
Learning Automated Product
Recommendations Without Observable

Features: An Initial Investigation

Mary S. Lee and Andrew W. Moore

CMU{RI{TR{95{17

The Robotics Institute

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

April 1995

c
1995 Mary Soon Lee, Andrew W. Moore

1



2



Contents

1 Introduction 8

2 Our Approach 9

3 The Algorithms 10

3.1 Common assumptions : : : : : : : : : : : : : : : : : : : : : : : : 10

3.2 The linfeat algorithm : : : : : : : : : : : : : : : : : : : : : : : : : 11

3.3 The nearest neighbor based algorithm : : : : : : : : : : : : : : : 13

3.4 The regression-based algorithm : : : : : : : : : : : : : : : : : : : 15

4 The Experiments 16

4.1 Test methodology and baseline comparisons : : : : : : : : : : : : 16

4.2 Linear model synthetic datasets. : : : : : : : : : : : : : : : : : : 18

4.3 Star Trek Episode Poll Data : : : : : : : : : : : : : : : : : : : : : 20

4.4 Movie Ratings Data : : : : : : : : : : : : : : : : : : : : : : : : : 23

4.5 Computational Expense : : : : : : : : : : : : : : : : : : : : : : : 27

5 Possible Extensions 27

5.1 Explicit features : : : : : : : : : : : : : : : : : : : : : : : : : : : 28

5.2 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29

6 Related Work 30

7 Conclusions 31

8 Appendix A: Linfeat Implementation Details 32

9 Appendix B: Nearest Neighbor Implementation Details 32

3



4



List of Figures

1 Explanation of regression's method line-�tting Page 15

2 Absolute errors using regression method Page 25

3 Absolute errors using prodav method Page 25

4 Regrets using regression method Page 25

5 Regrets using prodav method Page 25

List of Tables

1 Synthetic 1: 3213 ratings; training set density = 75%; 50 splits : 18

2 Synthetic 2: 15000 ratings; training set density = 75%; 25 splits 19

3 Synthetic 2: 15000 ratings; training set density = 75%; 25 splits 20

4 Star Trek 1: 1055 ratings; training set density = 67%; 50 splits : 21

5 Star Trek 2: 4109 ratings; training set density = 23%; 25 splits : 21

6 Star Trek 2: 4109 ratings; training set density = 23%; 25 splits : 22

7 Movies 1: 56743 ratings; training set density = 42%; 25 splits : : 23

8 Movies 1: 56743 ratings; training set density = 42%; 25 splits : : 24

9 Movies 2: 83305 ratings; training set density = 32%; 20 splits : : 26

10 Movies 2: 83305 ratings; training set density = 32%; 20 splits : : 26

11 Movies 3: 20290 ratings; training set density = 9%; 30 splits : : : 26

12 Movies 3: 20290 ratings; training set density = 9%; 30 splits : : : 27

5



6



Learning Automated Product
Recommendations Without Observable

Features: An Initial Investigation

Mary S. Lee Andrew W. Moore

6413 Howe Street Carnegie Mellon University

Pittsburgh School of Computer Science &

PA 15206 Robotics Institute

Pittsburgh, PA 15213

mslee@cs.cmu.edu awm@cs.cmu.edu

ABSTRACT

It is appealing to imagine software packages that provide personally tailored product

recommendations to a consumer. One way to predict the rating of a particular product

by a particular consumer is through inference from a database of previous ratings by

many consumers of many products. Such a database consists of triplets of the form:

(product-identi�er, consumer-identi�er, rating)

Generally such databases will be sparse, but nevertheless we may hope to derive consid-

erable predictive information from them. A number of groups have begun developing

distributed systems to collect and predict consumer preferences. Some have put sig-

ni�cant e�ort into implementation issues to do with user interfaces, and the gathering

and communicating of data via Internet and Usenet. Rather than launching into the

development of a distributed systhem to address a particular consumer preference do-

main, our goal is to �rst understand the computational and statistical nature of the

general problem. In this paper we develop two new algorithms for this purpose and also

relate them to a nearest-neighbor based algorithm of [Resnick et al., 1994]. We then

examine their predictive perfomance and quality of recommendations on a number of

synthetic and real-world databases. The real-world results suggest that a signi�cant

improvement can be obtained over simply recommending the most popular product in

some but not all domains. At the end of the paper we discuss computational expense

on large databases, the use of explicit features, and our ideas for improved inference

algorithms.
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1 Introduction

The ability to predict consumer preferences would be of great bene�t in a wide

variety of domains. Such a tool could be used to help consumers select which

video to rent, which book to read, which restaurant to eat at, or which Usenet

articles to sample. Recommendations could be tailored to the individual con-

cerned, based on their own past preferences and the wider database of other

consumers' preferences. In this paper we describe and compare three memory-

based learning algorithms to make such predictions. We present results both

for synthetic data and real data sets, including a database with a total of over

eighty thousand movie ratings.

Our algorithms are based on the hypothesis that there are a set of hidden

features that determine people's ratings of various products. Given a database

of known consumer ratings, we can try to infer the underlying features directly

or indirectly. Assume there are Np products, each identi�ed by an integer

i 2 f1; : : : ; Npg; Nc consumers, each identi�ed by an integer j 2 f1; : : : ; Ncg;

and a partial set of known ratings, Ri;j, where Ri;j is the rating of product i by

consumer j. Such a database has an unconventional form from the perspective

of traditional regression and machine learning approaches, which usually map a

set of features onto outputs.

