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Abstract

This paper investigates local observability of the pose and motion of a curved three-

dimensional object rolling on a rough horizontal plane. The plane models a controllable

robotic palm imbued with tactile sensors. The palm can accelerate in arbitrary trans-

lational directions and the tactile sensors can determine the contact location between

the palm and the rolling object at every instant in time. The object and contact mo-

tions are governed by a nonlinear system derived from the kinematics and dynamics

of rolling. Through cotangent space decomposition, a su�cient condition on local ob-

servability of the system is obtained. This condition depends only on the di�erential

geometry of contact and on the object's angular inertia matrix; it is satis�ed by all but

some degenerate shapes such as a sphere.

The above result demonstrates that the geometric and dynamic information of a

manipulation task is often encoded in a small amount of tactile data.

1 Introduction

Geometry and mechanics are always closely tied to each other in a manipulation task. The
states (or con�gurations) of an object and its manipulator evolve under the laws of mechanics
and subject to the geometric constraints of contact. Such interaction often yields simple
information into which the geometry and motions of the object and manipulator are encoded
by the mechanics of the manipulation. For example, the contact between the object and the
manipulator is a form of interaction through which the object's pose and motion may be
conveyed to the manipulator in an implicit way. The reaction force is viewed as another
form of interaction. From these kinds of encoded information we may be able to recover
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Figure 1: Palm sensing.

some essential unknowns about the task, especially the con�guration (pose and motion) of
the object.

In this paper we will look into the contact information and see how much about a task can
be revealed from it. More speci�cally, we would like to know whether the contact between
an object and a manipulator could be enough for the latter to \observe", at least locally, the
pose and motion of the former.

The task chosen for our study involves a horizontal plane, or a palm, which can translate
in arbitrary directions, and a smooth object which can only roll on the palm. As shown in
Figure 1, the palm is trying to control the object's motion by executing certain motion of
its own. The state of the object, comprising its pose and motion, however, is unknown at
the moment. So the palm needs to determine the state before purposefully manipulating the
object. We refer to this state estimation problem as palm sensing.

As the object rolls, its contact traces out a curve as a function of time in the plane (see
Figure 1). Suppose the palm is covered by an array of tactile cells which are able to detect
the contact location at any time instant. In this paper we would like to know if this curve
of contact contains enough information for the palm to know about the con�guration of
the object. Our approach is to study local observability of rolling from the contact curve.
Through this investigation we hope to touch on the more general issue of mechanics-based
sensing and information retrieval in robotic tasks.

Section 2 derives a nonlinear system from the kinematics and dynamics of rolling that
describes the object's motion as well as the contact motions upon the surfaces of the object
and palm. Section ?? establishes a su�cient condition on local observability for the con-
�guration of the rolling object. This condition depends only on the object's angular inertia
matrix and its local shape around the contact. Section 4 summarizes the result and addresses
two research directions in the future.
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1.1 Related Work

We relate our work to previous work in rigid body dynamics, contact kinematics, sensing, and
parts orienting. The work also draws upon the part of nonlinear control theory concerned
with observability.

The �rst general discussion on the motion of a rigid body was due to Poisson in 1838,
though the special case of a sphere was treated by Coriolis earlier in 1835. A few years later,
friction was introduced into rigid body dynamics by Cournot in volumes 5 and 8 of Crelle's
Journal. In 1861, Slesser gave the equations of a rigid body constrained to roll and pivot
without sliding on a horizontal plane. This method was followed by Routh who discussed
the rolling of a sphere on any surface.

In his comprehensive introduction to rigid body dynamics [20], MacMillan coped with
sliding in the case of linear pressure distributions over the planar base of contact, and rolling
in the case of a sphere on a smooth surface.

Observing the duality between a force and point, Brost and Mason [2] described a graph-
ical method for the analysis of rigid body motion with multiple frictional contacts in the
plane. The dynamic problem of predicting the accelerations and contact forces of multiple
rigid bodies in contact with Coulomb friction have a unique solution if the the system Ja-
cobian matrix has full column rank and the coe�cients of friction are small enough. This
result was obtained by Pang and Trinkle [24] who introduced complementarity formulations
of the problem.

Montana [21] derived a set of di�erential equations that govern the motion of a contact
point in response to a relative motion of the objects in contact, and applied these equations
to local curvature estimation and contour following. The kinematics of spatial motion with
point contact was also studied by Cai and Roth [3] who assumed a tactile sensor able to
measure the relative motion at the contact point. The special kinematics of two rigid bodies
rolling on each other was treated by Li and Canny [17] in view of path planning in the
contact con�guration space.

Assuming rolling contact only, Kerr and Roth [16] combined the forward kinematics of
multi�ngered hands and the contact kinematics into a system of nonlinear, time-varying
ordinary di�erential equations which can be solved for the �nger joint velocities that are
necessary for achieving a desired object motion.

Orienting mechanical parts was early studied by Grossman and Blasgen [10]. They used
a vibrating box to constrain a part to a small �nite number of possible stable poses and then
determined the particular pose by a sequence of probes using a tactile sensor. Inspired by
their result, Erdmann and Mason [6] constructed a planner that employs sensorless tilting
operations to orient planar objects randomly dropped into a tray, based on a simple model
of the quasi-static mechanics of sliding. Erdmann [5] also developed a working system for
orienting parts using two palms, together with frictional contact analysis tools that can
predict relative slip between parts. The work demonstrates the feasibility of automatic
nonprehensile palm manipulation.

Utilizing the theory of limit surfaces [8], B�ohringer et al. [1] developed a geometric model
for the mechanics of an array of microelectromechanical structures and showed how this
structure can be used to uniquely and e�ciently align a part up to symmetry. Approximating
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the limit surface of an object as an ellipsoid, Lynch et al. [19] designed a control system to
translate the object by pushing with tactile feedback; this control system may be used for
active sensing of the object's center of mass.

Salisbury [25] �rst proposed the concept of �ngertip force sensing with an approach for
determining contact locations and orientations from force and moment measurements. Howe
and Cutkosky [12] introduced dynamic tactile sensing in which sensors capture �ne surface
features during motion, presenting mechanical analysis and experimental performance mea-
surements for the stress rate sensor.

