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Abstract

We present a methodology, called Constraint Partition and Coordinated Reaction
(CP&CR), where a problem solution emerges from the evolving computational process
of a group of diverse, interacting reactive agents. Problem characteristics are utilized to
achieve problem solving by asynchronous and well coordinated local interactions. The
coordination mechanisms guide the search space exploration by the society of interact-
ing agents, facilitating rapid convergence to a solution. Our domain of problem solving
is constraint satisfaction. We have applied the methodology to job shop scheduling with
non-relaxable time windows, an NP-complete constraint satisfaction problem. Utility
of di�erent types of coordination information in CP&CR was investigated. In addition,
experimental results on a benchmark suite of problems show that CP&CR performed
considerably well as compared to other centralized search scheduling techniques, in
both computational cost and number of problems solved.
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1 Introduction

Research in Distributed Arti�cial Intelligence has been mostly oriented towards multi-agent
systems composed of sophisticated individuals [5]. These agents are categorized as cognitive
agents, which are given the capabilities to reason about their environment, to predict future
events and choose between possible actions, and exhibit goal-driven behavior [13]. In the
context of problem solving, this line of research is called Cooperative Distributed Problem
Solving (CDPS) [11] or Coordinated Problem Solving [21], and has been de�ned by Lesser and
Corkill as a problem solving process which involves a \loosely coupled distributed network
of semiautonomous problem-solving nodes that are capable of sophisticated problem solving
and cooperatively interact with other nodes to solve a single problem" [29]. Decker also
refers to CDPS as \coarse-grained, task-level problem decompositions"[12].

Early work in CDPS considers problems, such as distributed interpretation [8, 28], and air
tra�c control [32, 4], that are geographically dispersed and have communication bandwidth.
As pointed out by Durfee et al., typical CDPS applications involve problems that consist of
\a set of interdependent subproblems that arise because of spatial, temporal, and functional
distribution of data, knowledge, and processing capabilities" [15]. In these applications,
a central problem solver is considered as inappropriate because of issues such as limited
computation, limited communication, and reliability. CDPS provides techniques to achieve
a balance between problem solving and coordination that leads to acceptable overall system
performance. CDPS research has been extended to other areas, such as distributed planning
and control [40], cooperating expert systems [42], and cognitive models of cooperation [45, 7].

The fundamental strategy behind CDPS is divide-and-conquer. Complex problems are
divided into smaller parts that can be reasonably solved and compatible subproblem solutions
are then integrated into an overall solution. However, intricate interactions among the set of
subproblem solvers can invalidate the advantage of reduced task complexity. Coordination
is a complex and little understood phenomenon, and has been regarded as a fundamental
component of intelligence. CDPS has primarily been developed for problem applications
where centralization is not a viable option and has focused on coordination involving a set
of sophisticated cognitive agents.

Recently, there has been growing interest in Arti�cial Life (ALife), studying computa-
tional models of agent societies composed of simple agents that interact asynchronously [27].
Researchers in this area attempt to synthesize and simulate behaviors characteristic of bi-
ological systems, such as self-organization, learning, adaptation, and evolution. In these
models global behaviors emerge out of the organized, local interactions among individual
simple agents [26, 33, 18]. The �eld of ALife aims to an understanding of spontaneous or-
ganization and adaptation and, by eventually building up to, an understanding of mental
processes [1]. Enthusiasm has been growing to viewing ALife as life-as-it-could-be [27] and
as an implication to bottom-up intelligence [3].

Apart from pure theoretical research, application oriented researches using ALife strate-
gies have also been successfully demonstrated. Brooks proposed a subsumption architecture
for insect-like robots in which coherent behaviors emerge from subcomponents interacting
in the world [2]. Steels discussed emergent functionality in which a function is achieved
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indirectly by the interaction of more primitive components among themselves and with the
world [44]. Kitano developed a massively parallel memory-based approach to natural lan-
guage processing [24]. Despite the growing interest in ALife, the utility of these models in
problem solving has not been fully explored.

