
Autonomous Robots, ??, 1{18 (??)
c
 ?? Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Interleaving Planning and Robot Execution
for Asynchronous User Requests

KAREN ZITA HAIGH MANUELA M. VELOSO

khaigh@cs.cmu.edu mmv@cs.cmu.edu

http://www.cs.cmu.edu/�khaigh http://www.cs.cmu.edu/�mmv

Computer Science Department, Carnegie Mellon University, Pittsburgh PA 15213-3891
;

Abstract.
Rogue is an architecture built on a real robot which provides algorithms for the integration of high-

level planning, low-level robotic execution, and learning. Rogue addresses successfully several of the
challenges of a dynamic o�ce gopher environment. This article presents the techniques for the integration
of planning and execution.
Rogue uses and extends a classical planning algorithm to create plans for multiple interacting goals

introduced by asynchronous user requests. Rogue translates the planner's actions to robot execution
actions and monitors real world execution. Rogue is currently implemented using the prodigy4.0

planner and the Xavier robot. This article describes how plans are created for multiple asynchronous goals,
and how task priority and compatibility information is used to achieve appropriate e�cient execution. We
describe how Rogue communicates with the planner and the robot to interleave planning with execution
so that the planner can replan for failed actions, identify the actual outcome of an action with multiple
possible outcomes, and take opportunities from changes in the environment.
Rogue represents a successful integration of a classical arti�cial intelligence planner with a real mobile

robot.

1. Introduction

We have been working towards the goal of build-

ing autonomous robotic agents that are capable

of planning and executing high-level tasks, and

learning from the analysis of execution experience.

This article presents our work extending the high-

level reasoning capabilities of a real robot. One

of the goals of this research project is to have the

robot move autonomously in an o�ce building re-

liably performing o�ce tasks such as picking up

and delivering mail and computer printouts, re-

turning and picking up library books, and carry-

ing recycling cans to the appropriate containers.

Our framework consists of integrating Xavier

[O'Sullivan, Haigh, & Armstrong, 1997, Simmons

et al., 1997] with the prodigy4.0 planning and

learning system [Veloso et al., 1995]. The result-

ing architecture and algorithms is Rogue [Haigh

& Veloso, 1997]. Rogue provides a setup where

users can post tasks for which the planner gener-

ates appropriate plans, delivers them to the robot,

monitors their execution, and learns from feed-

back from execution performance. Rogue e�ec-

tively enables the communication between Xavier,

prodigy4.0 and the users.

In this article, we focus on presenting the tech-

niques underlying the planning and execution con-

trol in Rogue. The learning algorithm is under

development and results are being compiled and

can be found in [Haigh & Veloso, 1998]. The plan-

ning and execution capabilities ofRogue form the

2 Haigh & Veloso

foundation for a complete, learning, autonomous
agent.
Rogue generates and executes plans for multi-

ple interacting goals which arrive asynchronously
and whose task structure is not known a priori.
Rogue interleaves tasks and reasons about task
priority and task compatibility. Rogue enables
the communication between the planner and the
robot, allowing the system to successfully inter-
leave planning and execution to detect successes
or failures and to respond to them. Rogue con-
trols the execution of a real robot to accomplish
tasks in the real world.

1.1. System Architecture

Figure 1 shows the general architecture of the sys-
tem. Rogue accepts tasks posted by users, calls
the task planner, prodigy4.0, which generates
appropriate plans, and then posts actions to the
robot, Xavier, for execution. Rogue provides ap-
propriate search control knowledge to the planner
and monitors the outcome of execution.
Xavier is a mobile robot being developed at

Carnegie Mellon University [O'Sullivan, Haigh, &
Armstrong, 1997, Simmons et al., 1997] (see Fig-
ure 2).
It is built on an RWI B24 base and includes

bump sensors, a laser range �nder, sonars, a color
camera and a speech board. The software control-
ling Xavier includes both reactive and deliberative
behaviours, integrated using the Task Control Ar-
chitecture (TCA) [Simmons, 1994]. TCA provides
facilities for scheduling and synchronizing tasks,
resource allocation, environment monitoring and
exception handling. The reactive behaviours en-
able the robot to handle real-time local naviga-
tion, obstacle avoidance, and emergency situa-
tions (such as detecting a bump). The deliberative
behaviours include vision interpretation, mainte-
nance of occupancy grids & topological maps, and
path planning & global navigation. The under-
lying architecture is described in more detail by
Simmons et al. [1997].
prodigy is a domain-independent planner that

serves as a testbed for machine learning research
[Carbonell, Knoblock, & Minton, 1990, Veloso
et al., 1995]. The current version, prodigy4.0
is a nonlinear planner that follows a state-space

Request

Task Status

Feedback OGUER(asynchronous)

User Request

User Request

User Request

TCA

(Task Control Architecture)

Base

(sonar,laser)
Speech Vision

SAY

Navigate

User InteractionPlan Steps

Monitor

Execution

Xavier

Plan Step

Success/Fail

PRODIGY4.0

Fig. 1. Rogue Architecture.

Fig. 2. Xavier the Robot.

search guided by means-ends analysis and back-
ward chaining. It reasons about multiple goals
and multiple alternative operators to achieve the
goals. It reasons about interacting goals, exploit-
ing common subgoals and addressing issues of re-
source contention.

Interleaving Planning and Robot Execution 3

Xavier reliably performs actions requested of it,
but has no task planning abilities. prodigy4.0

, meanwhile, is a complex task planner that had
never been used in a real execution domain; as
such, it had never been used for asynchronous
goals or in an environment where the state spon-
taneously changes. In combining the two systems,
the challenges for Rogue include developing a
communication mechanism for control and feed-
back, as well as extending the planner to handle
the dynamics of a real-world task.

1.2. Planning and Execution in ROGUE

There are a few approaches to creating plans for
execution. Shakey [Nilsson, 1984] was the �rst
system to use a planning system on a robot. This
project was based on a classical planner that ig-
nored real world uncertainty [Fikes, Hart, & Nils-
son, 1972] and followed a deterministic model to
generate a single executable plan. When execu-
tion failures occurred, replanning was invoked.
This pioneering approach has been acknowl-

edged as partly successful, but also has been criti-
cized for its lack of reactivity, and has led to signif-
icant research into planning systems that can han-
dle the uncertainty of the real world. Conditional
planning is one approach that aims at considering
in the domain model all the possible contingencies
of the world and planning ahead for each individ-
ual one [Atkins, Durfee, & Shin, 1996, Mansell,
1993, Pryor, 1994, Schoppers, 1989]. In most
complex environments, the large number of possi-
ble contingencies means that complete conditional
planning becomes infeasible, but may nevertheless
be appropriate in particularly dangerous domains.
Probabilistic planning takes a more moderate

approach in that it only creates conditional plans
for the most likely problems [Blythe, 1994, Dean &
Boddy, 1988, Gervasio & DeJong, 1991, Kushmer-
ick, Hanks, & Weld, 1993]. It relies on replanning
when unpredictable or rare events take place. Al-
though this approach generates fast responses to
most contingencies, it may miss potential oppor-
tunities that arise from changes in the world. It
should be noted that none of these systems have
ever been applied to a real robotic system.
Another moderate approach is that of paral-

lel planning and execution, in which the planner

and the executor are decoupled [Drummond et

al., 1993, Lyons & Hendriks, 1992, McDermott,
1992, Pell et al., 1997]. The executor can react to
the environment without a plan. The planner con-
tinually modi�es the behaviour of the executor to
increase the goal satisfaction probability. This ap-
proach leads to a system with fast reactions, but a
set of default plans need to be pre-prepared, and
in some situations may lead away from the desired
goal. Furthermore, the planner creates its plans
based on assumptions about the world that may
have changed during planning time.
We take a third approach: that of interleav-

