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Abstract
Reliable indoor navigation has been a goal of mobile robotics research in recent years.
Probabilistic belief update, occupancy grid methods, and multi-tiered hybrid architectures
have all been implemented in the pursuit of autonomous navigation systems that can
function in the face of danger and incomplete information.  The conventional approach
applies AI techniques to the localization problem in order to attain reasonable navigation
reliability. In this paper, we describe a simple navigation system that is neither multi-
tiered nor AI-based.  The system has been implemented on a Nomad 150 mobile robot
that has demonstrated statistically significant navigation reliability during working hours
in several buildings in the San Francisco Bay Area. In addition to providing navigation
benchmarks based on long-term empirical tests, NaviGates demonstrates implementations
of robot skills that are essential to robot autonomy: robust dynamic obstacle avoidance,
path replanning in case of obstruction, automatic avoidance of dangerous regions such as
staircases, and automatic human-guided mapping for a new building, allowing the robot to
be introduced to a new office building without the need for time consuming manual
mapping. Simplicity itself is an important thesis of this research, as a robot with an
extremely simple control algoritm is shown to perform admirably in a variety of
environments.

1   Introduction
Professor Nils Nilsson’s recent Robot Challenge [Nilsson 1996] states that the time is ripe for
robotics to serve as the integrator of the many components of intelligent and autonomous systems,
from reasoning and navigation to manipulation and vision.  The Robot Challenge will be met only
when a robot functions in an unmodified office building environment, on-the-job, for a full year.

This work addresses one aspect of the Challenge: navigation.  A useful office robot must have
navigation competence; it must be able to navigate an office building with extremely high
reliability.

In this paper, we present a navigation system that meets these needs.  We begin by describing
the hardware to which the NaviGates Project is limited. Then we describe the NaviGates
architecture, followed by a description of the implemented system that achieves navigation
competence.

We establish NaviGates’ reliability by offering experimental results spanning several different
office buildings in the San Francisco Bay Area.  The variety of venues verifies the general nature
of the solution we provide as well as the reliability of the mapping component.

In addition, we hope that the statistically significant nature of our experimental results can serve
to establish a benchmark for indoor robot navigation, serving as a starting point in the community
for improvements in navigation competence.

After presenting empirical results, we close with a discussion of NaviGates’ relationship to
conventional office building navigation robots.
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2   Hardware
The mobile platform used in our work is a Nomad 150 robot from Nomadic Technologies.  It is
controlled by a Macintosh Powerbook 170 running Macintosh Common Lisp v2.0.

2.1 Sensors
The Nomad 150 has 16 sonars in a planar ring configuration around a motorized turret.  The sonars
have a usable range from 12 cm to approximately 250 cm from the robot’s surface, with 2.5 cm
resolution. Additional navigation information is available from internal encoders, which maintain
an approximately accurate picture of x-y location, turret angle and base angle.

2.2 Effectors
The wheels on the base of the robot pivot in place to allow the line of travel to vary even as the
orientation of the robot stays constant.  Additionally, the turret which mounts the sonars rotates
with respect to the main body.  Together, these features allow the robot to maintain a pair of sonars
oriented perpendicular to the hallway it is traversing, a useful behavior for the feature extractor
(see below).

3   Architecture
The system is designed in a layered format. (Figure 1) The layer closest to the robot’s effectors
controls reactive behavior, such as obstacle avoidance, and the final coordination of specified
velocities. The second layer controls sub-goal directed behavior or behaviors which must be
completed before the intended goal can be achieved. The third layer takes the global plan as input
and selects the next subgoal for the layer below. The fourth layer is a planner, which simply
creates a plan based on the map, current position of the robot and goal position. The architecture
also divides the data analysis for each layer into separate data analyzers.