Grimson and Lozano-P�erez [9] used tactile measurements of positions and surface normals
on a 3D object to identify and locate it from a set of known 3D objects, based on the
geometric constraints imposed by these tactile data. Gaston and Lozano-P�erez [7] showed
how to identify and locate a polyhedron on a known plane using local information from tactile
sensors which includes the position of contact points and the ranges of surface normals at
these points.

Hermann and Kerner [11] �rst studied observability using the observation space. A result
due to Crouch [4] shows that an analytic system is observable if and only if the observation
space distinguishes points in the state space. Luenberger-like asymptotic observers, �rst
constructed by Luenberger [18] for linear systems, remain likely the most commonly used
observer forms for nonlinear systems today.

Jia and Erdmann [14, 15] investigated how to \observe" a planar object being pushed by
a �nger. They established the local observability of the object's pose and motion from the
contact motion on the �nger; and introduced two nonlinear observers as sensing strategies.

2 The Rolling Motion

The motion of an object rolling on a plane without slipping is subject to two constraints:
(1) The point in contact has zero velocity relative to the plane; and (2) the object has no
rotation about the contact normal. In this section we shall study the rolling motion of an
object and the resulting motions of the contact on the object and in the plane, resulting
from the plane translation. We shall derive a system of nonlinear di�erential equations that
describes the object's kinematics and dynamics. We shall see that the kinematics are a�ected
by the local geometry at the contact, while the dynamics are a�ected by the position of the
contact and the object's angular inertia.

Before we begin, the problem needs to be formally de�ned. As shown in Figure 1, it
concerns an object B (with or without any initial velocity) moving on a horizontal plane P,
which is translating at velocity vP . In order to maintain contact, the plane acceleration _vP
must not exceed the gravitational acceleration g downward. The friction between P and B
is assumed to be large enough to allow only the pure rolling motion of B (without slipping).

For the sake of simplicity and clarity, we make a few additional assumptions:

1. Object B has uniform mass distribution.

2. Object B is bounded by an orientable surface.
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Figure 2: The coordinate frames for rolling. The body frame xB-yB-zB of object B de�ned by its
principal axes; the frame xP -yP -zP of plane P ; the frame x-y-z at the contact q on B; the frame
xp-yp-zp at the contact p in P ; and the world frame xW -yW -zW . The frames xP-yP -zP , xp-yp-zp,
and xW -yW -zW have the same orientation.

3. The contact stays in one proper patch � in the surface of B during the period of time
when local observability is concerned.

4. The patch � is convex and has positive Gaussian curvature everywhere.

5. The patch � is principal.

The third assumption makes sense because local observability is concerned with an in�nites-
imal amount of time. The fourth assumption restricts the contact to a point. The �fth
assumption is justi�ed because every point in a surface has a neighborhood that can be
reparametrized as a principal patch. This fact is stated in Appendix A and proved in [27,
pp. 320-323].

2.1 Kinematics of Rolling

To describe the motion of B and the motions of contact on both P and B, we here set up
several coordinate frames. Let o be the center of mass of B. Let the coordinate frame �B as
shown in Figure 2 be centered at o and de�ned by B's principal axes xB, yB, and zB. The
angular inertia matrix I with respect to �B is thus diagonal. Frame �B is moving constantly
relative to the plane P due to the rolling of B.

A frame �P with axes xP , yP, and zP is attached to the plane P such that axis zP is an
upward normal to P. The world coordinate frame, denoted by �W , has the same orientation
as frame �P .
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It is often convenient to describe the motion of B in terms of its body frame �B by
velocity v and angular velocity !. In the meantime, denote by vB and !B the velocities of
B relative to the �xed frame that currently coincide with �B. Hence vB and v are identical
at the moment, same are !B and !. But their derivatives have quite di�erent meanings, as
will be discussed in Section 2.2.

The contact point on B is denoted by q = �(s) = �(s1; s2) in �B. Since � is a principal
patch, the normalized Gauss frame � at q is well-de�ned by axes

x =
�s1
k�s1k

;

y =
�s2
k�s2k

;

z =
�s1 � �s2

k�s1k � k�s2k
;

all with respect to the body frame �B. The parameters s of � are chosen such that z is the
outward normal. The orientation of the contact frame � relative to the body frame �B is
thus given by a 3� 3 rotation matrix

R = (x;y;z): (1)

Meanwhile, the contact point in the plane P is denoted by p = (u; 0)T = (u1; u2; 0)T in
frame �P. We attach to p a frame �p (with axes xp;yp;zp) with the same orientation as
frames �P and �W. Let  be the angle of rotation needed to align axis x with axis xp (see
Figure 2). The matrix

R =

 
cos � sin 

� sin � cos 

!

therefore relates axes x;y to axes xp;yp. Accordingly, � is related to �p by the 3�3 rotation
matrix

Rpq =

 
R� 0
0 �1

!
:

Consequently, the orientation of the body frame �B relative to the contact frame �p is given
by the matrix

Rpo = RpqR
T

=

0
@ R� 0

0 �1

1
A (x;y;z)T

=

0
@ R�(x;y)T

�zT

1
A : (2)
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Now we see that the orientation of B relative to P (and thereby to the world frame �W)
is completely determined by s and  , which represent the three degrees of freedom of B in
order to maintain contact with P. The velocity and angular velocity of B in �W are given
by Rpov and Rpo!, respectively.

The contact kinematics depends on the relative motion between the two contact frames
� and �p. Denote by (!x; !y; !z)T the angular velocity of � relative to �p and in terms of
�. Since � is �xed relative to �B and the angular velocity of �B relative to �p is !, we have

0
BB@
!x

!y

!z

1
CCA = RT! = (x;y;z)T!: (3)

Rolling without slipping imposes a constraint on the angular velocity !:

!z = z � ! = 0: (4)

Also due to rolling the relative velocity of � to �p is zero:

vx = vy = vz = 0:

Therefore the absolute velocity of q equals vP ; in other words,

Rpo(vB + !B � �) = vP ; (5)

or equivalently,

Rpo(v + ! � �) = vP : (6)

Thus the velocity v is determined by v = RT
povP � ! � �.