ing planning and execution, as do several other re-
searchers [Ambros-Ingerson & Steel, 1988, Dean et
al., 1990, George� & Ingrand, 1989, Nourbakhsh,
1997]. Interleaving planning with execution allows
the system to reduce its planning e�ort by pruning
alternative possible outcomes immediately, and
also to respond quickly and e�ectively to changes
in the environment. For example, the system can
notice limited resources such as battery power, or
notice external events like doors opening and clos-
ing. In these ways, interleaving planning with ex-
ecution can create opportunities for the system
while reducing the planning e�ort.
One of the main issues raised by interleaved

planning and execution is when to stop planning
and start executing. Dean [1990] selects between
alternative actions by selecting the one with the
highest degree of information gain, but is therefore
limited to reversible domains. Nourbakhsh [1997],
on the other hand, executes actions that pre�x all
branches of a conditional plan created after mak-
ing simplifying assumptions about the world. The
assumptions are built so that the planner always
preserves goal reachability, even in an irreversible
world.
Rogue has two methods for selecting when to

take an action. The �rst method selects an action
when it is the �rst in a chain of actions that are
known to lead towards the goal. prodigy4.0 uses
means-ends analysis to build plans backwards,
working from the goal towards the initial state.
Each action is described in terms of required pre-
conditions and possible e�ects; actions are added
to the plan when their e�ects are desirable. When
all the preconditions of an action are believed to
be true in the current state, Rogue executes the
action. Since prodigy4.0 already has a partial

4 Haigh & Veloso

plan from the initial state to the goal state, the ac-
tion Rogue selects is clearly relevant to achieving
the goal. Actions whose failures may lead to irre-
versible states are avoided until it has exhausted
all other possible ways of reaching the goal. The
second method is used when there are multiple
actions available for selection. Rogue selects be-
tween these actions in order to maximize overall
expected execution e�ciency.
When Rogue selects an action for execution, it

executes a procedure that con�rms the precondi-
tions of the action, then executes the action, and
�nally con�rms the e�ects. In addition to the ex-
plicit con�rmation of preconditions and e�ects of
actions, our system also monitors events that may
a�ect pending goals. Each goal type has a set
of associated monitors that are invoked when a
goal of that type enters the system. These moni-
tors run parallel to planning and may modify the
planner's knowledge at any time. A given mon-
itor may, for example, monitor battery power or
examine camera images for particular objects.
The ability to handle asynchronous goals is a

basic requirement of a system executing in the
real world. A system that only handles asyn-
chronous goals in a �rst-come-�rst-served man-
ner is ine�cient and loses many opportunities for
combined execution. Rogue easily incorporates
asynchronous goals into its system without losing
context of existing tasks, allowing it to take ad-
vantage of opportunities as they arise. By intel-
ligent combining of compatible tasks, Rogue can
respond quickly and e�ciently to user requests.
Amongst the other interleaving planners, only

PRS [George� & Ingrand, 1989] handles multi-
ple asynchronous goals. Rogue however abstracts
much of the lower level details that PRS explic-
itly reasons about, meaning that Rogue can be
seen as more reliable and e�cient because sys-
tem functionality is suitably partitioned [Pell et
al., 1997, Simmons et al., 1997]. NMRA [Pell et
al., 1997] and 3T [Bonasso & Kortenkamp, 1996]
both function in domainswith many asynchronous
goals, but both planners respond to new goals
and serious action failures by abandoning existing
planning and restarting the planner. As stated
by Pell et al., establishing standby modes prior
to invoking the planner is \a costly activity, as
it causes [the system] to interrupt the ongoing
planned activities and lose important opportu-

nities." Throwing out all existing planning and
starting over not only delays execution and but
also can place high demands on sensing to deter-
mine current status of partially-executed tasks.
In summary, Rogue's interleaving of planning

and execution can be outlined in the following pro-
cedure for accomplishing a set of tasks:

1. A user submits a request, and Rogue adds
the task information to prodigy4.0's state.

2. prodigy4.0 creates a plan to achieve the
goal(s), constrained by Rogue's priority and
compatibility knowledge, incorporating any
new requests.

3. Rogue sends selected actions to the robot for
execution, con�rming that its preconditions
are valid.

4. Rogue con�rms the outcome of each action.
If failure, Rogue noti�es prodigy4.0 and
forces replanning.

In this section we have motivated our work and
summarized the most relevant related work. In
Section 2, we describe prodigy4.0, present how
it plans for multiple asynchronous goals, and in-
troduce Rogue's priority and compatibility rules
(steps 1 and 2 above). We include a detailed
example of the system's behaviour for a simple
two-goal problem, when the goals arrive asyn-
chronously. In Section 3 we present execution,
monitoring and how the system detects, processes
and responds to failure (steps 3 and 4). Finally
we provide a summary of Rogue's capabilities in
Section 4.

2. Planning for Asynchronous Requests

The o�ce delivery domain involves multiple users
and multiple tasks. A planner functioning in this
domain needs to respond e�ciently to task re-
quests, as they arrive asynchronously. One com-
mon method for handling these multiple goal re-
quests is simply to process them in a �rst-come-
�rst-served manner; however, this method leads to
ine�ciencies and lost opportunities for combined
execution of compatible tasks [Goodwin & Sim-
mons, 1992].
Rogue is able to process incoming asyn-

chronous goal requests, to prioritize them, and
to suspend lower priority actions when necessary.

Interleaving Planning and Robot Execution 5

Fig. 3. User request interface.

It successfully interleaves compatible requests and

creates e�cient plans for completing all the tasks.

2.1. Receiving a Request

Users submit their task requests through one

of three di�erent interfaces: the World Wide

Web [Simmons et al., 1997], Zephyr [DellaFera et

al., 1988, Simmons et al., 1997], or a specially de-

signed graphical user interface (Figure 3) [Haigh

& Veloso, 1996].

The slots in this last interface are automatically

�lled in with default information available from

the user's plan �le, and the deadline time defaults

to one hour in the future. The interface can be
extended with additional tasks at any time.
Each of these three interfaces forwards the

request to Rogue by TCA messages. When
each new request comes in, Rogue adds it to
prodigy4.0's list of unsolved goals, and updates
the task model, as shown in Table 1. The lit-
eral (needs-item <user> <item>) indicates that a
request, sent by user <user>, is pending. This
function is domain-dependent because the literals
added relate strictly to this domain; however, the
structure would be identical for any other domain
with asynchronous goals.
There is currently no explicit mechanism for a

user to rescind a request; however prodigy4.0

will no longer plan for (or attempt to apply op-
erators for) the associated top-level goal if it is
simply removed from G and PG.

Table 1. Integrating new task requests into prodigy4.0.

De�ne: C current state
De�ne: G top-level goal
De�ne: PG pending goals cache (unsolved top-level goals and their subgoals)

Let R be the list of pending unprocessed requests
For each request 2 R, turn request to goal:

- C (C [f (needs-item request-userid request-object)

(pickup-loc request-userid request-pickup-loc)

(deliver-loc request-userid request-deliver-loc) g
- G((and G (has-item request-userid request-object))

- PG((and PG (has-item request-userid request-object))

- request-completed(nil

6 Haigh & Veloso

Table 2. prodigy4.0 decision points, adapted from [Veloso et al., 1995].

PRODIGY4.0
1. If the goal statement G is satis�ed in the current state, terminate.
2. Either (A) Subgoal: add an operator to Plan (Back-Chainer), or

(B) Apply: apply an operator from Plan (Operator-Application).
Decision point: Decide whether to apply or to subgoal.

3. Recursively call PRODIGY4.0 on the resulting plan.

Back-Chainer
1. Pick an unachieved goal or precondition g.

Decision point: Choose an unachieved goal.
2. Pick an operator op that achieves g.

Decision point: Choose an operator that achieves this goal.
3. Add op to Plan .
4. Instantiate the free variables of op.