The paper discusses three algorithms for learning in such domains. The

�rst algorithm, linfeat, uses the direct approach to prediction. It makes the

assumption that consumer preferences are determined by a linear relationship:-

Ri;j =
nX

q=1

Pi;qCj;q + i.i.d. noise (1)

where n is the number of hidden features, Pi;q is the qth feature of the ith prod-

uct, and Cj;q is the qth feature of the jth consumer. Thus a consumer's rating of

a product is a weighted sum of that product's features, with the weights being

the model of that consumer's underlying preferences. As a matrix equation,

R = PCT + noise. The linfeat algorithm �nds the best �t for the two feature

matrices, C and P . These can then be used to predict any unknown ratings.
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Our second and third algorithms use an indirect approach and do not assume

a linear model. The second algorithm is very similar to the methods described

in [Resnick et al., 1994, Shardanand and Maes, 1995]. These indirect approaches

look for individuals whose past ratings have been in close agreement, and then

assume that these individuals will agree on future ratings. Given a large enough

pool of people, it seems reasonable to expect that for any individual you will be

able to �nd other people whose opinions are similar. One theoretical drawback

is that once a group of like-minded individuals have all sampled every product

that any of them liked, it is unclear which products to try next. One theoretical

advantage of these methods is that they make very few assumptions about the

underlying model.

Next we describe our general approach, followed by descriptions of the al-

gorithms we have currently tested, before progressing to empirical results. We

then suggest how this initial work could be extended, and discuss related work.

2 Our Approach

A number of groups have begun developing distributed systems to collect and

predict consumer preferences, including [Shardanand and Maes, 1995] for the

music domain, [Resnick et al., 1994] and [Lang, 1994] for the Usenet domain,

and [Hill, 1994] for the video domain. Some of these groups have put signi�cant

e�ort into implementation issues to do with user interfaces, and the gathering

and communicating of data via Internet and Usenet.

The ability to analyze and predict consumer preferences will be increasingly

valuable in coming years. Potential applications include video-on-demand, TV

remote controllers with a trainable \channel-I'll-want-to-watch" button, market-

ing, book recommendations, and restaurant selection. Rather than launching

into the development of a distributed system to address a particular consumer

preference domain, our goal is to �rst understand the computational and statis-

tical nature of the general problem. We are working to answer questions such

as:
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� How accurate can we hope to be for general predictions on real world data?

Our initial results{and those reported in [Shardanand and Maes, 1995]{

o�er perhaps a twenty percent improvement over the naive algorithm that

merely looks at the average popularity of products. We hope and expect

that further improvement is possible. If not, it is important to be fully

aware of the limitations of the data.

� Can we give more reliable predictions for some products? Even if learning

algorithms are unable to produce accurate general predictions, they may

be able to give highly reliable predictions for a subset of products. It

would be especially advantageous if the algorithms could automatically

provide statistical bounds on the accuracy of individual predictions.

� To what extent does the use of explicit features change performance?

Incorporating a small number of explicit features, such as the genre of

a movie, might be su�cient to increase performance notably.

� How many ratings do we need from consumers? Which ratings help most?

It should be harder to predict the preferences of a consumer who has only

rated a few products. We would like to know how performance changes

with the number of ratings from a user. We would also like to know

which products' ratings would most improve our model, so that we can

recommend the best experiments.

To begin answering these and other questions, we decided to test the statis-

tical performance of a variety of algorithms on pre-existing databases.

3 The Algorithms

3.1 Common assumptions

In each of the algorithms we begin with the hypothesis that consumers' prefer-

ences depend on the values of certain product features. These features can be
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such things as whether a music album is jazz or country, or whether the main

con
ict in a movie is resolved by violence.

The underlying features are never given to us explicitly (see Section 5 for

possible extensions to this work where some features are given explicitly). In-

stead the algorithms use a database that contains simple numerical ratings:

consumer j tried product i and gave it a rating of Ri;j. The database is incom-

plete: not every consumer has already rated every product. Our goal is to learn

a model of people's preferences. If we achieve this, we can predict the miss-

ing ratings. These predictions could then be used to give individually tailored

advice to people|recommending products they are predicted to like, warning

them of products they are predicted to hate.

3.2 The linfeat algorithm

The linfeat algorithm makes the assumption that consumers' preferences are

determined by a linear model, where a consumer's rating of a product is a

weighted linear sum of that product's features. As given above:-

Ri;j =
nX

q=1

Pi;qCj;q + i.i.d. noise (2)

where Ri;j is the rating of product i by consumer j, P is the product feature

matrix, C is the consumer feature matrix, and n is the number of features.

Given the number of features to use, n, and a partial set of known ratings,

Ri;j, the linfeat algorithm �nds the best �t for the feature matrices, C and P .

This involves �nding a minimum of the sum-squared-error on the training set

X
Ri;j2Training set

 
Ri;j �

nX
q=1

Pi;qCj;q

!2

(3)

and as such gives a maximum likelihood estimator of the hidden features subject

to the i.i.d. gaussian noise assumption.

The algorithm proceeds by iteratively re�ning its estimates of C and P using

singular value decomposition. We now explain one step in this procedure. Sup-

pose we are trying to �nd a new estimate for P given our current estimate of C.
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Consider product k. Assume it has been rated by a subset consisting of m con-

sumers. Denote the identi�ers of those consumers who have rated product k as

fjk1 ; j
k
2 : : : j

k
mg. The ratings they gave are, respectively, fRk;jk

1

; Rk;jk
2

; : : :Rk;jkm
g.

We wish to solve for the product features Pk;1; Pk;2 : : : Pk;n, where n is the

number of features, using the equations

Rk;jk
1

= Pk;1Cjk
1
;1 + Pk;2Cjk

1
;2 + : : :+ Pk;nCjk

1
;n

Rk;jk
2

= Pk;1Cjk
2
;1 + Pk;2Cjk

2
;2 + : : :+ Pk;nCjk

2
;n

...

Rk;jkm
= Pk;1Cjkm;1 + Pk;2Cjkm;2 + : : :+ Pk;nCjkm;n

This is a system of m linear equations in n unknowns. Typically, we expect

the number of consumers m who have rated a product to be far greater than

the number of features n. In general there will be no exact solutions to these

equations, but we can use singular value decomposition to yield the least squares

solution for Pk;1; Pk;2 : : : Pk;n.

We do this for each product k 2 f1; 2; : : :; Npg in the database in turn, and

amalgamate the results to yield the product feature matrix, P .

A similar procedure is used to derive a new estimate of C given the current

estimate of P . The algorithm as a whole is summarized next. For further details

see appendix A.

