the deliberative portion of Rogue. Xavier's TCA ar-
chitecture supports incremental behaviours and there-
fore will be a natural mechanism for supporting these
learning behaviours.

References
[1] Philip E. Agre and David Chapman. Pengi: An

implementation of a theory of activity. In Proceed-
ings of AAAI-87, pages 268{272, San Mateo, CA,
1987. Morgan Kaufmann.

[2] Jaime G. Carbonell, Craig A. Knoblock, and
Steven Minton. Prodigy: An integrated architec-
ture for planning and learning. In K. VanLehn, ed-
itor, Architectures for Intelligence. Erlbaum, Hills-
dale, NJ, 1990. Also Available as Technical Report
CMU-CS-89-189.

[3] R. James Firby. Task networks for controlling
continuous processes. In Proceedings of AIPS-94,
pages 49{54, Chicago, IL, June 1994.

[4] Kristian Hammond, Timothy Converse, and
Charles Martin. Integrating planning and acting
in a case-based framework. In Proceedings AAAI-
90, pages 292{297, San Mateo, CA, 1990. Morgan
Kaufmann.

[5] Drew McDermott. Planning and acting. Cognitive
Science, 2, 1978.

[6] Joseph O'Sullivan and Karen Zita Haigh. Xavier.
Carnegie Mellon University, Pittsburgh, PA, July
1994. Manual, Version 0.2, unpublished internal
report.

[7] M. Alicia P�erez. Learning Search Control Knowl-
edge to Improve Plan Quality. PhD thesis, School
of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, July 1995. Available as Technical
Report CMU-CS-95-175.

[8] Reid Simmons. Becoming increasingly reliable. In
Proceedings of AIPS-94, pages 152{157, Chicago,
IL, June 1994.

[9] Reid Simmons. Structured control for autonomous
robots. IEEE Transactions on Robotics and Au-
tomation, 10(1), February 1994.

[10] Reid Simmons, Long-Ji Lin, and Chris Fedor. Au-
tonomous task control for mobile robots. In Pro-
ceedings of the IEEE Symposium on Reactive Con-
trol, Philadelphia, PA, September 1990.

[11] Peter Stone and Manuela Veloso. User-guided
interleaving of planning and execution. In Pro-

ceedings of the European Workshop on Planning,
September 1995.

[12] Manuela M. Veloso. Planning and Learning by
Analogical Reasoning. Springer Verlag, Berlin,
Germany, December 1994. PhD Thesis, also avail-
able as Technical Report CMU-CS-92-174, School
of Computer Science, Carnegie Mellon University,
Pittsburgh, PA.

[13] Manuela M. Veloso, Jaime Carbonell, M. Alicia
P�erez, Daniel Borrajo, Eugene Fink, and Jim
Blythe. Integrating planning and learning: The
prodigy architecture. Journal of Experimental
and Theoretical Arti�cial Intelligence, 7(1), Jan-
uary 1995.

[14] Xuemei Wang. Learning by observation and prac-
tice: An incremental approach for planning opera-
tor acquisition. In Proceedings of the Twelfth Inter-
national Conference on Machine Learning, Tahoe
City, CA, 1995.

