
Abstract

Computing optimal motions for any robot requires a good model,
and a method to compute the optimal motions using that model. As
research is conducted into automating operations in construction,
excavation etc. there arises a need to compute optimal motions for the
hydraulic machines used in these areas. Hydraulic machines disallow
a simple extension of work done previously on optimal motion plan-
ning for electric drive robots.

We have constructed a fast model for a hydraulic excavator(HEX)
that can capture the non-linear actuator interactions. This model can
simulate 75 secs of machine motion in 1 sec. of real time on a Sun
Sparc 20. We use a set of neural networks to approximate the actuator
response functions. We use the HEX model with a simulated annealing
optimization method to compute time-optimal motions for the HEX,
for defined start and end states. We demonstrate the efficacy of the
constructed model and show results from using it in optimal motion
computation. Real testbed results are shown in both cases. This is the
first time that such a result has been reported in the literature for
hydraulic machines.

I. Introduction/Background

Researchers continue to study the problem of optimal
motion planning for robots. Most work to date has focused on
planning optimal motions for electric drive robots, which are
the staple in the manufacturing industry. Focus has lately been
directed towards building robotic versions of hydraulic
machines used in the fields of construction, forestry, and min-
ing. Hydraulic machines are commonly used in these applica-
tions due to their high force-to-weight ratios. Automation of
such machines is practical only if the robotic machine offers
increased productivity or cost benefit. This can be achieved by
performing the tasks optimally to minimize a combination of
performance objectives such as time per bucket load and fuel
consumption.

Optimal motion computation in turn requires a robot model
which defines the constraint surface for the path optimization
problem. A complete robot model consists of an actuator model
and a linkage dynamics model. While the linkage dynamics can
usually be modeled using the well-known Newton-Euler equa-
tions, the actuator model is rather complex and non-linear.
Besides the non-linearities due to the physical process of fluid
flow (as opposed to current flow) there are also non-linearities
due to dynamic energy re-distribution between the different
joints when a multi-joint hydraulic machine reaches a power or
fluid flow limit.

A typical hydraulic machine used in construction and exca-
vation is shown in Fig 1. This machine has four joints and two
independently controlled tracks for movement of the base. The
HEX is powered by an onboard diesel engine. During normal

operation it is quite common for the HEX to be power limited.
In such a condition the available power is dynamically redis-
tributed between the joints. The heavily loaded joints get the
least amount of power while the lightly loaded joints are the
less affected. These non-linearities must be modeled since they
significantly affect machine operation.

Fig. 1.  A Hydraulic Excavator (HEX)

Therefore the two main challenges in optimal motion plan-
ning for hydraulic robots are -

• Constructing fast (computationally inexpensive) models of
the robots that capture the important hydraulic system char-
acteristics, and

• Using the models to compute optimal motions.

In this paper we address the first of the two problems, and
present some preliminary results from an approach for the sec-
ond. We use a 25-ton hydraulic excavator, similar to the HEX
in Fig 1, as the testbed for our work.

We have previously [Krishna 98] described an approach to
constructing computationally inexpensive hydraulic robot
models using locally weighted linear regression. We improve
upon that approach by using neural networks instead of the
regression. Comparison of simulation results with results from
the excavator testbed demonstrate the efficacy of our approach
in modeling the important hydraulic system characteristics.
The excavator model is able to accurately simulate a few sec-
onds of excavator motion at a run-time ratio of 75:1, i.e. simu-
lating 75 secs of excavator motion in 1 sec. on a Sun Sparc 20
workstation. This model is 3 times faster than the previously
reported locally linear regression based model, and 30 times
faster than an analytical model of comparable accuracy that we
have constructed. However the new model is not much more
accurate than the regression-based model. For a description of
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related previous work refer [Krishna 98].

We also present some preliminary optimal motion planning
results for the excavator for a given start and goal configura-
tion. The optimal motions were computed by using the above
described excavator model in a simulated annealing search
approach. We also show results from executing the computed
optimal motions on the testbed. The details of the motion plan-
ning will be the subject of a future paper.