1 Initialize the feature matrix, C. The algorithm should not be sensitive to

the initial values (we set them pseudo-randomly in the range [0; 1] with

the �rst column values explicitly set to 1).

2 Set quit := FALSE.

3 Loop until quit = TRUE:

3.1 Given the known ratings, R, and the current value for C, use sin-

gular value decomposition to �nd the best �t for the matrix P .
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3.2 Given the known ratings, R, and the current value for P , use sin-

gular value decomposition to �nd the best �t for the matrix C.

3.3 If and only if C and P have converged, set quit := TRUE. Con-

vergence could be determined in several ways. Currently we stop

when the RMS discrepancy between the known ratings and the val-

ues predicted for those ratings by C and P changes by less than a

small value, epsilon, between one iteration and the next.

4 Return the �nal estimates ofC and P , and use them to make any requested

predictions.

The algorithm converges very quickly because of the huge jumps provided

in feature-space by the alternate steps of maximizing the likelihood of P then

C.

3.3 The nearest neighbor based algorithm

In the nearest neighbor based algorithm we assume that there are groups of

individuals with similar tastes. These tastes may be complex functions of many

product features, but we do not attempt to solve for the features directly. In-

stead when we wish to predict an individual's rating of a product, we look for

other people whose past ratings are in good agreement with this individual's

ratings. We call these people the individual's nearest neighbors. Our prediction

is then just a weighted sum of the means-adjusted nearest neighbor ratings for

the product concerned. This algorithm is very similar to the methods described

in [Resnick et al., 1994, Shardanand and Maes, 1995].

We would expect prediction accuracy to improve signi�cantly as the number

of consumers in the database increases (and thus the probability of �nding

people with similar tastes likewise increases).

We now summarize the algorithm to predict consumer j's rating of product

k.

1 Let fjk1 ; j
k
2 : : : j

k
mg be the set of other consumers who have (a) rated prod-

uct k and (b) rated at least MIN-COMMON products that consumer j
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has rated.

2 For each j0 2 fjk1 ; j
k
2 : : : j

k
mg:

2.1 Let common(j; j0) be the set of products that have been rated both

by j and by j0.

2.2 Compute �j and �2j respectively as the sample mean and variance

of the ratings of consumer j over all the products in common(j; j0).

De�ne �j0 and �2j0 similarly.

2.3 Compute the Pearson correlation coe�cient between the common

ratings of consumers j and j0:

�j;j0 =
X

i2common(j;j0)

(Ri;j;��j)(Ri;j0;��j0)q
�2j�

2
j0

(4)

4 Provided fjk1 ; j
k
2 : : : j

k
mg has at least one member (i.e. m > 0) , return the

prediction:

prediction =

X
j02fjk

1
;jk
2
:::jkmg

(weight(�j;j0)(�j;j0 + (Rk;j0;��j0;j)))

X
j02fjk

1
;jk
2
:::jkmg

weight(�j;j0)
(5)

where

weight(x) =

8<
: exp(K2 log(x)) if x > 0

0:0 if x � 0
(6)

and K2 is a positive number, and �j;j0 is the mean value of j's ratings

over those products that both j and j0 have rated.

5 If fjk1 ; j
k
2 : : : j

k
mg has no members at all, return the average of all j's ratings.

See appendix B for further details.

Note that while the nearest neighbor algorithm may perform adequately on

many real datasets, it contains a theoretical weakness. We judge the closeness of

two people by the correlation between their ratings, and then make predictions

biased toward the ratings of a consumer's nearest neighbors. Yet in theory two
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consumers' ratings may be perfectly correlated even if their ratings are wildly

di�erent. For instance, one consumer might always give a rating precisely �fty

times greater than another individual, yielding a correlation coe�cient of 1.0

but producing a very unhelpful contribution toward the prediction. Our next

algorithm addresses this problem.

3.4 The regression-based algorithm

This algorithm is closely related to the nearest neighbor based method. It

arises from the observation that the nearest neighbor method can sometimes

make poor predictions even when individuals' ratings are highly correlated.

Given two individuals, the regression-based algorithm solves for the best-�t

linear relationship between the two consumers' ratings. We can then directly

predict the value of one consumer's ratings from the other consumer's ratings,

and use this direct estimate in our weighted sum.

As before, de�ne common(j; j0) as the set of products rated by both j and

j0. We will model the relation between the ratings of j and j0 by a line passing

through the centroid of their common ratings at angle �j;j0 to the horizontal, as

in Figure 1.

theta

i=4

i=3

i=2

i=1

R 2,j’

2,jR

Figure 1: A simple exam-

ple in which users j and

j0 share four ratings. The

diagram shows the rat-

ings on a 2-d plane. A

line through the centroid

(the square) is placed at

an angle �j;j0 to minimize

the sum of squared per-

pendicular errors.

The least squares �t (in a perpendicular errors sense) of the line has, as its
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direction, the principal component of the ratings data. It can be veri�ed that

tan(2�j;j0) = 2

X
i2common(j;j0)

(Ri;j � �j;j0) (Ri;j0 � �j0;j)

X
i2common(j;j0)

�
(Ri;j � �j;j0)2 � (Ri;j0 � �j0;j)

2
� (7)

where �j;j0 is the sample mean of j's ratings of the products in common(j; j0),

and �j0;j is the sample mean of j0's ratings of the products in common(j; j0).

To predict Rk;j, the rating of product k by consumer j, interpolation from

our linear model gives:

prediction using consumer j0 = �j;j0 +
Rk;j0 � �j0;j

tan �j;j0

(8)

Thus, to predict j's rating of product k, the regression-based algorithm is

identical to the nearest neighbor algorithm, except for step 4 which now has1:

prediction =

X
j02fjk

1
;jk
2
:::jkmg

weight(j �j;j0 j)

�
�j +

Rk;j0 � �j0;j

tan(�j;j0)

�
X

j02fjk
1
;jk
2
:::jkmg

weight(j �j;j0 j)
(9)

To prevent ridiculous predictions, we clip our predictions to lie within the mini-

mum and maximummarks in the known ratings. In the pathological case where

tan(�j;j0) = 0:0 we return the average of all j's ratings as our prediction.