All levels of the architecture can access map information, and the structure of the map reflects
this to a certain degree, containing information relevant to each layer.
Map
Each level of the architecture uses
the Map. The Planner uses the node
links to form a path from the current
node to the desired node. The Node
Handler uses link directions to
determine whether a corner must be
turned, and if so, in what direction.
The Node Navigator uses the
dimension of a node and expected
sonar values while traveling through
the node. The Avoidance and Safety
level uses dimensions of the node to
determine safety zones.
Planner
The planner is a generic potential
field planner through a node network
which provides a list of nodes to
travel in order to get to the desired
node. It could be replaced easily, or
easily directed by a higher, strategic
planner which would determine
tasks.
Node Handler
The node handler takes a list of nodes from the planner and hands them to the node navigator in
order, indicating corners and changes of direction, and several other cases.
Node Navigator
This module takes a given node as input. The Navigator then uses all means possible to traverse
the node, indicating to the Handler when the node has been successfully negotiated.

Figure 1: The Navigates Architecture
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Avoidance and Safety
This level controls obstacle avoidance as the robot attempts to navigate a node and prevents the
robot from drifting too far from the centerline of the node (safety zone). The obstacle avoidance is
not necessarily a formal reactive system.
Feature Extractor
This box takes the raw data of the sensors and determines if a feature has been detected. If it has,
the feature is passed on to the Navigator for potential matching to a mapped feature.
Data Analyzers
These might process either the output of the feature extractor or raw data to produce higher level
data for the higher level layer of the architecture. The implemented system did not use these
sections.

4   Implementation
The robot designed based on this architecture shows remarkable navigational reliability. This is
due to the very simple method of navigation used by the Node Navigator level, and the degree to
which this simple method was refined.

4.1 Map
The purpose of the map is to present a useful representation of the world the robot inhabits.
Therefore the map takes advantage of our target environment to simplify the information it carries.
The map consists of a linked array of nodes, which break down a given floor of a building into
segments of hallway bounded by exit features.  All nodes are represented as rectangular areas. In
an outdoor environment, this would be a severe limitation, but for office navigation it is entirely
acceptable.

The nodes are represented geometrically as a North-South and East-West dimension pair.  This
information is the primary data used for navigation.  Additionally, the node contains four links
(NSEW) to other nodes for planning purposes.  The node also contains expected sonar values for
travel in a given direction. This information is used to give the robot a bias towards travel in
certain areas of the hallway.  Given no necessary obstacle avoidance behaviors, the robot will tend
to stay in the lateral position in the hallway which causes the sonar values to most closely match
the expected sonar values in the map.  Finally, the nodes each contain exit jump information for all
four directions of travel.  These features are used by the Node Navigator for purposes of
localization.

4.2 Planner
The planner is a simple potential field planner that finds paths very rapidly in the map’s 2D
representation.  Currently, the planner optimizes based on the number of nodes traversed; however,
one could easily use the map’s more detailed node features to optimize distance traveled instead.

4.3 Node Handler
The Node handler for this system is also very simple. Given the path information, it assigns the
Node Navigator a node to traverse, and the Navigator signals the Handler when it has successfully
traversed the node. In addition, the Handler is also the level at which problems of blocked nodes
and non-navigable situations need to be identified and the relevant information sent back to the
planner so an alternative route might be planned.

4.4 Feature Extractor
The Feature Extractor of the robot provides accurate longitudinal or "distance traveled"
information at intervals. The robot detects "jumps", or significant changes in sonar values, selects
jumps which probably represent landmarks or "features", and compares these features against
features recorded on the map. By monitoring the 3 o’clock and 9 o’clock sonars (facing directly
right and left, respectively) as the robot moves forward, the robot can determine when there is a
significant value difference between the last value of a sonar and the current value of that sonar.
This difference in the sonar value is referred to as a "jump". Jumps may be caused by branching
hallways, office doors, structural supports, passing pedestrian, sonar error, etc. (Figure 2) For
example, if the sonar reading of the left-facing sonar indicates x cm at time t and x’ cm at time t+1,
the robot examines this jump in the sonar value as a potential "feature". A feature is a repeatably
detectable jump in the position of the hallway walls.

To minimize the probability of false feature detection, we implement a preprocessing filter that
eliminates unreliable sonar values.  There are three cases in which this filter suppresses feature
detection. Of course, since the sonars are discretized into 2.5 cm units, a change of less than 7.5
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cm is attributed to drift in lateral position and not examined as a feature. If the robot detects a
jump which is too far away to be in the same hallway this jump is also ignored. This case might
occur if the robot is traversing one side of a room, and detects a sonar jump on the other side of the
room. And finally, jumps greater than a maximum jump threshold are ignored unless either the last
value of the sonar or the current value of the sonar is greater than the width of the hallway.