Decision point: Choose an instantiation for the variables of the operator.

Operator-Application
1. Pick an operator op in Plan which is an applicable operator, that is

the preconditions of op are satis�ed in the current state.
Decision point: Choose an operator to apply.

2. Update the current state with the e�ects of op.

G11

O1

G1

Op1

G2

O2

G

Fig. 4. Representation of a plan. G is the top-level goal,
and Op1 is the operator that achieves it. G1 and G2 are
two preconditions of Op1 that are not true in the current
state, and are achieved by O1 and O2 respectively.

2.2. Creating the Plan

prodigy4.0 creates a plan for its unsolved goals
by selecting operators whose e�ects achieve those
goals. It continues adding operators to the incom-
plete plan until a solution to the problem is found.
In Figure 4 we show a simple incomplete plan.
The plan is built by a backward-chaining algo-

rithm, which starts from the list of goals, G, and
adds operators, one by one, to achieve its pending
goals, i.e., to achieve preconditions of other oper-
ators that are not satis�ed in the current state.
When all the preconditions of an operator are

satis�ed in the current state, prodigy4.0 simu-

lates the e�ects of the action by applying the op-
erator. Each time an operator is applied, the cur-
rent state is updated with the e�ects of the action.
prodigy4.0 terminates planning when each of the
goals are true in the state.
The planning cycle involves several decision

points, including which goal to select from the set
of pending goals, and which applicable operator
to apply. Table 2 shows the decisions made while
creating the plans. Back-Chainer shows the
decisions made while back-chaining on the plan,
Operator-Application shows how an operator
is applied, and Prodigy4.0 shows the top-level
procedure.
Planning involves specifying a task model in-

cluding operators, search control rules and domain
description.

2.2.1. Operators Rogue's operators rely heav-
ily on Xavier's existing behaviours, including path
planning, navigation, vision and speech. Rogue

does not reason, for example, about which path
the robot takes to reach a goal.
In Table 4, for example, the robot cannot de-

liver a particular item unless it (a) has the item
in question, and (b) is in the correct location1.
If any of the four preconditions are false, it

will create a plan to achieve each of the precon-
ditions. It takes the top level goal, (has-item
<user> <item>), and selects an operator that will
achieve it. It continues building the plan recur-

Interleaving Planning and Robot Execution 7

Table 3. Goal selection search control rule.

(control-rule SELECT-TOP-PRIORITY-AND-COMPATIBLE-GOALS

(if (and (candidate-goal <goal>)

(or (ancestor-is-top-priority-goal <goal>)

(compatible-with-top-priority-goal <goal>))))

(then select goal <goal>))

Table 4. Item delivery operator.

(operator DELIVER-ITEM <room> <user> <item>

(preconds (and (needs-item <user> <item>)

(robot-has-item <user> <item>)

(deliver-loc <user> <room>)

(robot-in-room <room>)))

(effects ((add (has-item <user> <item>))

(del (needs-item <user> <item>))

(del (robot-has-item <user> <item>)))))

sively, adding operators for each precondition that

is not true in the state, until all of the operators

in the leaf nodes have no untrue preconditions,

yielding a network of plan steps and goals such as

the one shown in Figure 5.

In Table 5, we show how an operator represents

that the robot will not go to a pickup location

unless it needs to pickup an item there. It does

has-item mitchell delivermail

robot-in-room r-5313robot-has-item mitchell delivermail

robot-in-room r-5303

acquire-item r-5303 mitchell delivermail goto-deliver-loc mitchell r-5313

goto-pickup-loc mitchell r-5303

deliver-item r-5313 mitchell delivermail

Fig. 5. Plan for a single task problem. Goal nodes are
shown in ovals, selected operators are shown in rectan-
gles.

Table 5. Goto pickup location operator.

(operator GOTO-PICKUP-LOC <user> <room>

(preconds

(and (needs-item <who> <item>)

(not (robot-has-item <who> <item>))

(pickup-loc <who> <room>)))

(effects ((<old-room> ROOM))

((del (robot-in-room <old-room>))

(add (robot-in-room <room>)))))

not matter where the robot's current location is;
the variable <old-room> is only instantiated when
the robot arrives at the goal location2.
Other operators in the domain represent di�er-

ent task actions. By abstracting each request to
the robot, such as which path the robot takes,
Rogue can more fully address issues arising from
multiple interacting tasks, such as e�ciency, re-
source contention, and reliability.

2.2.2. Search Control Rules prodigy4.0 pro-
vides a method for creating search control rules

that reduce the number of choices at each deci-
sion point in Table 2 by pruning the search space
or suggesting a course of action while expanding
the plan. In particular, control rules can select,
prefer or reject a particular goal or action in a
particular situation. Control rules can be used
to focus planning on particular goals and towards
desirable plans.
Each time prodigy4.0 examines the set of un-

solved pending goals, it �res its search control
rules to decide which goal to expand. Rogue

interacts with prodigy4.0 by providing the set
of control rules used to constrain prodigy4.0's
decisions. Table 3 shows Rogue's goal selec-
tion control rule that calls two functions, forcing
prodigy4.0 to select the goals with high priority
as well as the goals that can be opportunistically
achieved (without compromising the main high-
priority goal).
The function (ancestor-is-top-priority-

goal) calculates whether the goal is required to
solve a high-priority goal. Rogue prioritizes
goals according to a modi�able metric. For ex-
ample, in the current implementation, this met-
ric involves looking at the user's position in the
department, the type of request and the dead-
line: Priority = PersonRank + TaskRank +
DeadlineRank, where DeadlineRank is de�ned
as shown in Figure 6. (When the deadline is
reached, the goal is removed from prodigy4.0's

8 Haigh & Veloso

DeadlineRank =

�
Rmax

t1�t0
� (t � t0) t0 � t � t1

0 otherwise

Where: t is the current time
Rmax is the maximum possible rank value
t1 = deadline � expected execution time
t0 = deadline � 2� expected execution time

0 1t

R

t

max

0
t

D
ea

dl
in

eR
an

k

Fig. 6. Calculating the priority rank of the deadline.

pending goals list; otherwise even a task of pri-

ority 0 would eventually be attempted after all

other pending tasks have been completed.) This

function could easily be replaced with alternatives

(e.g. [Williamson & Hanks, 1994]).

The function (compatible-with-top-prior-

ity-goal) allows Rogue to determine when dif-

ferent goals have similar features so that it can op-

portunistically achieve lower priority goals while

achieving higher priority ones. For example, if

multiple people whose o�ces are all in the same

hallway asked for their mail to be picked up and

brought to them,Rogue would do all the requests

in the same episode, rather than only bringing the

mail for the most important person. Compatibil-

ity is de�ned by physical proximity (\on the path

of") with a �xed threshold for being too far out

of the way.

It is possible that these rules will select too

many compatible tasks, become \side-tracked,"

and therefore fail on the high-priority task. A pre-

set threshold would serve as a pragmatic solution

to this problem. We also do not deal with the is-

sue of thrashing, i.e., receiving successively more

important tasks resulting in no forward progress,

because it has not been an issue in practice.

prodigy4.0 also uses a search control rule to

select a good execution order of the applicable ac-

tions. It makes the choice based on an execution-

driven heuristic which minimizes the expected to-

tal traveled distance from the current location.