Note that the regression-based algorithm can make equally good use of strong

negative correlations as it can of strong positive correlations.

4 The Experiments

4.1 Test methodology and baseline comparisons

We tested the three algorithms on a variety of datasets, ranging from synthetic

datasets to a movie database with over eighty thousand movie ratings. To assess

1Instead of weighting according to correlation, we could now weight according to sum-

squared errors, or the width of the con�dence interval on the estimate of �. Future work will

investigate this.
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performance on a given dataset, we randomly split the data into a training set

and a test set2. Each algorithm in turn is presented with the ratings in the

training set (consumer j gave mark m to product i). Having seen the training

data, the algorithm then predicts the values of each of the ratings that has been

withheld in the test set.

Each algorithm was run for a few values of its main parameter, and the re-

sults shown here are for the best setting found. For linfeat we varied the number

of features that it attempted to �nd. For the nearest neighbor and regression-

based methods we varied the value of K2, the parameter that determines how

much the weights should be biased toward highly correlated individuals. See

Section 5 for a discussion of how cross-validation could be used to tune these

parameters autonomously.

In order to provide a baseline for comparison, we also ran the experiments

using two very crude prediction methods. The �rst, globalav, predicts the same

value for every single rating, that value being the mean of all the ratings in

the training set. The second method, prodav, predicts the same value for every

rating of a particular product, that value being the mean of all the ratings in

the training set for that particular product.

Clearly we would hope that our learning algorithms would outperform glob-

alav and prodav. In addition, the di�erence between the errors for globalav

and prodav gives us a rough feel for how much improvement we can hope to

make. We would expect real world data for such things as movies to contain

some products that are widely regarded as better than others. If this is so, then

prodav should have lower errors than globalav. If not, or if prodav's errors are

only slightly lower than globalav's, then our intuition about real world data may

be incorrect|perhaps consumers' ratings are too inconsistent to be helpful in

predicting their future likes and dislikes.

2When doing the random split, we �rst ensure that each consumer and product has a few

ratings in the training set (randomly selected from all their ratings). This prevents us having

to predict ratings for a product that no one in the training set has sampled, or having to

predict the opinions of a consumer who has no ratings in the training set.
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Method Mean absolute Method - Prodav Method - Regression

error (95% con�dence interval) (95% con�dence interval)

Linfeat 0.26 [-0.191, -0.185]
p

[-0.029, -0.026]
p

Nearest Neigh. 0.29 [-0.164, -0.159]
p

[-0.0017, 0.0005] NS

Regression 0.29 [-0.164, -0.158]
p

(same)

Prodav 0.45 (same) [0.158, 0.164] X

Globalav 0.62 [0.166, 0.174] X [0.327, 0.335] X

Table 1: Synthetic 1: 3213 ratings; training set density = 75%; 50 splits

4.2 Linear model synthetic datasets.

First we present the results for synthetic data generated in accordance with a

linear model:

Ri;j =
nX

q=1

Pi;qCj;q +Eij (10)

where Ri;j is the rating of product i by consumer j, n is the true number of

features, Eij is a gaussian error term.

This is the same model that the linfeat algorithm assumes, and so we expect

linfeat to perform well. Table 1 shows the results for a dataset of 51 products

and 63 consumers, generated using three features and gaussian noise with � =

0:3; the true ratings range from -2.0 to +2.0. As expected linfeat performs

best, with a mean absolute prediction error of 0.26 (this is the mean averaged

over the predictions for every withheld rating in each of �fty random splittings

of the source data into a test set and a training set). The nearest neighbor

and regression methods perform nearly as well, both giving a mean absolute

prediction error of 0.29. Prodav performs markedly worse, and globalav lags

behind all the others.

Note that the results also list 95% con�dence intervals on the di�erence

in performance between each method and prodav, and between each method

and the regression algorithm. For clarity, we have added a tick if the method

is better at the 95% con�dence level, a cross if it is inferior, and NS if the

performance di�erence is insigni�cant. Thus on this dataset we were unable

to reliably distinguish which of nearest neighbor and regression performs best.
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Method Mean absolute Method - Prodav Method - Regression

error (95% con�dence interval) (95% con�dence interval)

Linfeat 0.17 [-0.309, -0.304]
p

[-0.036, -0.034]
p

Nearest Neigh. 0.20 [-0.271, -0.267]
p

[0.0027, 0.0034] X

Regression 0.20 [-0.274, -0.270]
p

(same)

Prodav 0.47 (same) [0.270, 0.274] X

Globalav 0.66 [0.185, 0.190] X [0.457, 0.461] X

Table 2: Synthetic 2: 15000 ratings; training set density = 75%; 25 splits

But we can see that linfeat, nearest neighbor, and regression are all signi�cantly

better than prodav.

Table 2 shows the results for a dataset of 150 products and 100 consumers,

generated using four features and with gaussian noise of � = 0:2; the true ratings

range from -3.2 to +2.7. As before linfeat performs best, closely followed by

nearest neighbor and regression.

So far we have assessed performance by the mean absolute errors over the test

sets. Other measures might be more appropriate in some domains. For instance

in a commercial application we might only need to reliably recommend a few

products that someone will enjoy. This may be easier than making arbitrary

predictions. Suppose that for each consumer we want to predict the test-set

product they will most enjoy. We can compare the products that our methods

predict with the true preferred product. We de�ne the regret to be the di�erence

between the ratings of the recommended product and the true optimal test-set

product.

