
Homography-Based 3D Scene Analysis of Video Sequences *

                                                   Mei Han              Takeo Kanade
                                         meihan@cs.cmu.edu      tk@cs.cmu.edu

Robotics Institute
Cargenie Mellon University

Pittsburgh, PA 15213

Abstract

We propose a framework to recover projective
depth based on image homography and discuss its
application to scene analysis of video sequences.
We describe a robust homography algorithm
which incorporates contrast/brightness adjustment
and robust estimation into image registration. We
present a camera motion solver to obtain the ego-
motion and the real/virtual plane position from
homography. We then apply the Levenburg-
Marquardt method to generate a dense projective
depth map. We also discuss temporal integration
over video sequences. Finally we present the
results of applying the homography-based video
analysis to motion detection.

1 Introduction

Temporal information redundancy of video
sequences allows us to use efficient, incremental
methods which perform temporal integration of
information for gradual refinement.

Approaches handling 3D scene analysis of video
sequences with camera motion can be classified
into two categories: algorithms which use 2D
transformation or model fitting, and algorithms
which use 3D geometry analysis. Video sequences
of our interest are taken from a moving airborne
platform where the ego-motion is complex and the
scene is relatively distant but not necessarily flat;
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therefore, an integration of 2D and 3D algorithms
is more appropriate.

The layered approach [Baker et al., 1998] has
advantages in dealing with this kind of scenario,
but layer segmentation remains a problem.
Approaches of structure from motion are mostly
feature-based and cannot provide dense depth
maps. The flow-based method [Xiong and Shafer,
1995] recovers dense shape via the Kalman Filter,
but image correspondences are required.
Combining 3D geometry into 2D constraints is
widely used in motion detection and segmentation
[Irani and Anandan, 1997, Shashua and Werman,
1995]. The plane plus parallax method contributes
a great deal to ego-motion computation [Irani et
al., 1994], parallax geometry analysis [Irani and
Anandan, 1996] and applications to video
indexing [Irani and Anandan, 1998].

Our framework first calculates image homography
between consecutive images since the camera-to-
scene distance is relatively large and therefore the
first-order approximation of the scene can be
planar. Section 2 describes three components to
achieve robust homography: contrast/brightness
adjustment, progressive complexity of trans-
formation and robust estimation. Based on the
homography, a camera motion solver is presented
in Section 3 to compute ego-motion and plane
equation, then optimization can be performed to
recover the dense projective depth map of the
environment. Temporal integration is performed
over video sequences to refine the projective
depth. The results of applying the homography-
based video analysis to motion detection are
discussed in Section 4.



2 Robust Homography

Video sequences from a camera with ego-motions,
especially the sequences taken from a moving
airborne platform, usually include lighting and
environmental changes. Contrast and brightness
adjustment is very critical in image registration.
Homography between images is based on the
assumption that either the scene is planar or the
camera is only undergoing rotation and/or zooms;
however, many video sequences are taken with no
restriction of camera motion and without dominant
planes. Therefore, it is necessary to use statistical
techniques to obtain robust homography. We
incorporate contrast/brightness adjustment and
robust estimation into image registration to
generate dominant homographies for complex
environments.

2.1 Homography with Image Intensity
Adjustment

Homography defines the relationship between two
images by an eight-parameter perspective trans-
formation:
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where Τ= )1,,( vux  and Τ′′=′ )1,,( vux  are
homogeneous coordinates, and ≅  indicates
equality up to scale. Szeliski and Shum [1997]
gave a simple solution for the transformation on
which we design our registration algorithm.

Due to the difference of viewpoints and change of
lighting, video sequences may have different
intensity levels from frame to frame. We model
the change between images as a linear trans-
formation [Lucas and Kanade, 1981]:

βα +′= )()( 10 xx II

where α  stands for contrast change, β  for

brightness change, x and x′  for corresponding
pixels in two images. Combining this with the
general homography computation, we obtain
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the incremental update for P : ( ) PPD ⇒+Ι , and

xx PDI )( +≅′  is calculated by updating the
transformation. Through this representation, we
can minimize the error metric using a symmetric
positive definite (SPD) solver such as Cholesky
decomposition which is time efficient.

2.2 Progressive Transformation Complexity

Homography is computed hierarchically where
estimates from coarser levels of the pyramid are
used to initialize the registration at finer levels
[Anandan, 1989, Bergen et al., 1992]. To decrease
the likelihood of the minimization process
converging into local minima, and to improve
registration speed, we use different transfor-
mations with progressive complexity; translation
(2 parameters) at the coarsest level, then scaled
rotation plus translation (4 parameters), affine (6
parameters), and perspective (8 parameters). The
progressive method improves the robustness and
stability of homography computation.