2.3. Suspending and Interrupting Tasks

Rogue needs to be able to respond quickly when
new tasks arrive and also when priorities of ex-
isting tasks change. prodigy4.0 supports these
changing objectives by making it easy to suspend
and reactivate tasks.
prodigy4.0 grows the plan incrementally,

meaning that each time it selects a goal to expand,
the remainder of the plan is una�ected. The sys-
tem can therefore easily suspend planning for one
task while it plans for another. The planning al-
ready done for the suspended goals remains valid
until prodigy4.0 is able to return to them.
When prodigy4.0 does in fact return to the

suspended actions, it validates their preconditions
in the state, expanding the plan if necessary, or
continuing execution if appropriate.
Generally, the plans for the interrupted goals

will not be a�ected by the planning and execution
for the new goal. Occasionally, however, actions
executed to achieve the new goal might undo or
achieve parts of the interrupted plan. For exam-
ple, the robot might have �nished its new task in
the pickup location of the interrupted task. There
are also occasions in which exogenous events may
change the state, such as if a user passed the robot
in the corridor and took his mail at that time.
In cases like these, the execution monitoring al-

gorithm will update prodigy4.0's state informa-
tion and prodigy4.0 will know which precondi-
tions it needs to re-achieve or to ignore. In Sec-
tion 3.2 we discuss in more detail how side-e�ects
of actions and exogenous events may a�ect inter-
rupted or pending plans.

Interleaving Planning and Robot Execution 9

n5

n14

n10

n8n11

goto-deliver-loc mitchell r-5313

n18

n23

n24

robot-in-room r-5313

has-item jhm deliverfax

robot-has-item jhm deliverfax

robot-in-room r-5311

robot-in-room r-5313

goto-pickup-loc jhm r-5311

finish

deliver-item r-5313 mitchell delivermail

robot-has-item mitchell delivermail

acquire-item r-5303 mitchell delivermail

robot-in-room r-5303

n8

acquire-item r-5311 jhm deliverfax

deliver-item r-5313 jhm deliverfax

has-item mitchell delivermail

n13

n16

n7 n20

n21

n26
goto-pickup-loc mitchell r-5303

n17 apply goto-pickup-loc
n27 apply acquire-item

n31 apply deliver-item

n30 apply goto-deliver-loc n28 apply goto-pickup-loc
n29 apply acquire-item

n32 apply deliver-item

Fig. 7. Plan for a two-task problem; goal nodes are in ovals, required actions are in rectangles.

2.4. Example

We now present a detailed example of how
prodigy4.0, Rogue and Xavier interact in a two
goal problem: (has-item mitchell deliver-

mail) and (has-item jhm deliverfax). The
second (higher priority) goal arrives while Rogue
is executing the �rst action for the �rst goal.
Figure 7 shows the planning graph generated

by prodigy4.0. We describe below the details of
how it is generated. This example shows:

� how prodigy4.0 expands tasks,
� how search control rules a�ect prodigy4.0's

selections, and

� how an asynchronous task request a�ects the

plan.

We assume for the purposes of this example that

no failures occur during execution. The example is

perhaps overly detailed for a reader familiar with

back-chaining planners; those readers could skip

to the next section without loss of continuity.

We show the algorithmic sequence of steps

of prodigy4.0. At each step, we show the

lists of pending goals, PG, applicable opera-

tors, Applicable-Ops, and executed operators,

Executed-Ops3.

1. Request (has-item mitchell delivermail) arrives. Rogue adds this goal to prodigy4.0's pend-
ing goals list, PG, and adds the following knowledge to prodigy4.0's state information:

(needs-item mitchell delivermail)

(pickup-loc mitchell r-5303)

(deliver-loc mitchell r-5313)

PG is (has-item mitchell delivermail)

Applicable-Ops is nil
Executed-Ops is nil

10 Haigh & Veloso

2. prodigy4.0 �res its goal-selection search control rules, which selects this goal (node 5 of Figure 7)
as the highest priority goal (since it is the only choice). prodigy4.0 examines this goal to �nd
an appropriate operator. It �nds (DELIVER-ITEM <user> <room> <object>), and instantiates the
variables: <user> := mitchell, <room> := r-5313 and <object> := delivermail, yielding the
instantiated operator shown in node 7 of Figure 7. Using means-ends analysis, prodigy4.0 iden-
ti�es two preconditions not satis�ed in the state: (robot-has-item mitchell delivermail) and
(robot-in-room r-5313). prodigy4.0 adds these preconditions to the pending goals list.

PG is (and (robot-has-item mitchell delivermail)

(robot-in-room r-5313))

Applicable-Ops is nil
Executed-Ops is nil

3. prodigy4.0 continues expanding the plan for this task, yielding nodes 5 through 16. At this moment,
two operators in the plan have all their preconditions met in the current state.

PG is nil
Applicable-Ops is (and (GOTO-DELIVER-LOC mitchell r-5313)

(GOTO-PICKUP-LOC mitchell r-5303))

Executed-Ops is nil

4. prodigy4.0 examines the set of Applicable-Ops, and based on ordering constraints (goal clobber-
ing), selects (GOTO-PICKUP-LOC mitchell r-5303) to apply. Rogue takes the applied operator,
(GOTO-PICKUP-LOC mitchell r-5303) (node 17), and sends it to the robot for execution. (It does
not need to verify preconditions in the real world since none can be changed by exogenous events.)

PG is nil
Applicable-Ops is (GOTO-DELIVER-LOC mitchell r-5313)

Executed-Ops is nil

5. Request (has-item jhm deliverfax) arrives. Rogue adds this goal to PG.
Rogue does not interfere with the currently executing action, namely (GOTO-PICKUP-LOC mitchell

r-5303). Goodwin [1994] discusses methods to decide when to interfere.

PG is (has-item jhm deliverfax)

Applicable-Ops is (GOTO-DELIVER-LOC mitchell r-5313)

Executed-Ops is nil

6. The navigation module �nally indicates completion of the action. Rogue veri�es the outcome (post-
conditions) of the action, i.e., that it has arrived at the location r-5313 (see Section 3 for a descrip-
tion). Now the action (ACQUIRE-ITEM r-5303 mitchell delivermail) is applicable.

PG is (has-item jhm deliverfax)

Applicable-Ops is (and (GOTO-DELIVER-LOC mitchell r-5313)

(ACQUIRE-ITEM r-5303 mitchell delivermail))

Executed-Ops is (GOTO-PICKUP-LOC mitchell r-5303)

7. prodigy4.0 �res Rogue's search control rules, which select the new goal (since it is higher pri-
ority than the current task) (node 18). It expands the plan as above, except that instead of se-
lecting a new operator to achieve the goal (robot-in-room r-5313), it notices that the operator

Interleaving Planning and Robot Execution 11

(GOTO-DELIVER-LOC mitchell r-5313) has the same e�ect, and does not redundantly add a new
operator.

PG is nil
Applicable-Ops is (and (GOTO-DELIVER-LOC mitchell r-5313)

(ACQUIRE-ITEM r-5303 mitchell delivermail)

(GOTO-PICKUP-LOC jhm r-5311))

Executed-Ops is (GOTO-PICKUP-LOC mitchell r-5303)

8. prodigy4.0 selects (ACQUIRE-ITEM r-5303 mitchell delivermail) to apply (node 27); Rogue
veri�es its preconditions and then sends it to the robot for execution. When the action is complete,
Rogue veri�es the postconditions (i.e. that it now has mitchell's mail).

PG is nil
Applicable-Ops is (and (GOTO-DELIVER-LOC mitchell r-5313)

(GOTO-PICKUP-LOC jhm r-5311))

Executed-Ops is (GOTO-PICKUP-LOC mitchell r-5303)

(ACQUIRE-ITEM r-5303 mitchell deliver-mail)

9. The execution constraint control rule now selects (GOTO-PICKUP-LOC jhm r-5311) as the next ap-
plicable operator (node 28). Rogue sends it to Xavier for execution and monitors its outcome.

PG is nil
Applicable-Ops is (and (GOTO-DELIVER-LOC mitchell r-5313)

(ACQUIRE-ITEM r-5311 jhm deliverfax))

Executed-Ops is (GOTO-PICKUP-LOC mitchell r-5303)

(ACQUIRE-ITEM r-5303 mitchell deliver-mail)

(GOTO-PICKUP-LOC jhm r-5311)

10. Rogue then acquires the fax.
11. Rogue then goes to room 5313.
12. Rogue delivers both items.

The �nal execution order described in this ex-

ample is shown in Figure 8. This example il-

lustrates the asynchronous handling of goals in

Rogue.