For each algorithm, we predicted the products that each consumer would

most enjoy. Table 3 shows the resulting mean regrets, together with con�dence

intervals on the di�ering regrets between methods. The results are averaged

over all the consumers in each of twenty-�ve test-sets for the same synthetic

data as in Table 2. Once again linfeat does best, with a mean regret of just

0.07, and again nearest neighbor and regression perform nearly as well. But

this time the disparity between these three methods and prodav and globalav

has been magni�ed. Prodav's mean regret is 0.72, over ten times that of linfeat,
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Method Mean regret Reg/Method - Reg/Prodav Reg/Method - Reg/Regression

(95% con�dence interval) (95% con�dence interval)

Linfeat 0.07 [-0.67, -0.62]
p

[-0.03, -0.02]
p

Nearest Neigh. 0.09 [-0.65, -0.60]
p

[-0.003, 0.002] NS

Regression 0.09 [-0.65, -0.60]
p

(same)

Prodav 0.72 (same) [0.60, 0.65] X

Globalav 1.60 [0.84, 0.94] X [1.47, 1.55] X

Table 3: Synthetic 2: 15000 ratings; training set density = 75%; 25 splits

and globalav's mean regret is 1.60. (Globalav's predictions are the same for

every product, so when asked to make a recommendation it just picks a random

product.) The results for linfeat, nearest neighbor, and regression demonstrate

that a good model of the data can lead to excellent recommendations.

The experiments on synthetic data show how the algorithms can perform in

theory. If real data followed this type of linear model, linfeat would be ideal.

In addition to producing the most accurate predictions, it was also the fastest

algorithm. In the following two sections we show how the algorithms performed

on real data, �rstly on sets of up to four thousand Star Trek episode ratings,

and then on databases of up to eighty thousand movie ratings.

4.3 Star Trek Episode Poll Data

We now present results based on people's ratings of Star Trek: The Next Gen-

eration and Star Trek: Deep Space Nine television episodes. The source data is

collected by Joe Reiss, who solicits votes from readers of the Star Trek Usenet

groups. We looked at the performance on two subsets of the raw data, the �rst

a relatively small subset selected to have a high density of ratings. This sub-

set contains 1055 votes from thirty-six people on thirty-three episodes, which

is 88.8% of the maximum possible number of ratings for this size group. The

ratings were normalized to lie in the range [0; 10]. Table 4 shows the results.

On this subset of the data, the regression algorithm has the lowest mean

error of 0.95, followed by nearest neighbor and linfeat. Prodav has a mean error

of 1.10 (about 15% higher than regression). As expected, globalav does worst
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Method Mean absolute Method - Prodav Method - Regression

error (95% con�dence interval) (95% con�dence interval)

Linfeat 1.03 [-0.07, -0.05]
p

[0.07, 0.10] X

Nearest Neigh. 1.00 [-0.11, -0.09]
p

[0.04, 0.06] X

Regression 0.95 [-0.16, -0.14]
p

(same)

Prodav 1.10 (same) [0.14, 0.16] X

Globalav 1.38 [0.27, 0.29] X [0.41, 0.44] X

Table 4: Star Trek 1: 1055 ratings; training set density = 67%; 50 splits

Method Mean absolute Method - Prodav Method - Regression

error (95% con�dence interval) (95% con�dence interval)

Linfeat 1.10 [-0.12, -0.10] p [0.01, 0.03] X

Nearest Neigh. 1.09 [-0.13, -0.11] p [0.002, 0.016] X

Regression 1.09 [-0.14, -0.12] p (same)

Prodav 1.21 (same) [0.12, 0.14] X

Globalav 1.47 [0.25, 0.27] X [0.37, 0.40] X

Table 5: Star Trek 2: 4109 ratings; training set density = 23%; 25 splits

with a mean error of 1.38.

Table 5 shows the results for a larger group: 4109 ratings from 141 people

on 94 episodes (31% of the maximum possible number of ratings). This time

the mean errors for linfeat, nearest neighbor, and regression are all very similar

at 1.09 to 1.10. Prodav's error is about 10% greater at 1.21, and globalav has

a mean error of 1.47.

These results show that linfeat, nearest neighbor, and regression all out-

perform the simple prodav method on at least some types of real world data.

Nonetheless the improvement over prodav is lower than we might have initially

expected. Moreover the performance di�erence between prodav and globalav

is also lower than we might have anticipated. Globalav predicts a constant

value for every single rating, and yet its mean error is only 21% to 25% higher

than prodav's, which predicts the average of the known ratings for the episode

concerned.

Each week people send in their votes on the latest Star Trek episode to add
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Method Mean regret Reg/Method - Reg/Prodav Reg/Method - Reg/Regression

(95% con�dence interval) (95% con�dence interval)

Linfeat 0.59 [-0.02, 0.04] NS [-0.07, 0.02] NS

Nearest Neigh. 0.58 [-0.03, 0.02] NS [-0.07, -0.02]
p

Regression 0.62 [0.005, 0.071] X (same)

Prodav 0.58 (same) [-0.071, -0.005]
p

Globalav 1.67 [1.02, 1.17] X [0.97, 1.14] X

Table 6: Star Trek 2: 4109 ratings; training set density = 23%; 25 splits

to the database. Perhaps consumers' votes are inherently noisy, re
ecting their

own mood as much as an episode's quality (though note that the algorithms

performed well on synthetic datasets in the presence of appreciable noise). Or

perhaps some consumers' average marks drift over time as they become more

or less generous, without this trend matching any underlying change in the

episodes. Or perhaps there is information in the data that these algorithms fail

to exploit.

As with the synthetic datasets, we also looked at the regrets for the Star Trek

data (the regret is the di�erence between the rating of the test-set episode that

a method predicts a consumer will most enjoy and the true optimum). Table 6

shows the regrets for the larger Star Trek subset. While globalav now does

much worse than the other methods, the other four algorithms all perform very

similarly. The mean regret for these four algorithms is substantially lower than

their average prediction error: they are better at recommending a single episode

that an individual will like than they are at predicting that individual's general

tastes. It is interesting that prodav's regret is as low as any other method's.

This implies that there is a strong popular consensus on the best episodes. In

order to recommend which episode someone will most enjoy, we only need to

recommend the episode with the highest average rating.

In another experiment, not described here, we preprocessed the Star Trek

ratings, replacing each consumer's raw ratings by their normalized ranked val-

ues. The results were similar to those shown here.