2.3 Robust Estimation

To deal with scenes without dominant planes
and/or with a certain percentage of textureless
areas, robust estimation is used to compute
homography. The random sample consensus para-
digm (RANSAC) [Fischler and Bolles, 1981] is an
early example of robust estimation. Geometric
statistics were also explored in motion problems
[Torr and Murray, 1997, Kanatani, 1997]. We
apply the RANSAC scheme to homography
computation by randomly choosing a small subset
of the images to obtain an initial homography
solution, i.e., the subset defines a real/virtual
plane, and then identifying the outliers, which are
the points not lying on the plane. The process is
repeated enough times on different subsets and the
best solution is the homography which maximizes
the number of points lying on the plane. Points
which are not identified as outliers are combined
to obtain a final homography.

The three components (image intensity adjust-
ment, progressive transformation complexity, and
robust estimation) are used in combination to
achieve robust homography. Figure 1(a) and (b)
give two aerial images taken under different
lighting conditions. Robust estimation randomly
chooses 20 subsets, each of which is equal to 5
percent of the whole image. Each subset generates



a homography. The best homography has the
largest support area in the image; this area is used
to compute the final homography. In this example,
the support area for the final homography consists
of the tops of several short buildings rather than
the real ground because the ground is not actually
flat. White dots in Figure 1(c) show the outliers of
the final homography. It can be seen that they
correspond to tops of tall buildings (closer than the
dominant plane) and part of the ground (farther
than the plane).

   
(a) first image              (b) second image

   
(c) outliers of robust

estimation
(d) projective depth

(darker denotes farther)

Figure 1:  Robust homography and projective depth

3 Recovery of Projective Depth

3.1 Projective Depth and Homography

Let Τ= )1,,( vux  and Τ′′=′ )1,,( vux  denote
homogeneous coordinates of corresponding pixels
in two images; the corresponding scene point can
be represented by homogeneous coordinate

Τ),,,( wfvu  in the 3D coordinate system of the

first image and Τ= )/,/,/( wfwvwup , where
w  is the projective depth of point p [Szeliski,

1996]. p′  denotes the same scene point with
respect to the second image coordinate system,

TR ′+=′ pp

where R  represents the rotation between the two
image coordinate systems and T ′  represents the
3D translation between the two views expressed in
the second image coordinate system. By using
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to represent the projections of two images, we
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Each 3D planar surface can be represented by a 3-
vector ),,( cba , which is the scaled normal
direction whose size denotes the inverse of the
distance to the plane from the origin. If p  is on
the plane, that is, if

( ) 1,, =pcba
we can get
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where P  is the homography we obtain from the
two images.

3.2 Camera Motion Solver

Robust image registration gives an accurate
estimation of dominant homography between two
images. The support region (non-outliers of
RANSAC) corresponds to a real or virtual planar
surface in the scene. Given focal lengths (refer to
Section 4 for recovery of unknown focal lengths
from video sequences), the camera motion and
plane equation can be solved directly by the
following equation:

1)),,(( −′+′≅ VcbaTRVP

R  can be expressed by Euler angles which have 3
variables, T ′ and plane distance are up to scale;
therefore, they have 5 variables. Since the Euler
representation of R  is non-linear, the Levenberg-
Marquardt method is used to solve the above
equation. As the number of variables (8 para-
meters) is small, the optimization process is rapid.

3.3 Projective Depth Solver

The camera motion solver provides the rotation
and translation of two  image  coordinate  systems,



that is, we have
txx wM +≅′

where 1−′= VRVM  and TV
f

′′= 1
t  are known.

The Levenberg-Marquardt method is used here to
minimize:

[ ]∑ −+−=
i

iiii wMIIwE
2

10 )(
~

)()( βα txx

Assuming that the projective depths of different
pixels are independent, we get the diagonal
Hessian matrix which makes the optimization
process more efficient.

The hierarchical framework used in homography
computation is also applied here. To decrease the
possibility of converging to local minima and to
improve the efficiency, we use patch-based depth
recovery and local search. The image is divided
into small patches. Each patch shares the same
depth while the patch Jacobian is the sum of the
Jacobian of each pixel in the patch. When patch
displacement exceeds a certain scale, even the
multilevel depth recovery fails. To overcome this
problem, local search is performed at each patch
for subpixel displacement. This displacement is
used to solve iw  directly and the solution is incor-

porated into the optimization as an initial value.

Figure 1(d) gives the result of projective depth
recovery from only the two images in Figure 1(a)
and (b). The patch size is 22 ×  pixels and local
search area is 77 ×  pixels.

4 Temporal Integration in Video Sequences

A video sequence stores a large amount of
redundant information of scenes as the temporal
consistency. We use temporal integration over
video sequences to refine the projective depth and
apply it to motion detection.