ALife provides a new perspective for developing e�ective problem-solving techniques.
Instead of using sophisticated agents to perform top-down synthesis, problem-solving can
be achieved by the bottom-up interaction of a society of simple agents. In these models,
problems are represented by the con�guration of a society of reactive agents and their en-
vironment. Agents are characterized by their situation-action rules. The problem solution
emerges as a result of the asynchronous, local interactions among the society of reactive
agents. Because of the computational economy of reactive agents, this approach indicates
good potential in problem-solving e�ciency and scalability. However, to achieve e�cient
problem solving, agents' actions must be coordinated to promote rapid convergence. These
agents perform locally contained actions, while their behaviors are inuenced by passive
communication from other agents.

We have developed a computational framework for collective problem solving by a society
of reactive agents. Problem solving is viewed as an emergent functionality from the evolving
process of the society of diverse, interacting, and well-coordinated reactive agents. Agents are
situated in their environment and act by stimulus and response. Coordinated interactions are
based on simple ows of information. The collective actions of the reactive agents potentially
provide an e�ective tool for complex problem solving. Speci�cally, the development of the
collective problem solving framework involves the following subjects:

� Problem decomposition: The transformation from a problem to a society of simple
agents is de�ned by a decomposition scheme. Each agent is assigned to a task cor-
responding to a small part of the problem. Situation-action rules specify how agents
would act to achieve their tasks. The problem is solved when all agents achieve their
tasks simultaneously.

� Interaction analysis: When a problem is mapped into a society of agents, intense
interactions among agents ensue. In order for the society to move toward coherence,
inuences of agents' actions on each other need to be identi�ed. These interactions
are viewed as rich information sources that can be exploited to guide agents' behaviors
toward group coherence.

� Coordination mechanism: Group behavior of agents is characterized by the coordina-
tion mechanism in the society. For our problem-solving purpose, we require the group
of agents to reach coherence in order to provide a solution. In addition, we seek for
rapid convergence to improve problem-solving e�ciency. The design of a coordination
mechanism includes regulation policies and communication among agents. E�ective
coordination strategies and useful coordination information are the focus of study.

� Behavior design: An agent's behavior corresponds to various actions it performs to
achieve its goal. The collective behavior of agents represents problem-solving activities
that the group performs. In this framework, it is critical to analyze agent interactions,
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investigate useful information exchange between agents, and coordinate the highly
distributed activities. All of these lead to designing agents' behaviors such that (1)
they avoid harmful interactions with other agents, (2) they react appropriately towards
rapid group convergence.

� System: Investigations in the above subjects follow the construction of a collective
problem solving system. A society of agents are created according to speci�cation
of the problem. Search is performed in the form of agents' collective actions. The
system is expected to perform e�cient transformation from initial disorder to group
coherence. The problem is solved by the collective interactions of a society of simple,
reactive agents.

The problem domains of the collective problem solving framework are Constraint Satisfac-
tion Problems (CSPs). Many problems of theoretical and practical interest (e.g., parametric
design, resource allocation, scheduling) can be formulated as CSPs. A CSP is de�ned by a set
of variables X = fx1; x2; � � � ; xmg, each having a corresponding domain V = fv1; v2; � � � ; vmg,
and a set of constraints C = fc1; c2; � � � ; cng [31]. A constraint ci is a subset of the Cartesian
product vl � � � � � vq which speci�es which values of the variables are compatible with each
other. The variable set of a constraint (or a set of constraints), denoted by vs( ), is the
set of non-duplicating variables restricted by the constraint (or the set of constraints). A
solution to a CSP is an assignment of values (an instantiation) for all variables, such that
all constraints are satis�ed. Numerical CSPs (NCSPs) [30] are a subset of CSPs, in which
constraints are represented by numerical relations between quantitative variables usually
with fairly large domains of possible values. Many CSPs of practical importance, such as
scheduling, and parametric design, are NCSPs. Constraint satisfaction algorithms typically
su�er from feasibility/e�ciency problems for NCSPs due to their enormous search space.