The preprocessor filters can be summarized as follows. The value returned by the sonar at time t
we will call x, and the value returned at time t+1 will be x’. The first criteria is that x and x’ differ
by a value greater that the minimum jump threshold, say 5 cm, which is input when the robot
begins to run. The second criteria is that both x and x’ cannot be larger than a maximum hallway
threshold, say 125 cm, which is a
value derived from the maximum
width of the hallway.  Finally, if x
and x’ differ by more than the
maximum jump threshold, say 90
cm, then either x or x’ must be
greater than the hallway threshold,
which was 125 cm.

After a jump passes these criteria
to qualify as a feature, the
tolerances which allow a match of
the detected feature to a mapped
feature are very small. The feature
has to occur within 30 cm,
longitudinally, of its expected
position along the wall of where the
robot expects to detect the feature
for it to be accepted. This 30 cm
space is considered the window in
which the robot is allowed to
localize, and is kept small to avoid
a false localization. The other
strictly observed condition is the
size of the feature. The detected
feature must match the expected
feature within 2.5 cm. That is, if we
use the same terminology from our previous example, the difference between x and x’ must be
within 2.5 cm of the value recorded in the map for the expected feature.

The Feature Extractor was the only Data Analyzer that was needed for the project. The Node
Handler and the Planner had no need of external information, so no separate Data Analyzers for
those levels were constructed.

4.5 Node Navigator
The Node Navigator is a compilation of four different and mostly separate systems. These are the
feature extraction system, the longitudinal positioning system, the lateral positioning system, and a
world-view angle correction system. Each of these systems is to some degree dependent on the
other three systems, but each is directly responsible for a different function of the navigation of the
robot.
Longitudinal Localization
This brings us to the longitudinal localization system. If a feature is detected which is similar to an
expected feature on the map; that is, the feature occurs within the 30 cm window and is of the
appropriate size, the robot localizes its position. The robot localizes by marking its x-y position in
internal encoders and calculating the x-y position of the middle of the hallway. This calculation is
based on its concept of lateral position and the distance it detects from the jump which was used to
localize at that feature. It then keeps track of distance traveled from that point using a projection of
its position onto the center of the hallway using its concept of lateral position. All distances are
measured from the most recent localization.

By using a projection point onto the hallway centerline and calculating distance along this
projection, the exact longitudinal distance travel can be calculated, rather than just distance
traveled from last point to current point which could introduce inaccuracies due to lateral drift
caused by obstacle avoidance.

In contrast to several conventional indoor navigation systems, we limit our feature detector,
using the filtering system described above, to highly reliable features.  When such a feature is

Figure 2: The ’feature’ is the shift of the wall itself. The ’jump’ is the
difference between the values x’ and x.
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detected, the robot is able to localize with confidence, obviating the need for multiple position
estimates.
Lateral Localization
Calculating lateral positioning is more complex. The robot uses several different techniques to
keep track of and update its lateral position, including maintenance of lateral position over
multiple nodes, localization on detected features and mid-node lateral localizations.

The maintenance of lateral position over multiple nodes is non-trivial due to the representation
of the map. When traversing a single node there is no problem, but when going from node to node
there is an adjustment that must be made to the robot’s concept of lateral position if there is a
change in the width of the hallway. We decided to use a variable which represents the distance
between the robot and the center of the node it is traversing. This variable is *goffcenter*. It is
positive if the robot is to the left of the centerline, and negative if the robot is to the right of the
centerline.

When the robot goes from one node into another without detecting a feature, it must update the
*goffcenter* variable based on the current value of *goffcenter* and the expected jump values,
which indicate if the centerline of the new node is different from the centerline of the old node.
With proper calculation, a new and updated *goffcenter* can be obtained.

For example (Figure 3), if the robot is passing from node A to node B, it must make this
calculation. From node A to node B the robot expects to see a positive jump of 15 cm on the left
and 10 cm on the right. Therefore node B is 25 cm
wider that node A, and offset slightly. Given that the
robot is 12.5 cm to the left of the centerline in node
A, it must calculate that it is 10 cm to the left of the
centerline of node B in order to maintain an accurate
representation of lateral position.