The local geometry of B and P at the contact plays a major role in the contact kinematics.
We will utilize Montana's kinematic equations of contact [21] which relates the contact
motions to the relative motion of the two frames (in this case � and �p) at the contact.
First of all, we compute the shape operator, geodesic curvatures, and metric of B as

S = (x;y)T (�rxz;�ryz)

=

0
@ �1 0

0 �2

1
A ;

Kg = yT (rxx;ryx)

= (�g1; �g2);

V =

0
@ k�s1k 0

0 k�s2k

1
A ;

7



and those corresponding invariants of P as

SP = 0;

KgP = 0;

VP = I2;

where �1 and �2 are the principal curvatures of � at q, �g1 and �g2 the geodesic curvatures
of the principal curves at q, and I2 the 2� 2 identity matrix. Plugging the above forms, (4),
and (6) into Montana's equations yields the kinematics of rolling:

_u = R S
�1(y;�x)T!; (7)

_s = V �1S�1(y;�x)T!; (8)

_ = KgS
�1(y;�x)T!: (9)

Since the patch � has Gaussian curvature K = detS 6= 0, the shape operator S is invertible.
Equations (7), (8), and (9) shall be better understood in the following geometric way. Let

�1 and �2 be the radii of curvature of the normal sections in the principal directions x and y
at the contact q, respectively. From the convexity of � we have �1 = � 1

�1
and �2 = � 1

�2
. For

simplicity, let us assume the principal curves to be unit-speed; that is, k�s1k = k�s2k = 1.
Hence equation (8) reduces to

_s = I2

0
@ �1 0

0 �2

1
A
0
@�!y

!x

1
A

=

0
@��1!y

�2!x

1
A :

Figure 3 shows the normal sections of � in the x and y directions. Since q has zero relative
velocity to p, the angular velocity component !y generates a contact velocity component
of �!y�1 along the s1-parameter curve at q, while the component !x generates a contact
velocity component of !x�2 along the s2-parameter curve at q. Under rolling, the velocity
_u is related to the velocity _s by matrix R . Equation (9), now written as,

_ = (�gx; �gy) _s;

has a similar explanation from the de�nition of geodesic curvature.

2.2 Dynamics of Rolling

To apply Newton's second law, we need to use a �xed reference frame with respect to which
the velocity and angular velocity can be properly di�erentiated. Let the reference frame be
the �xed frame that instantaneously coincides with frame �B. Therefore we shall use the
absolute velocities _vB and _!B in this �xed frame.
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Figure 3: The normal sections of a pure rolling object B's surface in the principal directions x

and y at the contact. The radii of curvature are �1 and �2, respectively. The angular velocities at
the centers of curvature about y and x are !y and !x, respectively. It is clear that the velocities of
contact in x and y are ��1!y and �2!x, respectively.

Although v and ! are relative velocities in terms of the moving frame �B, it is not
di�cult to derive that 1

_vB = ! � v + _v; (10)

_!B = ! � ! + _! = _!: (11)

Let F be the contact force on object B. The dynamics of the object obey Newton's and
Euler's equations:

F +mgz = m _vB = m( _v + ! � v);

�(s)� F = I _!B + !B � I!B = I _! + ! � I!:

Immediately from the above equations we can eliminate the contact force F which may be
anywhere inside the contact friction cone:

� �m( _v + ! � v � gz) = I _! + ! � I!: (12)

Next, di�erentiate the kinematic constraint (5) and plug (10) and (11) in:

(Rpo!)�Rpo(v + ! � �) +Rpo

�
_v + ! � v + _! � � + ! � (! � � + _�)

�
= aP ;

where aP is the acceleration of the plane P. The above equation is simpli�ed to

2! � (v + ! � �) + _v + _! � � + ! � _� = RT
poaP; (13)

1The reader may either try a derivation himself or refer to MacMillan [20, pp. 175-176].
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since

(Rpo!)�Rpo(v + ! � �) = Rpo

�
! � (v + ! � �)

�
:

From (12) and (13) we obtain

_! = D�1

�
� �RT

poaP � � �
�
gz + ! � v + 2! � (! � �) + ! � _�

�
� ! �

I

m
!

�
;

(14)

where

D =
I

m
+ k�k2I3 � ��T ; (15)

v = RT
povP � ! � �; from (6).

In the above I3 denotes the 3�3 identity matrix. The matrix D is positive de�nite, following
that the angular inertia matrix I is positive de�nite. More speci�cally, for any 3 � 1 vector
e 6= 0, we have

eTDe = eT (
I

m
+ k�k2I3 � ��T )e

= eT
I

m
e+ k�k2kek2 � (e � �)2

> 0

Theorem 1 The nonlinear system consisting of equations

_u = R S
�1(y;�x)T!;

_s = V �1S�1(y;�x)T!;

_ = KgS
�1(y;�x)T!; (16)

_! = D�1� �RT
poaP �D�1

�
� �

�
gz + ! � v + 2! � (! � �) + ! � _�

�
+ ! �

I

m
!

�
;

governs the object motion as well as the contact motions on the object and in the plane.

Both rolling constraints (4) and (6) were used in deriving system (16) and are therefore
implicitly contained in the system. Nevertheless, (6) indicates that v is a redundant state
variable of the system as it depends on ! and s; and (4) induces another redundancy among
!1, !2, and !3.

A state of the nonlinear system (16) has eight (scalar) variables including u = (u1; u2)T ,
s = (s1; s2)T ,  , and ! = (!1; !2; !3)T . Together they determine the object's position and
orientation relative to frame �P. Thus given the plane motion, they determine the object's
motion relative to frame �B. The one redundancy among !1, !2, !3 will be taken care of
when we investigate the local observability of system (16) in the next section. Note there is
no need to treat vP as a state variable since it is known.
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The output of the system is u = (u1; u2)T . The input of the system is aP = (aP1
; aP2

; aP3
)T

whose components control the input �elds (see Appendix B)

h1 =

0
@ 0
~h1

1
A ; h2 =

0
@ 0
~h2

1
A ; and h3 =

0
@ 0
~h3

1
A ;

respectively, where the vector �elds ~hb1; ~h2; ~h3 together de�ne a 3� 3 matrix:

(~h1; ~h2; ~h3) = D�1� �RT
po

= D�1� �
�
(x;y)R ;�z

�
; (17)

Denoted by f the drift �eld of the system, which is composed of the right sides of the
equations (16) when aP = 0. It measures the rate of state change under no input.