II. Problem description

The testbed used for the work described in this paper is a
Caterpillar 325 HEX, similar to the one in Fig 1. This machine
has two independently actuated tracks which give it the ability
to turn-in-place. The excavation activities are performed using
four joints driven by hydraulic actuators. These are the swing
(Sw), boom (Bm), stick (St), and bucket (Bk) joints.

The four joints only have one degree-of-freedom each. The
Bm, St, and Bk joints move in the plane of the excavator’s arm
and are actuated by linear hydraulic cylinders labelled in Fig 1.
The Sw and the tracks are actuated by separate hydraulic
motors (rotary actuators) not visible in the figure. The tracks
are usually not actuated when excavating; they are periodically
used to reposition the excavator.

Fig 2 shows a simple schematic1 of the hydraulic system of
a CAT 325 HEX. The hydraulic system is driven by two
hydraulic pumps which take low-pressure hydraulic oil from a
tank (at atmospheric pressure) and output high-pressure oil.
The power required to achieve the pressure rise is obtained
from a single engine (not shown) which drives the pumps.

Fig. 2.   Schematic of hydraulic system of a typical hydraulic excavator

The high-pressure oil flows to the hydraulic cylinders, which
in turn actuate the different joints. Each of the two pumps sup-
plies two implement circuits, i.e. one pump supplies the boom
and bucket cylinders while the other supplies the stick cylinder
and swing motor. (For the rest of the discussion the tracks will
not be mentioned since they are not used during excavation.

When they are used, one pump is dedicated to each track
motor).

The flow from the pumps to the cylinders is controlled
through variable orifices shown in Fig 2. If an orifice is com-
pletely closed no flow is supplied to that cylinder and no
motion results. The hydraulic system shown above is an open-
center system. In an open-center system the pumps do not
reduce their output to zero. When no actuator flow is being
demanded, the pumps still output a non-zero flow - between 10
and 20% of maximum flow for the testbed in Fig 1. This “idle”
flow goes to the tank through the bypass (or “center”) passages
shown in the figure. When the actuators are being commanded
to move, the bypass passages slowly close and are fully closed
when maximum velocity is being demanded. The HEX hydrau-
lic system also has non-linear components such as the check-
valves (shown in Fig 2) which prevent oil flow from the cylin-
der to the pump.

The complete solution of the response of even the simplified
hydraulic system in Fig 2 involves the simultaneous solution of
multiple orifice flow equations, multiple compressibility equa-
tions for all the oil volumes, and force balance equations for
each cylinder. A steady state solution would not include fluid
compressibility and other dynamic effects. For a closer look at
the equations involved refer [Krishna 98] and [Medanic 97].

A detailed model of the complete excavator hydraulic sys-
tem has been constructed using a proprietary numerical solver,
and its performance verified using results obtained from the
CAT 325 testbed. This detailed dynamic model takes approx.
100 secs to simulate 1 sec. of a typical excavation cycle when
running on a SUN Sparc20 workstation. A steady state approx-
imation of the same model takes 1 sec. to simulate 2 secs of
excavator motion.

III. Model construction

We are interested in developing a model for use in optimal
motion planning which will capture the broad trends in robot
behavior rather than the subtle effects. It is impossible to accu-
rately characterize each HEX machine for which the optimal
motion planning will be done. Hence, when implementing the
motions computed using the model, it is necessary to use an
approach, such as that suggested by Rowe [Rowe 97], which
will perform a local optimization to adjust the motions for each
machine.

The HEX model can be viewed as a combination of the link-
age dynamic model and the actuator model. The linkage model
refers to the force and torque balance relationships for all the
moving masses of the excavator. The actuator model refers to a
model of the entire apparatus (hydraulic pumps, fluid, valves,
hoses etc.) involved in causing motion/force at the hydraulic
cylinder pistons.

Linkage Model: The HEX is an open chain manipulator and
its linkage dynamics can be written using the formulation com-
mon in the robotics literature ([Craig 89]):

(1)
1A different set of valves come into play when the cylinders move in the

opposite direction. Also, the schematic shown is for the simplest operating
mode - the flow routing is more complex for other operating modes.
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where is the inertia matrix, is the matrix of
coriolis and centripetal terms, and is the gravity vector.
Each joint torque in the torque vector is related to the cor-
responding cylinder force via the transform:

(2)

where is a non-linear function that maps the joint angles
to cylinder extension, i.e.