4.1 Depth Integration

From each pair of images, we recover the
projective depth represented in the first image
coordinate system. It is necessary to propagate this
depth representation to the second coordinate
system so that temporal integration can be
performed on the recovered depth. From
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In this way, we represent the depth in the second
image coordinate system and then we can refine
this depth by the next pair of images consisting of
the second and the third images. This process is
repeated over the entire video sequence.

4.2 Plane Integration

The first pair of images gives a plane equation
from the dominant homography. The plane
equation is actually up to scale with the translation
parameters. This is the reason why the same scale
must be maintained for the same plane in the
succeeding pairs in order to refine the current
depth. We need to propagate the plane equation
representation from the first image coordinate
system to the second one.

Let ),,( cbaN = and ),,( cbaN ′′′=′ denote the
equations of the same plane in two coordinate
systems. Since they are scaled normal directions,

ΤΤ =′ NRN λ
where R  is the rotation between two coordinate
systems and λ  is the scale between two normal

directions. For point Tzyx ),,(=p expressed in
the first coordinate system, we get
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λ  tells the position of the plane in the second
coordinate system from propagation so that we can
adjust the scale of the next camera motion solver
to maintain the plane at the same position.

4.3 Recovery of Focal Length

The tutorial [Mohr and Triggs, 1996] summarizes
the projective geometry approaches in structure
from motion, concluding that when internal para-
meters are constant three images are enough to
recover the Euclidean shape. Pollefeys et al.
[1998] demonstrated that if the skew parameter
equals zero, even with varying internal parameters
three images are sufficient to recover Euclidean
shape. In our work, we assume other internal
parameters as known except the focal length.

Each homography has 8 parameters which include
information of rotation (3 parameters) and
translation (3 parameters) of consecutive images.
Given the initial values of the first two focal
lengths, we can obtain the dominant plane
equation from the camera motion solver. The
plane equation is propagated to the following
images and can then be used to solve focal lengths
(2 parameters) from homography in the same way
as solving camera motion.

4.4 Application to Motion Detection

Detecting moving objects in a video sequence
taken from moving camera is an important task in
video sequence analysis. Some algorithms work
well in 2D situations when the scene can be
approximated by a flat surface and/or when the
camera is undergoing only rotations and zooms;
some apply to the scene when large depth
variations are present. [Irani and Anandan, 1997]
discusses a unified approach handling both 2D and
3D scenes. Our goal is motion detection in aerial
images while the camera experiences complex
ego-motion and the scene can neither be classified
as flat surface nor provide significant depth
variations.

Figure 2(a) shows three images in the video
sequence provided by the Video Surveillance and
Monitoring (VSAM) project of CMU. The
sequence was taken from an airplane flying above
a bridge; two cars were moving on the bridge and
one car was moving on the road which is far below
the bridge. We first obtained homography to

register consecutive images in the video sequence.
Figure 2(b) gives the difference images between
consecutive registered images. White dots indicate
differences which are actually the outliers of
homographies; we can observe that the ground
below the bridge was selected as dominant plane
by robust estimation. Also, we can see that both
motion (moving cars) and parallax (the bridge)
appear in the difference images. Based on the
homographies, we recovered  projective  depth  by

   
   first image                    seventh image

eleventh image
(a) original images

   
   first difference              seventh difference
(b) difference between registered images

   
    first depth                      seventh depth

(c) projective depth (darker denotes farther)

   
first difference after
depth compensation

seventh difference after
depth compensation

(d) motion detection (difference between registered
images after depth compensation)

Figure 2:  Motion Detection



temporal integration over 7 images and use that to
register consecutive images again. Figure 2(c)
shows the recovered depth. It can be seen that the
projective depth was improved over sequences; the
projective depth for the seventh image shows the
scene structure including the bridge in front and
the road along the gully. New difference images
(Figure 2(d)) were generated between registered
images with depth compensation. We can see that
differences due to the depth are cleaned up and
white dots represent the motion only. Cars on the
bridge and on the road below are detected and
tracked correctly. However, in a situation where
motion of the object always satisfies the epipolar
constraints, the object is classified as a stationary
rigid body.

5 Conclusion

We have presented a framework for homography
based projective depth recovery and its application
to motion detection. We described a robust
homography algorithm which incorporates image
contrast/brightness adjustment and robust
estimation into image registration. Based on the
homography between two images, our camera
motion solver gives the solution of ego-motion
and plane equation; the solution is refined to
generate projective depth for each pixel by the
Levenburg-Marquardt method. We also discussed
temporal integration of projective depth recovery
and its application to motion detection.

The encouraging temporal integration results
motivate us to expand this work to include spatial
integration as well. Other application tasks such as
3D mosaicking, background model recovery and
video editing are promising areas to explore.
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