3 Local Observability

In the previous section we studied the kinematics and dynamics of rolling and derived the
nonlinear system (16) that describes the object and contact motions. The unknowns include
the point of contact u in the plane, the point of contact on the object as determined by s,
the rotation  of the object about the contact normal, and the object's angular velocity !.
These variables constitute a state in system (16)'s state space manifoldM . This section will
look into whether knowing u is su�cient for locally determining s;  , and !.

Our approach is to investigate the local observability of system (16). Denote by � the
current state of rolling so that � = (u; s;  ;!)T . Essentially, we need to determine if the
observability codistribution dO at � equals the cotangent space T ��M spanned by the di�er-
entials du; ds; d ; d! at �. The codistribution dO (as de�ned in Appendix B) consists of
the di�erentials of u1 and u2 and their higher order Lie derivatives with respect to f , h1,
h2, h3. The linear space O spanned by these functions is called the observation space of the
system.

We decompose the cotangent space T ��M at state � into orthogonal subspaces T ��Mu,
T ��Ms, T ��M , T ��M!, with bases du; ds; d ; d!, respectively. Obviously, T ��Mu is spanned
since du 2 dO. First, we shall show that the cotangent subspace T ��M! is spanned. Sec-
ond, we shall derive a su�cient condition about the contact geometry that guarantees the
cotangent subspace T ��Ms to be spanned. Third, we shall extend this su�cient condition for
the spanning of T ��Ms � T ��M . Finally, we shall argue that the di�erentials chosen from
the observability codistribution dO to span these subspaces will span T ��M under the same
su�cient conditions.

3.1 Angular Velocity

As noted before, one of the angular velocity components !1; !2; !3 is a redundant state
variable under the rolling constraint (4). Let the coordinates of x;y;z in frame �B be

11



(x1; x2; x3), (y1; y2; y3), (z1; z2; z3), respectively. Without loss of generality, we assume z3 6= 0
in some neighborhood of the state. Immediately from (4)

!3 = �
z1!1 + z2!2

z3
: (18)

The new system rewritten from system (16) using (18) has seven state variables u, s,  ,
!1; !2. The new observation space equals the old one, except that every appearance of !3 is
now replaced with (18). For this reason, we will not distinguish the new observation space
from O unless we are taking the partial derivatives of functions in O with respect to !1 and
!2, on which !3 has become dependent.

The cotangent subspace T ��M! is two-dimensional and spanned by d!1(�) and d!2(�). To
show the spanning of T ��M! by di�erentials in the codistribution dO, it su�ces to prove that
the Jacobian matrix @Lfu=@(!1; !2) has rank 2, where Lfu = (Lfu1; Lfu2)T . This Jacobian
is given as

@Lfu

@(!1; !2)
=

@Lfu

@!

@!

@(!1; !2)

=
@ _u

@!

@!

@(!1; !2)

= R S
�1

0
@ y1 y2 y3

�x1 �x2 �x3

1
A
0
BB@

1 0

0 1

� z1
z3

� z2
z3

1
CCA

= R S
�1

0
@ �x2

z3

x1
z3

�y2
z3

y1
z3

1
A :

Computing the determinant of the Jacobian is straightforward:

det

 
@Lfu

@(!1; !2)

!
= detR detS�1

x1y2 � x2y1
z23

= �
1

Kz3
;

where K 6= 0 is the Gaussian curvature at the contact point q.

Proposition 2 The cotangent subspace T ��M! is spanned by the di�erentials dLfu.

This lemma states that rolling induces a one-to-one mapping from the space of angular
velocities to the space of contact velocities in the plane for constant s and  . Accordingly,
there exists some control that can distinguishes between any two di�erent (but close enough)
angular velocities of the object in the same pose.
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3.2 Contact on the Object

We now proceed to determine whether the cotangent subspace T ��Ms is spanned by the
di�erentials in dO. This time we choose from O six (scalar) functions Lh1Lfu, Lh2Lfu,
Lh3Lfu comprising the following 2 � 3 matrix:

Q = (Lh1Lfu; Lh2Lfu; Lh3Lfu)

= R S
�1(y;�x)TD�1� �

�
(x;y)R ;�z

�
: (19)

The cotangent subspace T ��Ms is spanned provided the partial derivatives @Q =@s1 and
@Q =@s2, viewed as two 6-dimensional vectors, are linearly independent. Introducing a 2�3
matrix:

Q = S�1(y;�x)TD�1� �R; (20)

where R = (x;y;z) as given by (1), we have

Lemma 3 The partial derivatives @Q =@s1 and @Q =@s2 are linearly dependent if and only
if the partial derivatives @Q=@s1 and @Q=@s2 are linearly dependent.

Proof Suppose there exist c1 and c2, not both zero, such that

c1
@Q 

@s1
+ c2

@Q 

@s2
= 0:

Expand this equation into two:

c1R 

@

@s1

�
S�1(y;�x)TD�1� � (x;y)

�
R 

+ c2R 

@

@s2

�
S�1(y;�x)TD�1� � (x;y)

�
R = 0; (21)

c1R 

@

@s1

�
S�1(y;�x)TD�1� � (�z)

�

+ c2R 

@

@s2

�
S�1(y;�x)TD�1� � (�z)

�
= 0: (22)

Multiply (21) by R on both the left and the right and (22) by �R on the left; and merge
the two resulting equations into one:

c1
@

@s1

�
S�1(y;�x)TD�1� � (x;y;z)

�
+ c2

@

@s2

�
S�1(y;�x)TD�1� � (x;y;z)

�
= 0:

Hence @Q=@s1 and @Q=@s2 are linearly dependent.
Conversely. 2
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Thus we will focus our investigation on the linear independence of the partial derivatives
@Q=@s1 and @Q=@s2. Unfortunately, for certain shape �, these two partial derivatives are
linearly dependent. For example, if � is a sphere with radius r, one can verify that2

Q =

0
@ �5

7
0 0

0 �5

7
0

1
A :

The partial derivatives of Q are zero and obviously linearly dependent. In this example, the
contact point can be anywhere on the sphere whatever path the sphere rolls along in the
supporting plane.