In general, CSPs are solved by two complementary approaches, backtracking and network
consistency algorithms [31][9][39]. Recently, heuristic revision [34] and decomposition [10][19]
techniques for CSPs have been proposed. On the other hand, recent work in DAI has
considered the distributed CSPs [23] [46] [49] in which variables of a CSP are distributed
among agents. Each agent has an exclusive subset of the variables and has sole responsibility
to instantiate their values. Instead, our approach provides a decomposition scheme in which
constraint type as well as constraint connectivity are used. This results in no inter-agent
constraints, but each variable may be instantiated by more than one agent. While satisfying
its own constraints, each agent instantiates/modi�es variable values based on coordination
information supplied by others. Coordination among agents facilitates e�ective problem
solving.

In this paper, we present an approach, called Constraint Partition and Coordinated
Reaction (CP&CR), in which a job shop scheduling NCSP is collectively solved by a set of
agents with simple local reactions and e�ective coordination. CP&CR divides an NCSP into
a set of subproblems according to constraint type and assigns each subproblem to an agent.
Interaction characteristics among agents are identi�ed. Agent coordination de�nes agent
roles, the information they exchange, and the rules of interaction. The problem solution
emerges as a result of the evolving process of the group of interacting and coordinating
agents. The remainder of the paper is organized as follows. In Section 2, we illustrate other
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work that are similar to our approach. In Section 3, we de�ne the CP&CR model, in which
problem decomposition, coordination mechanisms, and asynchronous search procedure are
speci�ed. In Sections 4 and 5, we describe an application of CP&CR to job shop scheduling
with non-relaxable time windows, and present comparative results on previously studied
test problems. Finally, in Section 6, we conclude the paper and outline our current work on
CP&CR.

2 Related Work

There are a lot of work in di�erent areas, such as distributed problem solving, cooperative
problem solving, constraint satisfaction, and job shop scheduling, that can be related to
CP&CR. We limit the scope of discussion to only the work that utilize the most similar
approaches. In particular, we focus on approaches that perform collective problem solving
with the following characteristics: (1) no agent has a global view, (2) no agent is capable of
solving problem alone, (3) each agent is simple and reactive, (4) each agent is responsible
for only a small part of the problem, (5) agents directly/indirectly inuence others' actions.

Research utilizing social insects metaphor in collective problem solving is still at its
early stage and has been pursued mostly by European researchers. Research e�orts are
directed toward constructing systems composed of reactive agents that are situated in their
environment and act by stimulus and response. Various approaches have been proposed for
problems ranging from planning to optimization. The existing reactive multi-agent systems
for problem solving that are representative and most related to our research (not necessary
with the same motivation and purposes) are briey described below.

Colorni et al. presented a distributed optimization scheme for the Travelling Salesman
Problem (TSP) based on the analogue of ant colonies [6]. The mechanism that enables
blind ants to establish shortest route paths between their colony and feeding sources were
employed. A moving ant lays some substance in varying quantity on the ground. An isolated
ant moves essentially at random but may follow a trail when it detects the substance. The
probability that an ant moves along a trail increases with the amount of substance on the
trail. The scheme required a considerable number of ants and a large number of trials to �nd
the best solution. They obtained respectable results on mid-sized TSPs (up to 75 cities),
but with long computational time.

Ghedira constructed a model of simple reactive agents for resource allocation problems
without precedence constraints on tasks [22]. The model involves Task and Resource agents
in interactions, each of them seeking its maximal satisfaction in terms of getting resource
allocation and maximizing resource utilization, respectively. Each unsatis�ed Task agent
chooses one of the possible Resource agents and required to be allocated. Behavior of a
Resource agent is based on a simulated annealing algorithm, where tolerance to local dete-
rioration of satisfaction progressively decreases. Experiments were conducted on randomly
generated problems. No comparison to other established approaches was o�ered.