The robot also localizes its lateral position when a
feature is detected. This is easily done since it is
assumed that if a feature is detected and matched to a
feature in the map, the sonar values at the time the
feature was detected are an accurate representation of
the distance to the wall; from this the lateral position
can be calculated.

Calculating the lateral position in the middle of the
node is a more difficult proposition, since the robot
must recognize the possibility of obstacles on either
side which would give shorter sonar readings than
the actual distance to the wall. Therefore very strict
filtering is imposed. At several points in the middle
of a node longitudinally, the robot examines the
values of the left and right sonar. If the robot expects to see stable walls on either side of it (i.e. no
doors or open spaces) and if the measured width of the hallway equals the mapped width of the
hallway, then the robot may use these sonar values to localize its lateral position and reset
*goffcenter*.
Safety Zone Maintenance

The robot is given the width of the node it is traversing as a "safe zone". That is, the robot will
not allow itself to drift laterally farther than half the width of the node from the centerline of the
node. Therefore if the absolute value of *goffcenter* exceeds half the width of the hallway, the
robot will not travel farther to the side that it thinks it has drifted, and will proceed only if it
believes that the direction of travel will take it back towards the center of the node it is in. This
behavior allows the robot to avoid staircases, offices, lounges, elevators, and other "dangerous"
areas.
Head Angle Maintenance

Figure 3: As the robot moves from one node to
another, it must update its concept of lateral
position.
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Finally, it is clear that all of these previously described
systems will not operate with any kind of accuracy if the robot
is not oriented directly down the center of the hallway. The
angle difference between the robots encoders and "straight"
down the hallway is reflected by the variable *gheadangle*, and
is shown physically by the orientation of the robots turret. In
order to maintain correct orientation of the robot, there are
three separate systems which calculate the current value of
*gheadangle* or make minor corrections to that value.

The first system of calculation of the *gheadangle* variable is
contained in a function which calculates the angle when the
robot makes a localization of lateral position. (Figure 4) By
calculating the center point of the hallway at two different
longitudinal positions, the robot may calculate the angle of the
corridor which it is traveling. This method of calculating the
head angle tends to be very accurate given accurate lateral
localizations, but in situations where lateral localizations are
sparse, this system won’t function well.

The second system is a monitor of wall drift. If the sonar on
one side varies over time in a monotonic fashion by a small
amount when the robot expects that it is traveling straight
down the corridor, a small correction is added to *gheadangle*.
This system is the only one that will function well when the
robot has open space or variable wall on one side, since this
method only requires one wall to make adjustments, while

lateral localization requires a wall on each side.
The third system is based on the ranges returned by pairs of sonars. Since the sonars of the turret

are spaced at 22.5_ from each other, any head angle error in excess of 11.25_ will result in sonars
adjacent to the 3 o’clock and 9 o’clock positions becoming shorter than the 3 o’clock and 9 o’clock
sonars.  Whenever these adjacent sonars are shorter, *gheadangle* is adjusted slightly. Filters are
added to prevent adjusting the head angle while the robot is avoiding obstacles, which cause short
sonar values.

5   Empirical Data
Empirical testing was conducted to demonstrate the reliable and robust navigation of the system.
The robot was tested in three different buildings for at least five hours in each. None of the code
was altered in any way between buildings or once testing had started. In order to perform these
tests, a map of the building was constructed by the robot with a human guide. All of the maps used
were generated by the robot itself, with user input limited to indicating topological features of the
map, such as loops or dead ends. The empirical tests were then performed by executing a set of
random navigation tasks.

Terms:
  Total Test Time  This figure is given
in hours and minutes
  run One attempt to navigate to a
node
  replan  This is the number of times
the robot found its path obstructed and
was forced to attempt a different route
to the goal node
  impacts  Any contact with the
environment
  failure  Number of times the robot
was unable to achieve its goal node
for any reason

The robot starts with the information of which node it's currently in and the direction it’s facing.
The robot then selects a random node and attempts to navigate to that node. When it achieves that
goal, it selects another random node and cycles again. The process is stopped by the tester as
infrequently as possible, and only for the purpose of hardware difficulty, such as battery
recharging. Continuous run times are usually two hours or more. The robot is not monitored
visually while running, but checked on every 20 to 30 minutes for failure.