But objects of more general shape are to our real interest. So we aim at establishing
some condition on the linear independence of @Q=@s1 and @Q=@s2 that can be satis�ed by
most shapes.

To compute these two partial derivatives, we �rst obtain the partial derivatives of x;y;z:

@

@s1
(x;y;z) = k�s1k(x;y;z)

0
BB@

0 ��g1 ��1

�g1 0 0

�1 0 0

1
CCA ;

@

@s2
(x;y;z) = k�s2k(x;y;z)

0
BB@

0 ��g2 0

�g2 0 ��2

0 �2 0

1
CCA :

Let A = D�1��, where

�� =

0
BB@

0 ��
3

�
2

�3 0 ��1

��
2

�
1

0

1
CCA

with � = (�
1
;�

2
;�

3
)T in frame �B is the skew-symmetricmatrix representing cross product.

Then DA = ��. Di�erentiate this equation with respect to s1 (s2, respectively) on both
sides and solve for the partial derivatives of A:

@

@s1
(D�1��) = D�1

 
k�s1kx��

@D

@s1
D�1��

!
;

@

@s2
(D�1��) = D�1

 
k�s2ky��

@D

@s2
D�1��

!
:

With all the above partial derivatives we can write out the partial derivatives of Q:

@Q

@s1
=

 
@S�1

@s1
(y;�x)T � k�s1kS

�1(�g1x; �g1y + �1z)
T

!
D�1� �R

2Use, for instance, the parametrization � = r(cos s1 cos s2;� cos s1 sin s2; sin s1)T .
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+ S�1(y;�x)TD�1

�
�
@D

@s1
D�1� �R

+ k�s1k
�
(0;z;�y) + � � (�g1y + �1z; ��g1x; ��1x)

��
; (23)

@Q

@s2
=

 
@S�1

@s2
(y;�x)T � k�s2kS

�1(�g2x� �2z; �g2y)
T

!
D�1� �R

+ S�1(y;�x)TD�1

�
�
@D

@s2
D�1� �R

+ k�s2k
�
(�z; 0;x) + � � (�g2y; ��g2x+ �2z; ��2y)

��
: (24)

It seems very di�cult to say anything about the linear independence of @Q=@s1 and
@Q=@s2 directly from their complicated forms above. So we intend to �nd a matrix A and
a su�cient condition under which (@Q=@s1)A and (@Q=@s2)A will be linearly independent.
The same condition will then ensure the linear independence between @Q=@s1 and @Q=@s2.
The matrix of our choice is RT�, which, when multiplied on (23) and (24) to the right, gets
rid of those terms in @Q=@s1 and @Q=@s2 that have � � R on the right. We can further
simplify the remaining terms in the products using the following equations:

(0;z;�y)RT = x�;

(�z; 0;x)RT = y�;

(�g1y + �1z;��g1x;��1x)R
T = �g1z� � �1y�;

(�g2y;��g2x+ �2z;��2y)R
T = �g2z� + �2x�:

In the end, we obtain

@Q

@s1
RT� = k�s1kS

�1(y;�x)TD�1� � b1; (25)

@Q

@s2
RT� = k�s2kS

�1(y;�x)TD�1� � b2; (26)

where

b1 = �x+ (�g1z � �1y)� �; (27)

b2 = �y + (�g2z + �2x)� �: (28)

Lemma 4 The vectors (@Q=@s1)RT� and (@Q=@s2)RT� are linearly dependent if and only
if � � (Iz) = 0 or det(b1; b2;�) = 0.

Proof We need to conduct a few steps of reasoning:

@Q

@s1
RT� and

@Q

@s2
RT� are linearly dependent
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if and only if

(y;�x)TD�1� � b1 and (y;�x)TD�1� � b2 are linearly dependent

if and only if

D�1� � b1; D�1� � b2; and z are linearly dependent

if and only if
� � b1; � � b2; and Dz are linearly dependent;

where

Dz =
�
I

m
+ k�k2I3 � ��T

�
z

=
I

m
z + � � (z � �):

There are two cases: (1) � � (Iz) = 0 and (2) � � (Iz) 6= 0. In case (1), �� b1;�� b2;Dz
are linearly dependent. In case (2), they are linearly dependent if and only if � � b1 and
� � b2 are linearly dependent, which happens if and only if det(b1; b2;�) = 0 2

Combining Lemmas 3 and 4, we arrive at a su�cient condition for the spanning of T ��Ms.

Proposition 5 The cotangent subspace T ��Ms is spanned by the di�erentials of six functions
Lh1Lfu, Lh2Lfu, Lh3Lfu, all in the observation space of system (16), if (1) � � (Iz) 6= 0
and (2) det(b1; b2;�) 6= 0.

When � is a sphere, b1 = b2 = 0, violating condition (2) in Proposition 5. For general
�, conditions (1) and (2) in Proposition 5 are satis�ed at all but at most a one-dimensional
set of contact points.

Up until now we have selected from the observation space O a total of 10 scalar functions:
u, Lfu, Lh1Lfu, Lh2Lfu, and Lh3Lfu. The �rst two functions depend on only u, while
the last six functions on only s and  . Hence we have shown that the cotangent subspace
T ��Mu � T ��Ms � T ��M! is spanned unless � � (Iz) = 0 or det(b1; b2;�) = 0.

3.3 Rotation about the Contact Normal

The rolling objects has three degrees of freedom: the point of contact on the object s and
the rotation  of the object about the contact normal. The last proposition states that
the contact point alone can be distinguished under its su�cient condition. Such condition
essentially ensures the di�erentials of Lh1Lfu, Lh2Lfu, and Lh3Lfu to span the cotangent
subspace T ��Ms. Now we shall show that these di�erentials indeed span the cotangent space
T ��Ms � T ��M except for special shapes such as a sphere. That is, we shall show that the
2� 3 matrices @Q =@s1, @Q =@s2, and @Q =@ are linearly independent for general shape
�.

Let Q12 be the 2� 2 matrix formed by the �rst two columns in Q:

Q12 = S�1(y;�x)TD�1� � (x;y):

16



Construct a 2 � 3 matrix:

~Q =

0
@ 0 �1

1 0

1
AQ + Q12

0
@ 0 1 0

�1 0 0

1
A :

Lemma 6 The partial derivatives @Q =@s1, @Q =@s2, @Q =@ are linearly dependent if
and only if ~Q and the partial derivatives @Q=@s1, @Q=@s2 are linearly dependent.