3. Execution and Monitoring

In this section we describe how Rogue medi-

ates the interaction between the planner and the

robot. We show how symbolic action descriptions

are turned into robot commands, as well as how

robot sensor data is incorporated into the plan-

ner's knowledge base so that the planner can com-
pensate for changes in the environment or unex-
pected failures of its actions.
The key to this communication model is based

on a pre-de�ned language and model translation
between prodigy4.0 and Xavier. The procedures
to do this translation are manually generated, but
are in a systematic format and may be extended
at any time to augment the actions or sensing ca-
pabilities of the system. It is an open problem
to automate the generation of these procedures
because it is not only challenging to select what
features of the world may be relevant for replan-

12 Haigh & Veloso

Solution:

<GOTO-PICKUP-LOC mitchell r-5303>

[arrival of second request]

<ACQUIRE-ITEM r-5303 mitchell delivermail>

<GOTO-PICKUP-LOC jhm r-5311>

<ACQUIRE-ITEM r-5311 jhm deliverfax>

<GOTO-DELIVER-LOC mitchell r-5313>

<DELIVER-ITEM r-5313 jhm deliverfax>

<DELIVER-ITEM r-5313 mitchell delivermail>

Fig. 8. Final execution sequence.

ning, but also how to detect those features using
existing sensors.

3.1. Executing Actions

Each action that prodigy4.0 selects must be
translated into a form that Xavier will under-
stand. Rogue translates the high-level abstract
action into a command sequence appropriate for
execution.
prodigy4.0 allows arbitrary procedural attach-

ments that are called during the operator applica-
tion phase of the planning cycle [Stone & Veloso,
1996]. Typically, we use these functions to give the
planner additional information about the state of
the world that might not be accurately predictable
from the model of the environment. For example,
this new information might show resource con-
sumption or action outcomes.
Rogue extends this information-gathering ca-

pability because, instead of simulating operator ef-
fects, Rogue actually sends the commands to the
robot for real world execution. Actually executing
the planner's actions in this way increases system
reliability and e�ciency because the system can
respond quickly to unexpected events such as fail-
ures and side e�ects, and combined planning and
execution e�ort is reduced since actions are inter-
leaved, and the planner knows the exact outcome
of uncertain events.
In general, these procedures:

1. verify the preconditions of the operator,
2. execute the associated actions, and
3. verify the postconditions of the operator.

Some of these procedures also contain simple
failure recovery procedures, particularly for ac-

tions that have common and known failures. For
example, an action might simply be repeated, as in
the navigateToGoal command. These procedures
resemble schemas [George� & Ingrand, 1989, Hor-
mann, Meier, & Schloen, 1991] or RAPs [Firby,
1989, Gat, 1992, Pell et al., 1997], in that they
specify how to execute the action, what to moni-
tor in the environment, and some recovery proce-
dures. Rogue's procedures, however, do not con-
tain complex recovery or monitoring procedures,
such as when they have di�erent costs or proba-
bilities, since we feel that it is more appropriate
for the planner to reason about when they should
be used.
These command sequences may be executed di-

rectly by Rogue (e.g. a command like finger

to determine an o�ce location), or sent via the
TCA interface to the Xavier module designed to
handle the command. The action (ACQUIRE-ITEM

<room> <user> <item>), for example, is mapped
to a sequence of commands that allows the
robot to interact with a human. The action
(GOTO-PICKUP-LOC <user> <room>) is mapped
to the commands shown in Table 6, extracted from
an actual trace: (1) Announce intended action, (2)
Ask Xavier's path planner to �nd the coordinates
of a door near the room, (3) Navigate to those
coordinates, and (4) Verify the outcome.
In the following section, we explain in more de-

tail how Rogue monitors the outcome of the ac-
tion, and how failures may cause replanning or
a�ect plans of interrupted tasks.

3.2. Monitoring

There are two types of events that Rogue needs
to monitor in the environment.
The �rst centers around actions. Each time

Rogue executes an action, it needs to verify its
outcome because actions may have multiple out-
comes or fail unexpectedly. Rogue may need to
invoke replanning, or select actions at a branching
condition. Rogue also needs to verify the precon-
ditions of an action before executing it because the
world may change, invalidating one of the system's
beliefs. Rogue uses a layered veri�cation pro-
cess, incrementally calling methods with greater
cost and accuracy, until a prede�ned con�dence

Interleaving Planning and Robot Execution 13

Table 6. The set of actions taken for executing the prodigy4.0 operator <GOTO-DELIVER-LOC mitchell r-5309>.

<GOTO-DELIVER-LOC MITCHELL R-5309>

SENDING COMMAND (tcaExecuteCommand "C_say" "Going to room 5309")

ANNOUNCING: Going to room 5309

SENDING COMMAND (tcaQuery "nearRoomQ" "5309")

...Query returned #(TASK-CONTROL::NEARROOMREPLY 567.0d0 3483.0d0 90.0d0)

SENDING COMMAND (tcaExpandGoal "navigateToG" #(TASK-CONTROL::MAPLOCDATA 567.0d0 3483.0d0))

...waiting...

...Action NAVIGATE-TO-GOAL finished (SUCCESS).

SENDING COMMAND (tcaQuery "visionWhereAmI")

...Query returned #(TASK-CONTROL::VISIONWHEREAMI "5309")

threshold is reached. Action monitors are invoked
only when the action is executed.
The second centers around exogenous events

in the environment. Certain events may cause
changes in the environment that a�ect current
goals, or opportunities may arise that Rogue can
take advantage of. For example,Rogue can mon-
itor battery power, or examine camera images for
open doors or particular objects. Environment
monitors are invoked when relevant goals are in-
troduced to the system.

Both types of monitoring procedures specify (1)
what to monitor and (2) the methods that can be
used to monitor it. Action monitors monitor the
preconditions and e�ects of the action, while envi-
ronment monitors are determined by the program-
mer. The action monitors, based on the planning
domainmodel, provide a focus for execution moni-
toring. It is an open problem to autonomously de-
cide what exogenous events to monitor that will
be relevant for planning.
Although action monitoring is sequential and of

limited time-span, while environment monitoring
is parallel and continuous, the two sets of proce-
dures have similar e�ects on planning.

Once Rogue has done the required monitor-
ing, Rogue needs to update prodigy4.0's state
description as appropriate. In execution moni-
toring, the update occurs when the object is de-
tected, or when battery power falls below a cer-
tain threshold. In action monitoring, the critical
update is when the actual outcome of the moni-

toring does not meet the expected outcome. These
updates will force prodigy4.0 to re-examine its
plan, adding or discarding operators as necessary.
If the primary e�ect of the action has been unex-

pectedly satis�ed, Rogue adds the knowledge to
prodigy4.0's state description and prodigy4.0

does not attempt to achieve it. Observing the en-
vironment and maintaining a state description in
this way improves the e�ciency of the system be-
cause it will not attempt redundant actions.
If a required precondition is no longer true as

a side-e�ect of some other action or environment
monitoring, Rogue deletes the relevant precondi-
tion from prodigy4.0's state. prodigy4.0 will
therefore replan in an attempt to �nd an action
that will re-achieve it.
In action monitoring, if the action fails, Rogue

will �rst try the built-in recovery methods. These
recovery methods are very simple; more com-
plex ones are treated as separate operators for
prodigy4.0 to reason about. For example,
Rogue will try calling the navigation routine a
prede�ned number of times before deciding that
the action completely failed. At the scene of a
pickup or delivery, if Rogue times-out while wait-
ing for a response to a query, Rogue will prompt
for a user a second time before failing. If, despite
the built-in recovery methods, Rogue determines
that the action has completely failed, Rogue will
delete the e�ect from prodigy4.0's state descrip-
tion, and prodigy4.0 will replan to achieve it.
Occasionally during environment monitoring,

knowledge will unexpectedly be added to the state

14 Haigh & Veloso

that causes an action to become executable, or
a task to become higher priority. Each time
prodigy4.0 makes a decision, it re-examines all
of its options, and will factor the new action or
goal into the process.
In this manner, Rogue is able to detect execu-

tion failures and compensate for them, as well as
to respond to changes in the environment. The in-
terleaving of planning and execution reduces the
need for replanning during the execution phase
and increases the likelihood of overall plan success
because the planner is constantly being updated
with information about changes in the world. It
allows the system to adapt to a changing environ-
ment where failures can occur.