The vector should include the friction at the joints besides
the cylinder force. However, since we do not wish to accurately
capture the transient response and subtle effects in robot behav-
ior, we neglect joint friction.

Actuator Model: The different orifice areas (Fig 2) are con-
trolled by the position of a control spool. For example, the posi-
tion of the boom control spool determines the boom pump-to-
cylinder, cylinder-to-tank, and bypass areas. Thus a single
spool position can represent all the orifice area variables for a
joint.

From Fig 2 it can be seen that the steady state flow available
to any cylinder/motor is a function of the orifice area of the rel-
evant valves, and the ratio of force loads between the cylinders/
motors competing for flow. For instance, if the boom inlet ori-
fice area were zero, no flow could be supplied to it. To supply
flow to the boom cylinder, the boom spool is shifted and the
area opened. This allows high-pressure oil to flow from the
pump to the cylinder. If the bucket spool were to be shifted
now, the bucket cylinder will “steal” part of the boom’s flow
since the bucket cylinder is lightly loaded as compared to the
boom cylinder. This is true if the total pump flow is inadequate
to supply both cylinders at the same time - if the bucket or
boom orifice areas are only partially open, the distribution of
flows between the cylinders will be different.

It is important to capture these actuator interactions since
their effect can be significant. Our approach to modeling these
interactions is to use a non-linear function approximator to
approximate this functional mapping from the space of inputs
- the spool positions (which determine the different orifice
areas) and cylinder forces, to the outputs - the flow to each cyl-
inder/motor, which in turn determines its steady-state velocity.
We settle for a steady-state actuator model since the transient
response is not significant for cylinder motions much longer
than the cylinder’s time constant, and we need the model for
just such a purpose, i.e. simulating a few seconds of machine
motion.

A total of four neural networks are used - one for each joint
of the HEX. The outputs of the boom, stick and bucket net-
works are steady-state cylinder velocity values, while the
swing output is swing acceleration. The swing is different from
the other joints since it is a rotational joint with a large rota-
tional inertia. It therefore has long acceleration and decelera-
tion phases, unlike the three joints driven by linear cylinders.
The network inputs were chosen after studying the flow routing
schematics for the most complex HEX operating mode, where
the valve arrangement is quite different from that in Fig 2.

In Table 1, SP refers to spool position, F refers to force, I
refers to rotational inertia, Vel refers to velocity and Acc refers
to acceleration.

Data Collection:Training data for the actuator model neural
networks was collected using a slow but complete analytical
machine model2. The slow model was driven through a number
of motion sequences to adequately cover the operating space of
each network. While the spool positions are directly controlla-
ble the cylinder forces are not. The motions were therefore
repeated for a fully loaded bucket, half-empty bucket, and com-
pletely empty bucket to cover the cylinder load dimensions. All
motions were performed slowly to minimize transient effects.

The spool positions have a range of mm. Data was sam-
pled at a resolution of 1mm along the spool position axes. The
cylinder forces were determined by the excavator’s configura-
tion.

Implementation Detail: While training the networks it was
found that splitting up the input space was desirable to allow
the networks to better approximate the functions. Hence, each
joint’s input space was split into 8 non-overlapping parts result-
ing in a total of 4*8=32 networks. The 8 represents the number
of permutations possible with regard to the direction of motion
of the Bm, St, and Bk. Each cylinder can move in or out, result-
ing in 23 permutations, and hence 8 sub-spaces - the Sw is sym-
metric and hence clockwise and ccw rotation are identical. The
network for each sub-space was trained using data that
belonged to it.