There are many potential application domains for consumer preference pre-
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Method Mean absolute Method - Prodav Method - Regression

error (95% con�dence interval) (95% con�dence interval)

Linfeat 1.08 [-0.199, -0.191]
p

[0.017, 0.023] X

Nearest Neigh. 1.06 [-0.218, -0.213]
p

[-0.002, 0.002] NS

Regression 1.06 [-0.218, -0.213]
p

(same)

Prodav 1.27 (same) [0.213, 0.218] X

Globalav 1.50 [0.231, 0.234] X [0.446, 0.451] X

Table 7: Movies 1: 56743 ratings; training set density = 42%; 25 splits

diction, ranging from a computer that suggests which video to rent, to an intel-

ligent newsreader that recommends which Usenet articles to browse. In many

of these domains we would expect a larger pool of ratings. In the next section

we look at results based on sets of up to eighty thousand movie ratings.

4.4 Movie Ratings Data

In this section we show the results of applying our algorithms on a database

of movie ratings compiled by Col Needham from an ongoing poll of Usenet

readers. Almost ten thousand people have sent in their votes, and the full

database contains more than fourteen thousand movies and over three hundred

thousand ratings. Each rating is an integer between one and ten.

We �rst tested our algorithms on a relatively dense subset of this source data:

a group of 262 people and 390 movies selected so that no consumer had rated

fewer than a hundred of the movies, and no movie had fewer than a hundred

votes. Table 7 shows the results for the mean absolute prediction errors over the

whole test set. Table 8 shows the results for the mean regret when recommending

the movie someone will most enjoy. We see that linfeat, nearest neighbor and

regression all perform very similarly, except that linfeat's regrets are about eight

percent higher than the other two methods'. All three methods do signi�cantly

better than prodav, whose predictive errors and regrets are both about twenty

percent higher than for either nearest neighbor or regression. Globalav, as

expected, comes a poor �fth.

As with the Star Trek data, it is perhaps surprising that globalav's predic-
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Method Mean regret Reg/Method - Reg/Prodav Reg/Method - Reg/Regression

(95% con�dence interval) (95% con�dence interval)

Linfeat 1.23 [-0.19, -0.10]
p

[0.05, 0.13] X

Nearest Neigh. 1.15 [-0.26, -0.20]
p

[-0.01, 0.03] NS

Regression 1.14 [-0.26, -0.21]
p

(same)

Prodav 1.38 (same) [0.21, 0.26] X

Globalav 3.06 [1.63, 1.73] X [1.86, 1.97] X

Table 8: Movies 1: 56743 ratings; training set density = 42%; 25 splits

tion error isn't still greater. Despite predicting the same mark every single time,

globalav's mean prediction error is only 18% higher than prodav's. Either the

data is noisier than we might have hoped, or there is comparatively little con-

sensus on the quality of �lms. Given that prodav only improves over globalav

by eighteen percent, it is encouraging that the other three algorithms achieve a

further twenty percent improvement on prodav.

Figures 2 and 3 give the distribution of the absolute prediction errors for

regression and prodav on this dataset. The histograms clearly show that prodav

has a higher percentage of signi�cant errors.

Figures 4 to 5 give the distributions of the regrets on this dataset. Prodav

has slightly fewer low regrets of value 0 and 1, and slightly more large regrets

of value 6 or more.

Tables 9 and 10 show the results on a second subset of the movie database.

This time the subset was selected so that every consumer in the group had rated

at least two hundred of the movies, but movies could have as few as thirty-four

ratings. The total number of ratings in the set was 83305. The results are

similar to those just discussed, except that this time linfeat's regret is further

behind that of nearest neighbor and regression.

We have now seen that our methods behave reasonably well on real world

datasets selected to have a generous number of ratings for each product and

each consumer. Tables 11 and 12 show some results of what happens when

we relax these constraints. They are based on a subset of the movie database

where some movies have just nine ratings, and where some people have only
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Explaining the statistics for: REGRESSION

"Abs. errors of the REGRESSION_PREDICTIONS data (column number 5)

REGRESSION mean is 1.05606

REGRESSION sdev is 0.929244

REGRESSION 95% conf. int. [ 1.05301 , 1.05912 ]

REGRESSION min 0 , max 8.74593 , number points 354650
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Figure 2: Absolute errors using regression

Explaining the statistics for: PRODAV

"Abs. errors of the PRODAV_RATINGS data (column number 7)"

PRODAV mean is 1.27142

PRODAV sdev is 1.05112

PRODAV 95% conf. int. [ 1.26796 , 1.27488 ]

PRODAV min 0 , max 7.68 , number points 354650
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Figure 3: Absolute errors using prodav

Explaining the statistics for: REGRESSION

"Regrets advising using REGRESSION_PREDICTIONS (col. number 5)"

REGRESSION mean is 1.14155

REGRESSION sdev is 1.33259

REGRESSION 95% conf. int. [ 1.10927 , 1.17382 ]

REGRESSION min 0 , max 9 , number points 6549
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Figure 4: Regrets using regression

Explaining the statistics for: PRODAV

"Regrets advising using PRODAV_RATINGS (col. number 7)"

PRODAV mean is 1.37838

PRODAV sdev is 1.5939

PRODAV 95% conf. int. [ 1.33977 , 1.41698 ]

PRODAV min 0 , max 9 , number points 6549
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Histogram Frequency

Figure 5: Regrets using prodav
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Method Mean absolute Method - Prodav Method - Regression

error (95% con�dence interval) (95% con�dence interval)

Linfeat 1.09 [-0.188, -0.179]
p

[0.025, 0.033] X

Nearest Neigh. 1.07 [-0.211, -0.207]
p

[0.002, 0.004] X

Regression 1.07 [-0.214, -0.210]
p

(same)

Prodav 1.28 (same) [0.210, 0.214] X

Globalav 1.52 [0.243, 0.248] X [0.454, 0.460] X

Table 9: Movies 2: 83305 ratings; training set density = 32%; 20 splits

Method Mean regret Reg/Method - Reg/Prodav Reg/Method - Reg/Regression

(95% con�dence interval) (95% con�dence interval)

Linfeat 1.35 [-0.10, -0.01] p [0.12, 0.21] X

Nearest Neigh. 1.22 [-0.22, -0.14] p [0.01, 0.07] X

Regression 1.18 [-0.26, -0.18] p (same)

Prodav 1.40 (same) [0.18, 0.26] X

Globalav 3.21 [1.74, 1.86] X [1.96, 2.09] X

Table 10: Movies 2: 83305 ratings; training set density = 32%; 20 splits

given eleven ratings. Linfeat, nearest neighbor, and regression still have lower

mean prediction errors than prodav, but the margin has narrowed.