3.3. Example of how ROGUE Handles Failures

One of Xavier's actions that Rogue monitors
is the navigateToGoal command, used by both
the (GOTO-PICKUP-LOC <user> <room>) and the
(GOTO-DELIVER-LOC <user> <room>) operators.
navigateToG reports a success when the robot ar-
rives at the requested goal. navigateToG may
fail under several conditions, including detect-
ing a bump, corridor or door blockage, or lack
of forward progress. The module is able to
autonomously compensate for certain problems,
such as obstacles and missing landmarks. Naviga-
tion is done using Partially Observable Markov
Decision Process models [Simmons & Koenig,
1995], and the inherent uncertainty of this prob-
abilistic model means that the module may occa-
sionally report success even when it has not actu-
ally arrived at the desired goal location.
When navigateToG reports a failure or a low-

probability success, Rogue veri�es the loca-
tion. Rogue �rst tries to verify the location au-
tonomously, using its cameras. The vision module
looks for a door in the general area of the expected
door, and �nds the room label, and reads it. If this
module fails to �nd a door, fails to �nd a label, or
returns low con�dence in its template matching,
Rogue falls back to a second veri�cation proce-
dure, namely using the speech module to ask a hu-
man. We assume that veri�cation step gives com-
plete and correct information about the robot's
actual location; other researchers are focussing on

the open problem of sensor reliability [Hughes &
Ranganathan, 1994, Thrun, 1996].
If Rogue detects that in fact the robot is not

at the correct goal location, Rogue updates the
navigation module with the new information and
re-attempts to navigate to the desired location. If
the robot is still not at the correct location after
a constant number of tries (three in our current
implementation), Rogue updates prodigy4.0's
task knowledge to re
ect the robot's actual posi-
tion, rather than the expected position.
In general, prodigy4.0 has several di�erent op-

erators that can achieved a particular e�ect, and
will successfully replan for the failure. In this case,
however, there are no other alternative methods
of navigating, and prodigy4.0 declares that the
task can not be successfully achieved.

3.4. Example of how ROGUE Handles Side-

e�ects

Occasionally, suspending one task for a second one
will mean that work done for the �rst will be un-
done by work done for the second. Rogue needs
to detect these situations and plan to re-achieve
the undone work. Consider a simple situation that
illustrates this re-planning process:

Task one: Task two:
1a. goto 5301 2a. goto 5409
1b. pick up mail 2b. pick up fed-ex package
1c. goto 5315 2c. goto 4320
1d. drop o� mail 2d. drop package o�

Many possible interleaved planning and execu-
tion scenarios may occur; below are two possibili-
ties.

� [Normal:] Executes 1a and 1b. While ex-
ecuting, the request for two arrives. Rogue

decides that task two is more important. Task
two is suspended; step 1c is pending. Plans for
and executes task two. Returns to step 1c,
veri�es that it is still needed to complete
the task and can still be done, then does 1c
and 1d.

� [Undone Action:] Executes 1a. While ex-
ecuting 1b, the request for task two arrives.
1b times-out, indicating that the mail-room
person wasn't there to give the robot the

Interleaving Planning and Robot Execution 15

mail. Rogue decides task two is more impor-

tant, and suspends task one; step 1b is pend-

ing. Rogue plans for and executes task two.
prodigy4.0 returns to step 1b, discovers that

a precondition is not true: (robot-in-room

<5301>). prodigy re-plans to achieve it, and
then re-executes step 1a, and then �nishes the

task as expected.

4. Conclusion

Rogue is fully implemented and operational. The
system completes all requested tasks, running er-

rands between o�ces in our building. Execution

results are presented in detail elsewhere [Simmons

et al., 1997].

We have presented one aspect of Rogue, an
integrated planning and execution robot architec-

ture. We have described how prodigy4.0 gives

Rogue the power

� to integrate asynchronous requests,
� to prioritize goals,
� to suspend and reactivate tasks,
� to recognize compatible tasks and opportunis-

tically achieve them,
� to execute actions in the real world, integrat-

ing new knowledge which may help planning,

and
� to monitor and recover from failure.

Rogue represents a successful integration of a
classical arti�cial intelligence planner with a real

mobile robot. The complete planning and execu-

tion cycle for a single task can be summarized as
follows:

1. Rogue receives a task request from a user.
2. Rogue requests a plan from prodigy4.0.

3. prodigy4.0 generates a plan and passes exe-

cutable steps to Rogue.
4. Rogue translates and sends the planning

steps to Xavier.

5. Rogue monitors execution and identi�es
goal status; in case of failure, prodigy4.0's

state information domain modi�ed and

prodigy4.0 will replan for decisions.

Rogue handles multiple goals, interleaving the in-
dividual plans to maximize overall execution e�-
ciency.
Figure 9 summarizes the information exchanged

between the user, prodigy4.0, and Xavier un-
der Rogue's mediation. Rogue constrains
prodigy4.0's decisions through calculations on
task priority, task compatibility, and execution
e�ciency. Rogue translates prodigy4.0's sym-
bolic action descriptions into Xavier commands,
and also translates Xavier's perception informa-
tion into prodigy4.0 domain description.
The contributions of our work to the Xavier

project are in the high-level reasoning parts of
the system, allowing the robot to e�ciently han-
dle multiple, asynchronous interacting goals, and
to e�ectively interleave planning and execution in
a real world system. Execution monitoring based
on a planning model allows the systematic identi-
�cation of environment monitors.
Interleaving planning with execution enhances a

deliberative robot system in numerous ways. One
such bene�t is that the system can sense the world
to acquire necessary domain knowledge in order
to continue planning. For example, it can ask di-
rections, look to see if doors are open or closed,
or check whether it needs to recharge its batteries.
Another bene�t is reduced planning e�ort because
the system does not need to plan for all possible
failure contingencies; instead, it can execute an
action to �nd out its actual outcome.
Rogue advances the state of the art of the inte-

gration of planning and execution in robotic agent.
In a unique novel way, Rogue is designed as the
integration of two independently developed plat-
forms. prodigy4.0 is a general-purpose planner
and Xavier can be viewed as a general-purpose
navigational robot. Rogue merges the function-
ality of these two systems in a real implemen-
tation that demonstrates the feasibility of con-
necting both systems in a rich task environment,
namely the achievement of asynchronous user re-
quests. (Rogue therefore also shows how the
prodigy4.0 planner and the TCA approach in
Xavier are in fact robust architectures.)
Strictly looking at Rogue only from the view-

point of the integration of planning and execu-
tion, Rogue compares well with other special-
purpose systems such as NMRA and 3T . Given
the general-purpose character of the prodigy4.0

16 Haigh & Veloso

OGUER

Xavier

PRODIGY

Perception

State

ConfirmMonitorTranslate

Actions

Actions

RequestsUser CompatibilityPriorities TSP

Goal
Selection

Action
Selection

Path plans

Translate

Goals

Fig. 9. What Rogue does.

planner, Rogue could easily be applied to other
executing platforms and tasks by a
exible change
of prodigy4.0's speci�cation of the domain.