Complete Model Construction: The complete excavator
model is constructed by partitioning the actuator dynamics and
linkage dynamics into two separate problems. Instead of solv-
ing them simultaneously they are solved in a serial fashion.
First, the linkage dynamic model (Eqn 1) is used to compute
the forces for a given excavator state. This force is assumed to
remain constant over the time period that the actuator response
is simulated using the learned actuator model. The results of
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Bm St Bk Sw

Input #1 Bm SP Bm SP Bm SP Bm SP

Input #2 St SP St SP St SP St SP

Input #3 Bk SP Bk SP Bk SP Bk SP

Input #4 Sw SP Sw SP Sw SP Sw SP

Input #5 Bm F St F Bk F Sw I

Input #6 Bk F Sw I Bm F St F

Input #7 - - - Sw Vel

Output Bm Vel St Vel Bk Vel Sw Acc

TABLE 1: Inputs/Output for HEX actuator model
networks

2The testbed was not used to collect training data due to our inability to
measure spool positions directly on it. Also, the initial attempt at training used
a large amount of training data which was much easier to collect from a simu-
lation model (which had been verified to match the testbed).
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the actuator simulation are used to compute a new state, which
is used in the linkage dynamic model for force computation as
the cycle continues. The steps are spelled out explicitly below.

• Step #1: The dynamic model of the excavator is used to com-
pute the force loads on the different hydraulic cylinders.

• Step #2: The force loads computed in Step #1 are used with
the input spool commands to compute the resulting cylinder
velocities using the corresponding neural networks. The
swing table uses the current swing velocity to compute the
swing acceleration.

• Step #3: The computed velocities (or accelerations) are inte-
grated to obtain an updated excavator state. (Repeat steps 1
through 3)

IV. Results (Modeling)

Fig. 3.  Bm, St, Bk cylinder velocity plots (Test #1)

Fig. 4.  Bm, St, Bk cylinder position plots (Test #1)

The above approach was used to construct a complete model
of a CAT 325 HEX. The performance of the model was evalu-

ated by comparing it to the performance of the excavator test-
bed. During the first test (Fig 3, Fig 4), the boom, stick and
bucket cylinders were actuated simultaneously to demonstrate
the interaction between them, while the second test (Fig 5, Fig
6) demonstrated interaction between the swing and stick joints.
No digging was involved during any of the tests and therefore
no digging forces at the bucket tip were applied. This was done
since the excavator testbed is not setup to measure digging
forces during interaction with the soil. (The structure of the
model however does allow the model to simulate machine
motions in response to external tip forces if the forces are
known - see Eqn 2).

Fig. 5.  St cylinder, Sw joint velocity plots (Test #2)

The current implementation of the HEX model uses 32 net-
works to cover the entire space for four joints. The model runs
at a run-time:real-time ratio of 75:1, i.e. simulating 75 seconds
of motion requires 1 sec. of computation time on a SUN Sparc
20 workstation.

Fig. 6.  St cylinder, Sw joint position plots (Test #2)

V. Optimal Motion Planning

One application for the machine model developed here is in
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planning the optimal free-space motion between specified start
and end states. It is not possible to use previously developed
approaches like [Shiller 91] since they were developed for elec-
tric drive robots. They assume the ability to control actuator
torque, and the knowledge of actuator torque limit curves. This
concept cannot be transplanted easily to hydraulic machines.
Our optimal motion computation approach involves discretiz-
ing theinput space and then performing a search in that space
to compute the most optimal command sequence. An advan-
tage of using low-level joint controllers is that the closed-loop
HEX (Fig 7) is a lower order system, thus allowing a coarser
discretization of the commandinput space. Theinputsfor the
closed-loop HEX are the joint position commands ( ; ref.
Fig 7). The controllers also help insulate the robot from distur-
bances.

Fig. 7.  HEX with joint position controllers

The HEX testbed has independent PD (proportional-deriva-
tive) joint position controllers for each of its four joints. The
joint controllers are modeled in state-space form as:

(3)

(4)

where, is the position command to the joint,
is a 5 element vector of state variables, is the spool posi-
tion command, and are the
state-space matrices for the controllers. These controllers can-
not be described here in greater detail for proprietary reasons.

Fig. 8.  A typical search vector (V = search vector)

Since we wish to primarily demonstrate the use of this mod-
eling approach in optimal motion computation, we will treat
the optimizer as a black box whose details will be described in
a future paper. The optimizer searches the command space of
the closed-loop HEX (joint position commands) to compute the
set of joint command sequences (ref. Fig 8) that minimize the
objective function. In the examples shown here we only use
time in the objective function. We also have the ability to incor-
porate energy in the objective function.