The proof of Lemma 6 is similar to that of Lemma 3, and makes use of the following
equations:

R 

@R 

@ 
=

0
@ 0 �1

1 0

1
A ;

@R 

@ 
R =

0
@ 0 1

�1 0

1
A :

This lemma, along with Propositions 2 and 5, suggest the weak dependency, if any, of
system (16)'s local observability on the object's rotation angle  .

In this section, assuming the linear independence of @Q=@s1 and @Q=@s2, we want to
determine if ~Q is linearly independent of them. If not always, we would like to seek some
su�cient condition on the object shape �. Let us start by o�ering a rather restrictive
necessary condition for ~Q to vanish.

Lemma 7 The matrix ~Q is equal to 0 only if the following three conditions all hold:

� � z = 0;

�1x
TD�1x = �2y

TD�1y; (29)

xTD�1y = 0:

Proof There are two cases: (1) � � z 6= 0, and (2) � � z = 0.
In the �rst case, we have D�1� � z 6= 0 due to that D�1 is positive de�nite. The third

column of ~Q is not zero, by the following steps of reasoning:

0
@ 0 �1

1 0

1
AS�1(y;�x)TD�1� � z = 0

if and only if
(y;�x)TD�1� � z = 0

if and only if
D�1� � z = cz; for some c 6= 0

if and only if
� � z = cDz; for some c 6= 0,
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only if
0 = z � (� � z) = zTDz:

But zTDz > 0, as D is positive de�nite.
In the second case, the third column of Q is zero. Since � = k�kz, we have

Q12 = k�kS�1(y;�x)TD�1z � (x;y)

= k�kS�1(y;�x)TD�1(y;�x):

The 2� 2 matrix (y;�x)TD�1(y;�x) is positive de�nite, so we write

Q12 = k�kS�1

0
@ a b

b d

1
A ; a > 0 and ad� b2 > 0.

Now we are able to simplify the �rst two columns of ~Q:

0
@ 0 �1

1 0

1
AQ12 +Q12

0
@ 0 1

�1 0

1
A = k�k

0
@ � b

�1
� b

�2

a

�1
� d

�2

a

�1
� d

�2

b

�1
+ b

�2

1
A :

The above 2�2 matrix is zero if and only if b = 0 and a

�1
= d

�2
, which imply conditions (29).

2

Suppose the necessary conditions in Lemma 7 does not hold. Then ~Q 6= 0. Suppose
again @Q=@s1 and @Q=@s2 are linearly independent. The matrices @Q=@s1, @Q=@s2, and ~Q
are linearly dependent if and only if there exists c1; c2, not all zero, such that

c1
@Q

@s1
+ c2

@Q

@s2
=

0
@ 0 �1

1 0

1
AQ + Q12

0
@ 0 1 0

�1 0 0

1
A : (30)

Multiply both sides of (30) by RT� on the right, plug (25) and (26) in, and then multiply
both sides of the resulting equation by S on the left:

c1k�s1k(y;�x)
TD�1� � b1 + c2k�s2k(y;�x)

TD�1� � b2 = (y;�x)TD�1� � (� � z):

Solving the above equation for c1 and c2 and substituting the solutions into (30), we end up
with a system of third order partial di�erential equations of �, four of which are independent.
We postulate that this PDE system has at most one solution.

Proposition 8 Assume dLh1Lfu, dLh2Lfu, and dLh3Lfu span the cotangent subspace T ��Ms.
Furthermore, assume the necessary condition in Lemma 7 does not hold. The same di�er-
entials will also span the cotangent subspace T ��Ms � T ��M except for at most one (local)
shape of �.
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3.4 Su�cient Conditions for Local Observability

To summarize, we have chosen from the observation space O a total of ten functions: two
scalar functions u, which are the system outputs; two �rst order Lie derivatives Lfu, which
involve !1; !2, s1; s2,  ; and six second order Lie derivatives Lh1Lfu, Lh2Lfu, Lh3Lfu, which
involve s1; s2;  only. The di�erentials of these functions (except Lfu) live in orthogonal
subspaces of the cotangent space T ��M . If these subspaces are spanned, given that T ��M! is
spanned by dLfu, T ��M is also spanned and local observability of system (16) follows.

Combining Proposition 2 through Proposition 8, we obtain a su�cient condition for the
local observability of rolling:

Theorem 9 The rolling system (16) is locally observable except for at most one object shape
� if

det(b1; b2;�) 6= 0 (31)

and

� � (Iz) 6= 0; when � � z 6= 0; (32)

�1x
TD�1x 6= �2y

TD�1y or

xTD�1y 6= 0; when � � z = 0; (33)

where b1 and b2 are given by (27) and (28), respectively.3

Condition (31) depends on the di�erential geometry of contact. It is only violated by at
most a one-dimensional set of points in a general patch �. Condition (32) states that the
contact normal transformed by the angular inertia matrix should not be perpendicular the
contact location vector. It is only violated by at most a one-dimensional set of points in a
general patch. Condition (33), only for ��z = 0, is hardly seen to be violated by any shape
other than a sphere.

4 Summary

This paper deals with local observability of a three-dimensional object rolling on a translating
plane. The object is bounded by a smooth surface that makes point contact with the plane,
which is free to accelerate in any direction. The plane is rough enough to allow only the
pure rolling motion of the object. As the object rolls, the contact traces out a path in the
plane, which can be detected by a tactile array sensor embedded in the plane.

Utilizing Montana's equations for contact kinematics, we described the kinematics and
dynamics of this task by a nonlinear system, of which the output is the contact location
in the plane. Then we established a su�cient condition for the pose and motion of the
object to be locally observable. This was done by decomposing the cotangent space at
the current state into orthogonal subspaces associated with the object's pose and angular

3Note that � � z = 0 implies � � (Iz) 6= 0 given that I is positive de�nite.
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velocity, respectively, and by later combining the su�cient conditions on the spanning of
these subspaces. The combined condition depends only on the object's contact geometry
and angular inertia matrix. And it is general enough to be satis�ed almost everywhere on
any object surface that does not assume certain degeneracies as a sphere does.