Moreover these results show that prodav now has the lowest regrets of the

�ve methods. This last result, however, is somewhat misleading. All the results

on regrets were derived from the same runs used to �nd the mean prediction

errors; hence they used the same parameter settings. In practice this is usually

a close approximation to the minimal regrets. But with this particular dataset,

Method Mean absolute Method - Prodav Method - Regression

error (95% con�dence interval) (95% con�dence interval)

Linfeat 1.31 [-0.05, -0.04] p [0.05, 0.06] X

Nearest Neigh. 1.23 [-0.123, -0.116] p [-0.020, -0.016] p

Regression 1.25 [-0.11, -0.10] p (same)

Prodav 1.35 (same) [0.10, 0.11] X

Globalav 1.53 [0.18, 0.19] X [0.286, 0.294] X

Table 11: Movies 3: 20290 ratings; training set density = 9%; 30 splits
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Method Mean regret Reg/Method - Reg/Prodav Reg/Method - Reg/Regression

(95% con�dence interval) (95% con�dence interval)

Linfeat 1.47 [0.14, 0.20] X [-0.04, 0.06] NS

Nearest Neigh. 1.36 [0.02, 0.10] X [-0.14, -0.06]
p

Regression 1.46 [0.11, 0.20] X (same)

Prodav 1.30 (same) [-0.20, -0.11]
p

Globalav 2.47 [1.12, 1.22] X [0.95, 1.07] X

Table 12: Movies 3: 20290 ratings; training set density = 9%; 30 splits

linfeat's regrets are substantially lower when it uses one feature than when it

uses two (the number that minimized prediction error). Using one feature,

linfeat's behavior mimics prodav and it obtains the same regret.

So far we we have compared the accuracy of the various methods. In the

next section we consider their computational expense.

4.5 Computational Expense

In this section we brie
y compare the computational expense of the di�erent

methods.

We ran our algorithms on a Sparc 5. Runtimes varied from under a second

up to about twenty minutes for the slower algorithms on large datasets. For

instance on the movie data used in Table 7 , which contained some �fty-seven

thousand ratings, linfeat took 42 seconds to process the training set and generate

predictions for every element in the test set. By comparison, nearest neighbor

took seventeen minutes, and regression took twenty-one minutes.

Linfeat is much faster than the nearest neighbor and regression methods.

In a practical application it might well be worth trading o� its slightly poorer

predictions for its greatly increased speed.

5 Possible Extensions

There are various ways to extend this preliminary work. The following are a

few of the more interesting possibilities.
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5.1 Explicit features

In some domains, it would be relatively simple to give certain explicit features

in advance. For instance a video store may already have the genre of the videos

stored on computer. The algorithms could then use both the known features

and the known ratings to build a model of consumer preferences.

In the case of the linfeat algorithm it is straightforward to see how explicit

numerical features would be used: we simply add the appropriate number of

columns to the product feature matrix, containing the explicit values of the

known features for each product. Non-numerical features, such as the genre of

a movie, could probably also be incorporated with a little work.

In the case of the other two algorithms, it is less clear how to proceed. If

we have a single explicit feature and it has a small number of possible values

(such as the genre of a movie), then we could partition the database so that

each genre is considered separately. To predict a consumer's rating of a comedy

�lm, we search for other people who have had similar opinions of comedies,

and use their ratings to make our prediction. This may well produce more

accurate predictions, as people could have very similar tastes in comedies yet

wildly di�ering opinions on westerns.

Now suppose that we are given n explicit features each of which can take

m values. There are nm sets of possible values for these features. If n and m

are of any signi�cant size, partitioning the database into each possible category

will produce tiny subsets. Perhaps a sophisticated algorithm could be devised

that would search for a small number of optimal partitions of the data based

on the explicit features. Alternatively, we could adjust the correlation measure

according to the explicit features. Thus when we are trying to make a prediction

for a given product, k, we pay most attention to the ratings of those products

whose explicit features are closest to k's. It is more signi�cant that consumers'

opinions are closely correlated over products similar to k than over very di�erent

products.
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5.2 Discussion

Here we brie
y discuss other ways to extend this work.

� Other weight functions and improved regression.

The nearest neighbor and regression methods both use a weighting func-

tion to determine how much to bias ratings toward highly correlated in-

dividuals. In our experiments we used the weight function given in sec-

tion 3.3.

The performance of the regression method is currently very similar to that

of nearest neighbor. In the case of regression, however, we have a statistical

tool readily available that may improve performance. A byproduct of a

least squares prediction is a measure of the con�dence in that prediction.

We could use this measure as a statistically sound basis for weighting other

people's ratings.

We would also like to test other weight functions for both regression and

nearest neighbor, such as using the k-nearest neighbors.

� Cross-validation as a higher level control.

With our current implementation, for each new dataset one �rst has to

tune the parameters for each algorithm. Using cross-validation ([Stone,

1974], [Wahba and Wold, 1975], [Moore and Lee, 1994]) this process could

be automated, and also extended to select such things as the best type

of weight function. Ideally cross-validation would be presented with a

dataset, and would go away and autonomously test the various algo-

rithms, weight functions, parameter settings, and then return with the

optimal tuned algorithm for that dataset. By using its own test set, cross-

validation can optimize either for general prediction accuracy or for the

expected regret.

� Faster implementations.