Ferber developed the Eco-Problem-Solving (EPS) model [17], in which problems are de-
composed and solved by interactions of simple behavior based eco-agents. Eco-agents behave
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according to their speci�c programs of simple \tropism", i.e. a behavior made of reactions
to the environment, and are continuously questing for a satisfaction state. Interactions be-
tween agents are characterized by aggression and concession. Problem solving is seen as the
production of stable states in a dynamic system, where evolution is due to the behavior of
simple agents. Application of EPS to classical planning problems in the blocks world was
demonstrated.

Drogoul applied EPS model to the N-puzzle problem [14], which involves rearranging N
square tiles from some random initial con�guration into a particular goal con�guration on a
square board containing the tiles and a blank position. Each tile is modelled as an eco-agent
and has a goal to reach its destined position. Behaviors of eco-agents are characterized by
\the will to be satis�ed" and \the obligation to ee". Satisfaction of tiles is prioritized
by heuristics (�rst solving the row or column furthest to the �nal position of the blank).
Additional heuristics (Manhattan distances) are also used in eco-agent's decision-making in
direction of movement. Their experimentation showed that the system can solve very large
puzzles (up to 899-puzzle) in reasonable time, while the best record of RTA* and LRTA*
[25] is 24-puzzle. However, the system did not obtain optimal solutions (the solution lengths
of small puzzles are approximately twice the optimal solution lengths computed by A*).

EPS model and CP&CR share the approach of solving complex problems by interactions
of simple reactive agents. However, our collective problem solving framework intends to
advance the e�ectiveness of the approach by further exploiting local interactions. First, in-
stead of relying on goal prioritization which entails serial operations, we have developed more
e�ective coordination mechanism which allows asynchronous agent activities. Second, in ad-
dition to agents' partial information on their environment, useful coordination information
between agents has been investigated and exploited to facilitate rapid group coherence.

Apart from these systems of reactive agents, there has been an organizational model
of Asynchronous Team (A-Team) proposed in [47]. A-Team consists of autonomous agents
each of which can choose what to do and when to communicate with its team mates, if ever.
Agents in A-Team are divided into four categories: construction agents, modi�cation agents,
deconstruction agents, and destruction agents. These agents are oriented towards solution
variation and work on populations of solutions. The populations of data-objects produced by
the agents are controlled by \herding" or \consensus-seeking" strategies where the population
are kept from explosion by the destruction agents or by mode changes of most agents. A-
Team have shown successful applications on solving large travelling salesman problems and
con�guring task-speci�c robots.

Unlike A-Team in which agents do not communicate frequently, if ever, CP&CR explic-
itly utilizes local interactions of reactive agents to guide the search. Simple coordination
information is constantly exchanged between agents and directly inuences agents' actions.
One single solution candidate is iteratively modi�ed by agents. A coordination mechanism
regulates agents' actions towards solution consensus. In addition, CP&CR includes a decom-
position scheme that de�nes the organization of agents according to problem speci�cations.
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3 Constraint Partition and Coordinated Reaction

We have developed a collective problem-solving framework, called Constraint Partition and
Coordinated Reaction (CP&CR), for a subset of NCSPs. The framework draws on char-
acteristics of a social insects colony, such as functional decomposition, task division, and
e�ective coordination based on simple ows of information. In CP&CR, a society of spe-
cialized and well-coordinated reactive agents collectively solve an NCSP. Agents are situated
in their environment, react to others' actions, and communicate with others by leaving and
perceiving particular messages on the objects they act on. A solution emerges from the evo-
lutionary interaction process of the society of diverse agents. Speci�cally, CP&CR provides
a framework to decompose an NCSP into a set of subproblems based on constraint type and
constraint connectivity, identify their interaction characteristics and, accordingly construct
e�ective coordination mechanisms. CP&CR assumes that an NCSP has at least two types
of constraints.