All test data was collected during a normal working day. That is, in all the tests performed the
robot had to deal with human traffic and shifting items in hallways. For example, in Building 1,

Figure 4: The robot has traveled in the
direction of vector v, but correctly
calculates the direction of the hallway
as vector w by keeping track of its
lateral position and calculating the

Building                                                  1            2            3
Total Test Time: 5:56 5:35 5:42
Number of runs attempted: 122 79 243
Number of runs completed: 121 79 242
Number of replans: 1 0 2
Avg. run duration in seconds: 148 257 84
Avg. run length in nodes: 28 31 11
Number of impacts: 0 0 0
Number of failures: 1 0 1

Table 1: Empirical results for NaviGates in three office environments
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boxes were deposited on one side of a hallway after the robot had mapped that hallway. The robot
was forced to negotiate a hallway which appeared to it much narrower than the corridor which was
mapped.

It is apparent from the data provided that the success rate of the NaviGates robot is extremely
high: out of 444 attempts, the robot correctly achieved its goal 442 times. This is a success rate of
slightly higher than 99.5%. The two attempts where the robot failed involved situations where the
head angle drifted significantly, and replanning did not help the robot. There were no impacts with
either static or dynamic objects.

6   Related Works
There have been several recent robot navigation systems that have demonstrated success in a
single environment [Gutierrez-Osuna & Luo 1996; Simmons & Koenig 1995; Nourbakhsh et al.
1995].  These robots all use a probabilistic approach (e.g. probabilistic progression and POMDP
methods) to track the set of possible robot positions over time.  This probabilistic approach has
been motivated by the incomplete information that results from inaccurate sensors-- sonar and
encoder data-- and inaccurate world models.

The idea of tracking multiple world states is indeed powerful; it has relevance to much more
than simply robot localization.  In contrast, our approach demonstrates that, even with real-world
sonar and encoder data, there is no need for a multiple state approach in the domain of indoor
robot navigation.  Indeed, we have purposely tested this robot system in an array of office
environments in order to demonstrate that this simple navigation technique can yield a practical
solution.

An interesting approach would be a hybrid architecture that uses probabilistic progression only
when necessary.  For instance, if a robot navigator becomes disoriented due to external events,
probabilistic approaches may allow the robot to eliminate possible states quickly, enabling a
simpler navigation strategy to regain control.  Not surprisingly, this hybrid approach would
resemble the human cognitive discrepancy between the navigation strategy of a well-informed
automobile driver and the strategy used by a lost driver.

Connell’s SSS architecture uses a similar layered system for mobile robot control [Connell,
1992]. The SSS consists of three layers, very similar to the system used here. The SSS does not use
separate data analyzers, however. On the other hand, the SSS system attempts to tackle a more
ambitious task, that of a mobile robot which also determines goal directed behavior and complex
planning. The NaviGates system is simply a point-to-point navigator: given a directive, the robot
will reliably get to the desired position.

Brooks’ subsumption architecture differs dramatically from the NaviGates system [Brooks,
1991]. Specifically, the NaviGates system uses a detailed map which is a representation of the
environment of the robot. Brooks’ creations specifically do not have an explicit representation of
the external world. The NaviGates project demonstrates a simple, state-based architecture that
avoids obstacles and achieves abstract goals with high reliability. Brooks’ creatures react as well as
NaviGates to environmental dynamics, but the subsumption architecture requires significant
programming contortions in order to go to a specific place in the environment.

7   Conclusions
Simplicity itself is one of the theses of this paper.  Our benchmark results demonstrate that
NaviGates can reliably negotiate various new office environments with ease.  Yet, the underlying
system is extremely simple compared with conventional navigation systems.  The AI techniques
that have often been applied to indoor navigation problems are of great value in the context of
high-level problem solving.  However, NaviGates demonstrates that such powerful techniques
need not be applied to the problem of indoor navigation.  Of course, the true judge of these results
will be the future, when we hope that others will publish indoor navigation results that outshine
those of NaviGates.
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