The goal of our research is to build a complete
planning, executing and learning autonomous
robotic agent. Rogue's contributions go be-
yond the integration of planning and execu-
tion. Rogue incorporates learning from execu-

tion experience [Haigh & Veloso, 1998]. The
learning algorithm involves extracting relevant
information from real execution traces in or-
der to detect patterns in the environment to
improve the robot's behaviour. The ability
to learn task-relevant knowledge conveniently

matches prodigy4.0's search control representa-
tion, and learned situational-dependent arc costs
can be incorporated into Xavier's route planner
knowledge. Through its interleaved planning and
execution behaviour, Rogue provides an appro-

priate platform to collect the required execution
data for learning.

Acknowledgements

The authors would like to thank Eugene
Fink, Sven Koenig, Illah Nourbakhsh, Joseph
O'Sullivan, Gary Pelton and the anonymous re-

viewers for feedback on this article. We would
also like to thank the members of the Xavier and
prodigy groups for feedback, comments and crit-
icism on our research.

This research is sponsored in part by (1) the
National Science Foundation under Grant No.
IRI-9502548, (2) by the Defense Advanced Re-

search Projects Agency (DARPA), and Rome
Laboratory, Air Force Materiel Command, USAF,
under agreement number F30602-95-1-0018, (3)
the Natural Sciences and Engineering Council of
Canada (NSERC), and (4) the Canadian Space
Agency (CSA). The views and conclusions con-
tained herein are those of the authors and should
not be interpreted as necessarily representing the
o�cial policies or endorsements, either expressed
or implied, of the NSF, DARPA, Rome Labora-
tory, the U.S. Government, NSERC or the CSA.

Notes

1. The literal (has-item) is strictly for bookkeeping (to
keep track of what tasks have been completed), and is
not used for planning in any way.

2. The representation of the operators, for example
(GOTO-PICKUP-LOC) and (GOTO-DELIVER-LOC), is
not intrinsic to the task, but it can be relevant to plan-
ning e�ciency. We have an implementation of the do-
main with a single (GOTO-LOC) operator with less con-
strained preconditions, which leads to more backtrack-
ing while the planner selects the correct order of desired
locations. We can also create a search control rule to
guide the planning choices; this is logically equivalent
to separating the operators, but with some additional
match cost.

3. For readers more familiar with prodigy literature,
the Executed-Ops correspond to prodigy4.0's head-
plan, while the plan shown in Figure 7 corresponds to
prodigy4.0's tail-plan.

References

[Ambros-Ingerson & Steel, 1988] Ambros-Ingerson, J. A.,
and Steel, S. (1988). Integrating planning, execution
and monitoring. In Proceedings of the Seventh National
Conference on Arti�cial Intelligence (AAAI-88). St.

Interleaving Planning and Robot Execution 17

Paul, MN, (Menlo Park, CA: AAAI Press), pp. 83{88.
[Atkins, Durfee, & Shin, 1996] Atkins, E. M.; Durfee,

E. H.; and Shin, K. G. (1996). Detecting and reacting
to unplanned-for world states. In Papers from the 1996
AAAI Fall Symposium \Plan Execution: Problems and
Issues". Boston, MA, (Menlo Park, CA: AAAI Press),
pp. 1{7.

[Blythe, 1994] Blythe, J. (1994). Planning with external
events. In Proceedings of the Tenth Conference on Un-
certainty in Arti�cial Intelligence. Seattle, WA, (San
Mateo, CA: Morgan Kaufmann), pp. 94{101.

[Bonasso & Kortenkamp, 1996] Bonasso, R. P., and Ko-
rtenkamp, D. (1996). Using a layered control architec-
ture to alleviate planning with incomplete information.
In Proceedings of the AAAI Spring Symposium \Plan-
ning with Incomplete Information for Robot Problems".
Stanford, CA, (Menlo Park, CA: AAAI Press), pp. 1{4.

[Carbonell, Knoblock, & Minton, 1990] Carbonell, J. G.;
Knoblock, C. A.; and Minton, S. (1990). Prodigy: An
integrated architecture for planning and learning. In
VanLehn, K. (ed.), Architectures for Intelligence. (Erl-
baum: Hillsdale, NJ). Also available as Technical Re-
port CMU-CS-89-189, Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA.

[Dean & Boddy, 1988] Dean, T. L., and Boddy, M.
(1988). An analysis of time-dependent planning. In
Proceedings of the Seventh National Conference on Ar-
ti�cial Intelligence (AAAI-88). St. Paul, MN, (Menlo
Park, CA: AAAI Press), pp. 49{54.

[Dean et al., 1990] Dean, T.; Basye, K.; Chekaluk, R.;
Hyun, S.; Lejter, M.; and Randazza, M. (1990). Coping
with uncertainty in a control system for navigation and
exploration. In Proceedings of the Eigth National Con-
ference on Arti�cial Intelligence (AAAI-90). Boston,
MA, (Cambridge, MA: MIT Press), pp. 1010{1015.

[DellaFera et al., 1988] DellaFera, C. A.; Eichin, M. W.;
French, R. S.; Jedlinsky, D. C.; Kohl, J. T.; and Som-
merfeld, W. E. (1988). The Zephyr noti�cation service.
In Proceedings of the USENIX Winter Conference. Dal-
las, TX, (Berkeley, CA: USENIX Association), pp. 213{
219.

[Drummond et al., 1993] Drummond, M.; Swanson, K.;
Bresina, J.; and Levinson, R. (1993). Reaction-�rst
search. In Proceedings of the Thirteenth International
Joint Conference on Arti�cial Intelligence (IJCAI-93).
(San Mateo, CA: Morgan Kaufmann), pp. 1408{1414.

[Fikes, Hart, & Nilsson, 1972] Fikes, R. E.; Hart, P. E.;
and Nilsson, N. J. (1972). Learning and executing gen-
eralized robot plans. Arti�cial Intelligence, 3(4):231{
249.

[Firby, 1989] Firby, R. J. (1989). Adaptive Execution in
Complex Dynamic Worlds. Ph.D. Dissertation, Yale
University, New Haven, CT.

[Gat, 1992] Gat, E. (1992). Integrating planning and re-
acting in a heterogeneous asynchronous architecture for
controlling real-world mobile robots. In Proceedings of
the Tenth National Conference on Arti�cial Intelligence
(AAAI-92). pp. 809{815.

[George� & Ingrand, 1989] George�, M. P., and Ingrand,
F. F. (1989). Decision-makingin an embeddedreasoning
system. In Proceedings of the Eleventh International
Joint Conference on Arti�cial Intelligence (IJCAI-89).
Detroit, MI, (San Mateo, CA: Morgan Kaufmann), pp.
972{978.

[Gervasio & DeJong, 1991] Gervasio, M. T., and DeJong,
G. F. (1991). Learning probably completable plans.
Technical Report UIUCDCS-R-91-1686, University of
Illinois at Urbana-Champaign, IL, Urbana, IL.

[Goodwin & Simmons, 1992] Goodwin, R., and Simmons,
R. G. (1992). Rational handling of multiple goals for
mobile robots. In Hendler, J. (ed.), Arti�cial Intelli-
gence Planning Systems: Proceedings of the First In-
ternational Conference (AIPS-92). College Park, MD,
(San Mateo, CA: Morgan Kaufmann), pp. 86{91.

[Goodwin, 1994] Goodwin, R. (1994). Reasoning about
when to start acting. In Hammond, K. (ed.), Arti�cial
Intelligence Planning Systems: Proceedings of the Sec-
ond International Conference (AIPS-94). Chicago, IL,
(Menlo Park, CA: AAAI Press), pp. 86{91.

[Haigh & Veloso, 1996] Haigh, K. Z., and Veloso, M.
(1996). Interleaving planning and robot execution for
asynchronous user requests. In Proceedings of the Inter-
national Conference on Intelligent Robots and Systems
(IROS). Osaka, Japan, (New York, NY: IEEE Press),
pp. 148{155.