The optimizer takes four inputs -

• Task specification - an initial and final position

• Robot model - describes a constraint surface for the optimiza-
tion since it embodies the limitations of the robot.

• Task constraints - can include obstacles in the environment
that the robot should avoid, in addition to task specific con-
straints such as - “The robot should not open the bucket until
it reaches the truck”.

• Initial guess - this provides the seed to start the search for the
optimum. We use the Simulated Annealing algorithm to com-
pute the optimum and this algorithm is quite insensitive to the
choice of the initial guess.

VI. Results (Motion Planning)

Fig 9(a) and (b) show the HEX located on a digging bench
with a truck parked behind it in a typical loading configuration.
The terrain shown in the figures is not synthetic. It was created
using a range scanner located on our HEX testbed. We show the
results from two tests -

• Test #3: Starting from position #1 with a loaded bucket
(35000N load) and unloading it in the truck (position #2),

• Test #4: Starting from position #2 with an empty bucket and
returning to the dig face (position #1 - with the bucket open).

Fig. 9.  (a) Position #1
              (b) Position #2

In test #3 we enforce a spillage constraint that penalizes
opening of the bucket prior to reaching the truck. This con-
straint is not enforced for test #4. Both tests have a collision
constraint that severely penalizes collision with the environ-
ment. To demonstrate the insensitivity of the method to the
choice of theinitial guesswe have chosen a motion (not shown)
that collides with the side of the truck.

Fig 10 and Fig 11 show joint motions for tests #3, 4. Each
figure has three traces - the thick line is the motion as demon-
strated by a human expert. Since we do not have a benchmark
of how close we are to the globally optimal way of performing
the tasks, we chose to compare our motions to that of a human
expert operator. The dash-dot traces are the optimized motions
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computed by the optimization system using the model. The
optimization system searches in the command space (position
commands to the position controller) and its results are a series
of position commands. These are not shown in order to reduce
clutter, and also because the relevant result is the HEX motion,
which is used by the optimization to compute the objective
function. The dashed traces are the HEX testbed motions when
the computed optimum is implemented on the testbed. We use
the Denavit-Hartenberg convention ([Craig 89]) for the kine-
matics of the excavator.

Fig. 10.  Results from Test #3 (Position #1 -> Position #2; Loaded
bucket)

Fig. 11. Results from Test #4 (Position #2->Position #1; Empty bucket)

The results for Test #3 are faster than those of the expert
human operator by 1.5 secs, while they match the human in
Test #4. It should be noted that the human expert used for com-
parison is one of the very best, and the results shown are for the
third loading pass in a 6-pass loading operation, where one pass
is defined as transferring a load of soil in the truck and return-
ing for the next dig. In both cases the simulated results agree
very well with the testbed results.

The optimization takes 2 hours when running on four Sun
Sparc20 workstations in parallel. We are not concerned by the

run-time of this initial implementation of the optimization
since we believe that it can be significantly improved by refin-
ing the way the optimization is performed. The important result
we have demonstrated is the feasibility of computing optimal
motions using this search approach for hydraulic machines.
This is the first time that optimal motions have been computed
and demonstrated for a hydraulic machine.

VII. Conclusions

It is possible to approximate the actuator interactions using
sets of linear surfaces instead of a non-linear function approxi-
mator like a neural network. However breaking up the actuator
response surfaces into linear sections will be non-trivial.

The down-side of using a function approximator is the need
to supply it enough data to ensure that the approximated func-
tion is close to the desired function. Neural networks offer a
significant(5X) speed advantage in our case over non-linear
regression-based function approximation techniques. How-
ever, they offer very little control over the function approxima-
tion created, thus requiring more extensive coverage of the data
space.

The simulated annealing algorithm used for the optimization
is very robust against local minima. From closer analysis of our
time-optimization cost surfaces we have ascertained that the
cost surface is pocked with local minima. It is possible that a
different form of the cost function may offer fewer minima, but
we have no way of finding that form. We have tried our method
on 8 different HEX tasks, using time as the objective functions.
The results match or exceed the motions of the human expert.
We have also used energy as the objective function for the same
8 tasks and the results offer interesting insights into the opera-
tions. We believe that this method can act as an important tool
to aid designers in optimizing machine designs.
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