Both the nearest neighbor and regression methods are much slower than

linfeat, with runtimes of twenty minutes or more to generate complete
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test-set predictions on large datasets. We would like to speed up our im-

plementations of these algorithms as much as possible. Possible directions

here are branch and bound strategies, and the use of non-euclidean kd-tree

structures, [Bentley, 1980].

� Non-numerical data.

So far we have only applied our algorithms to numerical ratings and nu-

merical features. It would be a simple extension to allow letter grades

(A, B, C) or boolean ratings (liked/disliked). Similarly when extending

our algorithms to allow explicit features as discussed in section 5.1, we

would like to be able to handle features with a �xed number of categories

(western, thriller, science �ction) as well as numerical features.

� Proposing experiments.

In a practical application of these algorithms, people may be willing to

risk an occasional experiment in order to improve the average quality of

the recommendations. We would like to be able to select the experiment

that will best improve our model of the consumer's preferences. This links

into the disciplines of experimental design, [Box and Draper, 1987], and

active learning, [Cohn et al., 1995].

6 Related Work

In [Shardanand and Maes, 1995] they describe a system called Ringo for mak-

ing personalized recommendations of music albums and artists. The system

has been running on Internet since July 1994, gathering ratings from users via

email, and returning recommendations and predictions. They have tested four

variants of nearest neighbor techniques. Although their results are drawn from

a di�erent domain, they appear to be very similar to those reported here, with

mean prediction errors about twenty percent lower than the naive algorithm

that uses the average popularity of products.
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In the Usenet domain, [Resnick et al., 1994] discuss the use of collaborative

�lters and describe a prototype system called GroupLens. They have given con-

siderable thought to the architectural issues involved in integrating such �lters

into Usenet readers and communicating the article ratings from one Usenet site

to another. They describe one nearest-neighbor prediction scheme, but to our

knowledge have not yet published results on appreciable test sets.

Lang is also investigating collaborative �ltering of Usenet articles, and is

developing a system called NewsWeeder, [Lang, 1994]. Unlike the above two

projects, NewsWeeder looks at the content of the products concerned, processing

the text in the Usenet articles. Lang began by trying to predict which newsgroup

an article came from, and achieved up to 73% accuracy with a training set of

articles drawn from twenty newsgroups. Lang is currently working to extend

these results to predicting people's ratings of Usenet articles.

Will Hill at Bellcore is working on a video recommendation service, [Hill,

1994], and has an Internet site that receives ratings from people. But to our

knowledge he has yet to publish results.

7 Conclusions

Practical tools to model consumer preferences would be of great bene�t in a

wide range of domains. With more and more electronic data available on which

videos people rent, which Usenet articles they read, even which groceries they

buy, it is appealing to use the information to aid people in future choices.

Our goal is to gain a sound understanding of the computational and sta-

tistical nature of this general problem. We wish to answer questions such as:

\How accurate can we hope to be for predictions on real world data?" \Can

we provide statistical con�dence intervals on the reliability of our predictions?"

\To what extent does the use of explicit features aid performance?"

Note that it is entirely possible that user response would be enthusiastic

even for simple schemes that only consider the average ratings of products.

Such schemes already o�er considerable improvement over random selection,
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especially when recommending a few products that a user will enjoy. Unless

a complex method can perform signi�cantly better still, there may be little

demand for it.

In this report we gave some preliminary results on algorithms to analyze

past ratings and predict future ratings. We showed that these algorithms can

produce predictions that are about 20% more accurate than naive methods

on large, real world databases. In future work we hope to devise increasingly

accurate, increasingly autonomous tools to model consumer preferences.

8 Appendix A: Linfeat Implementation Details

We brie
y mention three re�nements to the basic algorithm presented in sec-

tion 3.2. Firstly, from looking at Equation 2 we see that C and P are under-

determined: if we were to multiply every element of C by gamma and divide

every element of P by gamma, their product would have the same value. In

an e�ort to keep the numerical values of a reasonable magnitude, we arbitrarily

set the values in the �rst column of C to be 1.0. Secondly, we keep a record

of any products or consumers that led to singularities during the most recent

singular value decomposition. If there are any, then they are withheld from the

next iterative step. This is intended to prevent deductions based on the most

dubious values in the feature matrices. Thirdly, we clip our predictions to lie

within the minimumand maximummarks in the known ratings; this is intended

to prevent ridiculous predictions.

On the large movie subsets, linfeat used �ve features to minimize the mean

prediction errors. On the Star Trek data and the small movie subset, linfeat

used two features to minimize the mean prediction errors. These values were

optimized by means of cross-validation.
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9 Appendix B: Nearest Neighbor Implementa-

tion Details

The weighting function determines how much the ratings are biased toward the

consumers whose ratings are best correlated with j's. Many other weighting

functions could be used. The particular weighting function given in section 3.3

allows us to smoothly vary the precedence given to j's nearest neighbors. For

K2 >> 1, the weighting is only signi�cant for very close neighbors. In the

limit as K2 tends to zero, the prediction for product k is the average of all

the ratings for k by positively correlated neighbors who have rated at least

MIN-COMMON of the same products as j. On the Star Trek and movie

ratings databases, the nearest neighbor mean prediction errors were minimized

for values of K2 between 0.5 and 4.0.

If we had used the identity function as the weighting function, weight(x) =

x, then this method would be essentially equivalent to the method mentioned

in [Resnick et al., 1994] (see section 6).

The restriction to consumers who have rated at least MIN-COMMON of

the same products as j is a crude measure. It is intended to prevent us from

basing predictions on individuals who have only seen a very few products in

commonwith j, yet happen to have given them marks close to j's. In order to be

con�dent that two individuals have similar tastes, we need a reasonable number

of pairs of ratings to compare. In our experiments we set MIN-COMMON to

seven.

Ideally we would dispense with the MIN-COMMON ratings restriction.

Instead of using �j;j0 as the parameter to the weighting function in Equation 5,

we would use the probability that j and j0's tastes are closely correlated.

Since we usually need to make many predictions, we precompute quantities

such as the correlation coe�cients and store them.
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