[Haigh & Veloso, 1997] Haigh, K. Z., and Veloso, M. M.
(1997). High-level planning and low-level execution: To-
wards a complete robotic agent. In Johnson,W. L. (ed.),
Proceedings of the First International Conference on
Autonomous Agents. Marina del Rey, CA, (New York,
NY: ACM Press), pp. 363{370.

[Haigh & Veloso, 1998] Haigh, K. Z., and Veloso, M. M.
(1998). Learning situation-dependent costs: Improving
planning from probabilistic robot execution. In Sycara,
K. P. (ed.), Proceedings of the Second International
Conference on Autonomous Agents. Minneapolis, MN,
(Menlo Park, CA: AAAI Press). Submission.

[Hormann, Meier, & Schloen, 1991] Hormann, A.; Meier,
W.; and Schloen, J. (1991). A control architecture for
and advanced fault-tolerant robot system. Robotics and
Autonomous Systems, 7(2-3):211{225.

[Hughes & Ranganathan, 1994] Hughes, K., and Ran-
ganathan, N. (1994). Modeling sensor con�dence for
sensor integration tasks. International Journal of Pat-
tern Recognition and Arti�cial Intelligence, 8(6):1301{
1318.

[Kushmerick, Hanks, & Weld, 1993]
Kushmerick, N.; Hanks, S.; and Weld, D. (1993). An
algorithm for probabilistic planning. Technical Report
93-06-03, Department of Computer Science and Engi-
neering, University of Washington, Seattle, WA.

[Lyons & Hendriks, 1992] Lyons, D. M., and Hendriks,
A. J. (1992). A practical approach to integrating re-
action and deliberation. In Hendler, J. (ed.), Arti�cial
Intelligence Planning Systems: Proceedings of the First
International Conference (AIPS-92). (San Mateo, CA:
Morgan Kaufmann), pp. 153{162.

[Mansell, 1993] Mansell, T. M. (1993). A method for plan-
ning given uncertain and incomplete information. In
Proceedings of the Ninth Conference on Uncertainty in
Arti�cial Intelligence. Washington, DC, (San Mateo,
CA: Morgan Kaufmann), pp. 250{358.

[McDermott, 1992] McDermott, D. (1992). Transforma-
tional planning of reactive behavior. Technical Report
YALE/CSD/RR#941, Computer Science Department,
Yale University, New Haven, CT.

18 Haigh & Veloso

[Nilsson, 1984] Nilsson, N. J. (1984). Shakey the robot.
Technical Report 323, AI Center, SRI International,
Menlo Park, CA.

[Nourbakhsh, 1997] Nourbakhsh, I. (1997). Interleav-
ing Planning and Execution for Autonomous Robots.
(Dordrecht, Netherlands: Kluwer Academic). PhD the-
sis. Also available as technical report STAN-CS-TR-97-
1593, Department of Computer Science, Stanford Uni-
versity, Stanford, CA.

[O'Sullivan, Haigh, & Armstrong, 1997] O'Sullivan, J.;
Haigh, K. Z.; and Armstrong, G. D. (1997). Xavier.
Carnegie Mellon University, Pittsburgh, PA. Manual,
Version 0.3, unpublished internal report. Available via
http://www.cs.cmu.edu/�Xavier/.

[Pell et al., 1997] Pell, B.; Bernard, D. E.; Chien, S. A.;
Gat, E.; Muscettola, N.; Nayak, P. P.; Wagner, M. D.;
and Williams, B. C. (1997). An autonomous spacecraft
agent prototype. In Proceedings of the First Interna-
tional Conference on Autonomous Agents. Marina del
Rey, CA, (New York, NY: ACM Press), pp. 253{261.

[Pryor, 1994] Pryor, L. M. (1994). Opportunities and
Planning in an Unpredictable World. Ph.D. Disserta-
tion, Northwestern University, Evanston, Illinois. Avail-
able as Technical Report number 53.

[Schoppers, 1989] Schoppers, M. J. (1989). Representa-
tion and Automatic Synthesis of Reaction Plans. Ph.D.
Dissertation, Department of Computer Science, Univer-
sity of Illinois, Urbana-Champaign, IL. Available as
Technical Report UIUCDCS-R-89-1546.

[Simmons & Koenig, 1995] Simmons, R., and Koenig, S.
(1995). Probabilistic robot navigation in partially ob-
servable environments. In Proceedings of the Four-
teenth International Joint Conference on Arti�cial In-
telligence (IJCAI-95). Montr�eal, Qu�ebec, Canada, (San
Mateo, CA: Morgan Kaufmann), pp. 1080{1087.

[Simmons et al., 1997] Simmons, R.; Goodwin, R.; Haigh,
K. Z.; Koenig, S.; and O'Sullivan, J. (1997). A layered
architecture for o�ce delivery robots. In Johnson, W. L.
(ed.), Proceedings of the First International Conference
on Autonomous Agents. Marina del Rey, CA, (New
York, NY: ACM Press), pp. 245{252.

[Simmons, 1994] Simmons, R. (1994). Structured control
for autonomous robots. IEEE Transactions on Robotics
and Automation, 10(1):34{43.

[Stone & Veloso, 1996] Stone, P., and Veloso, M. M.
(1996). User-guided interleaving of planning and execu-
tion. In New Directions in AI Planning. (Amsterdam,
Netherlands: IOS Press). pp. 103{112.

[Thrun, 1996] Thrun, S. (1996). A Bayesian approach
to landmark discovery and active perception for mobile
robot navigation. Technical Report CMU-CS-96-122,
School of Computer Science, Carnegie Mellon Univer-
sity, Pittsburgh, PA.

[Veloso et al., 1995] Veloso, M. M.; Carbonell, J.; P�erez,
M. A.; Borrajo, D.; Fink, E.; and Blythe, J. (1995). In-
tegrating planning and learning: The prodigy architec-
ture. Journal of Experimental and Theoretical Arti�cial
Intelligence, 7(1):81{120.

[Williamson & Hanks, 1994] Williamson, M., and Hanks,
S. (1994). Optimal planning with a goal-directed utility
model. In Hammond, K. (ed.), Arti�cial Intelligence
Planning Systems: Proceedings of the Second Inter-
national Conference (AIPS-94). Chicago, IL, (Menlo
Park, CA: AAAI Press), pp. 176{180.

Karen Zita Haigh is currently completing her Ph.D.

in Computer Science at Carnegie Mellon University in

Pittsburgh, Pennsylvania. Her undergraduate degree

was completed in 1992 at the University of Ottawa

in Ottawa, Ontario, Canada. Her thesis is a robot

learning system that uses feedback from execution ex-

perience to improve e�ciency of generated plans. It

creates situation-dependent costs so that plans are tai-

lored to particular situations, and is used on Xavier's

route planner and in Rogue. She also built analogi-

cal reasoning system to automatically generate high-

quality routes in a city map. Her research interests

include planning, machine learning, and robotics.

Manuela M. Veloso is a Finmeccanica Associate

Professor in the Computer Science Department at

Carnegie Mellon University. She received her Ph.D.

in Computer Science from CMU in 1992. Dr. Veloso

received the NSF Career Award and was the recipi-

ent of the Finmeccanica Chair in 1995. In 1997, she

was awarded the Allen Newell Excellence in Research

Award by the School of Computer Science at CMU.

Dr. Veloso is the author of a monograph on \Plan-

ning by Analogical Reasoning." She is co-editor of

two book, \Symbolic and Visual Learning" and \Top-

ics of Case-based Reasoning." Dr. Veloso's research

involves the integration of planning, execution and

learning in dynamic environments, and in particular

with multiple agents. She investigates memory-based

machine learning techniques for the processing and

reuse of problem experience.