From a broader perspective, we expect the paper's result on local observability from
contact to generalize to many other manipulation tasks. The presented work is part of our
larger goal to understand how much information about a manipulation task is encoded in a
small amount of tactile data and to develop methods for retrieving such information.

One direction of future work will be to design a nonlinear observer that can asymptotically
estimate the pose and motion of a rolling object from the path of contact. Further along
this line of research will be to implement (tactile) sensors and mount them on a palm to
estimate poses and motions of real objects.

Another direction is to study the controllability of the rolling object on a palm and to
combine the result with the present local observability result for developing parts orienting
and dextrous manipulation strategies.
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Appendices

A Elements of Di�erential Geometry

This appendix brie
y reviews some basics in di�erential geometry. We assume the reader's
knowledge about tangent vectors, tangent spaces, vector �elds, curves; and hence do not go
over these de�nitions. For an elementary introduction to di�erential geometry, we refer the
reader to O'Neill [23]; for a comprehensive introduction, we refer to Spivak's �ve volume
series that begins with [26].

A.1 Normal and Gaussian Curvatures

A mapping f from an open set D � <2 to <3 is regular provided that at each point p 2 D
the Jacobian matrix @f=@p has rank 2. A coordinate patch (or a patch) g : D ! <3 is a
one-to-one regular mapping from an open set D � <2 to <3. A patch g : D ! <3 is called
a proper patch provided its inverse function g�1 : g(D) ! D is continuous.

A subset M of <3 is a surface in <3 provided for each point p 2M there exists a proper
patch g whose image contains a neighborhood of p.

Let Z be a vector �eld on a surface M in <3, v a tangent vector to M , and � a curve
in M that has initial velocity �0(0) = v. Let Z� : t 7! Z(�(t)) be the restriction of Z to
�. Then the covariant derivative of Z with respect to v is de�ned to be rvZ = (Z�)0(0).
Let p be a point of M and U a unit normal vector �eld on a neighborhood of p in M . The
shape operator of M at p is a function Sp : v 7! �rvU for each tangent vector v to M at p.
The shape operator Sp is a symmetric linear operator that maps the tangent plane Tp(M)
to itself.

Let u be a unit tangent vector to M at a point p. The normal curvature of M in the u
direction is given by �n(u) = S(u) �u. The normal section of M at p in the u direction is a
curve cut fromM by a plane containing u and the surface normal U(p); hence its curvature
is the normal curvature �n(u). The maximum and minimum values of the normal curvature
�n(u) are called the principal curvatures of M at p and denoted by �1 and �2, respectively.
The directions in which �1 and �2 occur are called the principal directions ofM at p. Vectors
in these directions are called the principal vectors of M at p.

The Guassian curvature K at a point p of M is the determinant of the shape operator
Sp and the mean curvature is the function H = 1

2
traceSp. They can be also expressed in

terms of the principal curvatures by K = �1�2 and H = 1

2
(�1 + �2).

A.2 Patch Computations

A patch f : D !M is orthogonal provided its two partial derivatives are orthogonal to each
other, that is, fu � f v = 0 for each (u; v) 2 D. An orthogonal patch f : D !M is principal
provided S(fu) � f v = S(f v) � fu = 0, where S is the shape operator of M .

A regular curve � inM is a principal curve (or line of curvature) provided that its velocity
�0 always points in a principal direction. The parameter curves of a principal patch f are
lines of curvature.
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If a point p on a surface M is not umbilic, then there exists a one-to-one and regular
mapping f : U ! M on an open set U � <2 with p 2 f (U), whose parameter curves are
lines of curvature.

Let f : D ! M be an principal patch in surface M . The normalized Gauss frame at a
point f (u; v) is the coordinate frame with origin at f(u; v) and coordinate axes4

x(u; v) =
fu(u; v)

kfu(u; v)k
;

y(u; v) =
f v(u; v)

kf v(u; v)k
;

z(u; v) = x(u; v)� y(u; v):

The shape operator S with respect to x;y is

S = (x;y)T (�rxz;�ryz)

= (x;y)T
 
�

zu

kfuk
;�

zv

kf vk

!

=

0
@ �1 0

0 �2

1
A ;

where �1 and �2 are the principal curvatures. At a point f (u; v) 2 D the geodesic curvatures
�gu and �gv, of the u-parameter curve and the v-parameter curve, respectively, are given as

�gu = y � rxx

= y �
xu

kfuk
;

�gv = �x � ryy

= y � ryx

= y �
xv

kf vk
:

A.3 Manifolds, Cotangent Bundles, Codistributions

An n-dimensional manifold M is a set furnished with a collection C of abstract patches
(one-to-one functions f : D !M , D an open set in <n) such that

1. M is covered by the images of the (abstract) patches in the collection C.

2. For any two patches f and g in C, the composite functions g�1f and f�1g are di�er-
entiable and de�ned on open sets in <n.

4We assume the coordinate frame is everywhere right-handed.
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A surface of <3 is just a two-dimensional manifold. Tangent vectors, tangent spaces, vector
�elds on an n-dimensional manifold are de�ned in the same way as in the special case n = 2.
We need only replace i = 1; 2 by i = 1; 2; : : : ; n.

Let M be a manifold and TpM its tangent space at a point p of M . The dual space
of TpM , denoted T �pM , is called the cotangent space of M at p. More speci�cally, T �pM
consists of all linear functions on TpM . An element of T �pM is called a cotangent vector. The
cotangent bundle of a manifoldM is de�ned as

T �M =
[
p2M

T �pM:

A codistribution D on a manifold M assigns to each point p 2M a linear subspace D(p) of
the cotangent space T �pM .

A one-form � on M is a map that assigns to each point p 2 M a cotangent vector
�(p) 2 T �pM . The gradient of a real-valued function f on M is a one-form df called the
di�erential of f .

A.4 Lie Derivatives

Let M be an n-dimensional manifold. The Lie derivative of a function h : M ! < along a
vector �eldX onM , denoted by LXh, is the directional derivative dh(X) = dh�X, where the
one-form dh is the di�erential of h. We use the notation LX1

LX2
� � �LXl

h for the repeated
Lie derivative LX1

(LX2
(: : : (LXl

h) : : :)) with respect to vector �elds Xl; : : : ;X2;X1 on M .
The Lie bracket of two vector �elds X and Y on M at a point p of M is a vector �eld

de�ned as

[X;Y ](p) =
@Y

@p
(p)X(p)�

@X

@p
(p)Y (p):

The ad-notation is used for repeated Lie brackets:

ad0XY = Y ;

adjXY = [X; adj�1X Y ]; for j > 0.

The bracket [X;Y ] can be interpreted in some sense as the \derivative" of the vector �eld Y
along the vector �eld X. It is therefore also denoted as LXY , the Lie derivative of Y along
X.

B Observability of a Nonlinear System

The theoretical foundation of our work comes from the part of control theory concerned
with the observability of nonlinear systems. For a general introduction to nonlinear control
theory, we refer the reader to Isidori [13] and Nijmeijer and van der Schaft [22].
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Consider a smooth a�ne (or input-linear) control system together with an output map:

_x = f (x) +
mX
i=1

ui gi(x); (u1; : : : ; um) 2 U � <m; (34)

y = h(x);

where x = (x1; : : : ; xn)T is the state in a smooth n-dimensional manifoldM � <n (called the
state space manifold), f ;g

1
; : : : ;gm are smooth vector �elds on M , and h = (h1; : : : ; hk)

T :
M ! <k is the smooth output map of the system. Here f is called the drift vector �eld, and
g
1
; : : : ;gm are called the input vector �elds. In the system, u1; : : : ; um are the inputs, called

the controls, over time whose Cartesian product range U de�nes the system's input space.
At state x, f (x) is a tangent vector to M representing the rate of change of x without any
input, while gj(x) for 1 � j � m is a tangent vector showing the rate of such change due to
unit input of uj.

We are only concerned with the class of controls U that consists of piecewise constant
functions that are continuous from the right.5 We call these controls admissible. The system
with constant controls, or no input �elds, equivalently, is said to be autonomous.

Denote by y(t;x0;u), t � 0, the output function of the system with initial state x0 and
under control u. Two states x1;x2 2M are said to be indistinguishable (denoted by x1Ix2)
if for every admissible control u the output functions y(t;x1;u) and y(t;x2;u), t � 0 are
identical on their common domain of de�nition. The system is observable if x1Ix2 implies
x1 = x2.

To derive a condition on nonlinear observability, the above de�nition of \observable" is
localized in the following way. Let V �M be an open set containing states x1 and x2. These
two states are said to be V -indistinguishable, denoted by x1I

Vx2, if for any T > 0 and any
constant control u : [0; T ] ! U such that x(t;x1;u);x(t;x2;u) 2 V for all 0 � t � T , it
follows that y(t;x1;u) = y(t;x2;u) for all 0 � t � T on their common domain of de�nition.
The system is locally observable at x0 if there exists a neighborhood W of x0 such that for
every neighborhood V � W of x0 the relation x0I

Vx1 implies that x0 = x1. The system is
called locally observable if it is locally observable at every x0 2M . Figure 4 illustrates local
observability for the case with one output function.

The observation space O of system (34) is the linear space (over <) of functions on M
that includes h1; : : : ; hk, and all repeated Lie derivatives

LX1
LX2

� � �LXl
hj; j = 1; : : : ; k; l = 1; 2; : : :

where Xi 2 ff ;g
1
; : : : ;gmg, 1 � i � l. It is not di�cult to show that O is also the linear

space of functions on M that includes h1; : : : ; hk, and all repeated Lie derivatives

LZ1LZ2 � � �LZl
hj ; j = 1; : : : ; k; l = 1; 2; : : :

where

Zi(x) = f (x) +
mX
j=1

uij gj(x); (35)

5So that U is closed under concatenation.
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Figure 4: Local observability at state x0. Given the state space M ,W �M is some neighborhood
of x0. For any neighborhood V � W of x0, x0 is V -distinguishable from all other states in V . More
speci�cally, for any state x1 6= x0 in V , there exists a constant admissible control u such that the
two state trajectories x(t;x0;u) and x(t;x1;u) will yield di�erent outputs before one of them exits
V (at time t0).

for some point ui = (ui1; : : : ; uim) 2 U .
The observation space shall be better understood with the notion of integral curve. Given

a nonlinear system

_z = Z(z);

de�ned by some vector �eld Z on the state space M , the integral curve �z0(t) is the solution
of the system satisfying the initial condition �z0(0) = z0. For every bounded subsetM1 �M ,
there exists an interval (t1; t2) 3 0 on which the integral curve �z0(t) is well-de�ned for all
t 2 (t1; t2). This allows us to introduce on M1 a set of maps, called the 
ow,

Z t :M1 ! M; t 2 (t1; t2);

z0 7! �z0(t):

Now choose inputs of system (34) such that it is driven by a sequence of vector �elds
Z1; : : : ; Zl of form (35) for small time t1; : : : ; tl, respectively. The outputs of the system
at time t1 + � � �+ tl are

hi(Z
tl
l � Z

tl�1
l�1 � � � �Z

t1
1
(x0)); for i = 1; :::; k:

Di�erentiate these outputs sequentially with respect to tl; tl�1; : : : ; t1 at tl = 0; tl�1 = 0; : : :,
t1 = 0 yields LZ1LZ2 : : : LZl

hi(x0), for i = 1; : : : ; k. Hence we see that the observation
space in fact consists of the output functions and their derivatives along all possible system
trajectories (in in�nitesimal time).

The observability codistribution at state x 2M , denoted by dO(x), is de�ned as:

dO(x) = spanf dH(x) j H 2 Og:

Theorem 10 (Hermann and Krener) System (34) is locally observable at state x0 2M
if dimdO(x0) = n.
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The equation dimdO(x0) = n is called the observability rank condition. Proofs of the
above theorem can be found in [11] and [22, pp. 95{96]. Basically, to distinguish between
a state and any other state in its neighborhood, it is necessary to consider not only the
output functions but also their derivatives along all possible system trajectories. The rank
condition ensures the existence of n output functions and/or derivatives that together de�ne
a di�eomorphism on some neighborhood of the state, which in turn ensures that the state
is locally distinguishable.
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