3.1 Constraint Partition & Problem Decomposition

Constraints label relations between variables that specify how the values of variables are
restricted for compatibility. We formally de�ne constraint characteristics (e.g., constraint
type, constraint connectivity) for NCSPs.

De�nition 1: Constraint Type - In CP&CR, quantitative constraints are classi�ed
by di�erences in the numerical compatibility between two variables. We identify four types
of quantitative constraints. In Figure 1, a black dot represents a value, vi, that has been
assigned to a variable, xi. An empty dot represents the only possible value for the other
variable, xj. A shaded region (either open or closed) represents an interval within which an
instantiation of the other variable, xj, will violate the constraint.

Adherence constraint Exclusion-around constraint

< >( Xi - const i Xj ^ ( )Xj - constXi) j

Exclusion-off constraint
<Xi + const Xj

Inclusion-around constraint

real line real line

< >

real line real line

Xi + const = Xj ( Xi + const Xj) Xj + const )Xi(i jv

Figure 1: Constraint types classi�cation

1. adherence type - A constraint is of adherence type if the instantiation of a variable, xi,
to the value vi restricts the instantiation of another variable, xj, to an individual point
in the domain. For example, xi + const = xj.
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2. exclusion-around type - A constraint is of exclusion-around type if the instantiation
of a variable, xi, to the value vi restricts the instantiation of another variable, xj,
from a subsection within certain distances from vi. For example, xi + const 6= xj, or
(xi + consti � xj) _ (xi � xj + constj); consti; constj > 0.

3. exclusion-o� type - A constraint is of exclusion-o� type if the instantiation of a variable,
xi, to the value vi restricts the instantiation of another variable, xj, from a connected
subsection of the domain with a boundary set by vi. For example, xi + const � xj.

4. inclusion-around type - A constraint is of inclusion-around type if the instantiation
of a variable, xi, to the value vi restricts the instantiation of another variable, xj,
within a connected subsection of the domain with boundaries set by vi. For example,
(xi � consti � xj) ^ (xi � xj � constj); consti; constj > 0.

We illustrate how our de�nitions can describe the constraints of some well known CSPs.
In the N-Queen problem, both vertical and diagonal attack constraints are of exclusion-
around type. In the Zebra problem, association constraints (e.g. the Englishman lives in
the red house.) are of adherence type, and single-occupancy constraints (e.g. each attribute,
such as pet, color, etc., must be assigned to each house.) are of exclusion-around type.

De�nition 2: Constraint Connectivity - Two constraints are said to be connected i�
the intersection of their variable sets is not empty. This implies that they have constrained
variables in common.

cp and cq are connected � vs(cp) \ vs(cq) 6= ;.

De�nition 3: Constraint Partition is a scheme to decompose an NCSP into a set
of subproblems by constraint type and constraint connectivity (see Figure 2). Two types of
constraint grouping, constraint bunch, and constraint cluster, are introduced by the decom-
position scheme.

Constraint Bunch C1

Constraint Type 1

Constraint Type 2

X1 X2 3X

X4 X5 6X

7X 8X X9

Constraint Network

X1

X2

3X

X4

X5

6X

7X

8X

X9

C C C1,1 1,2 1,3

X1

6X

X9

X2

X5

8X

3X

X4

7X

C C C2,1 2,2 2,3

X1 X2 3X

X4 X5 6X

7X 8X X9

Constraint Bunch C2

X1 X2 3X

X4 X5 6X

7X 8X X9

Constraint Clusters
pb( )

pc( )

pc( )

Figure 2: Constraint partition
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A constraint bunch, Ci, is a set of constraints of the same constraint type. De�ne an
operator, pb( ), which partitions the constraint set C of an NCSP into a set of constraint
bunches, Ci, according to constraint type. Denote the resulting set of constraint bunches
by C 0. De�ne an operator, denoted by type( ), which identi�es the constraint type of a
constraint bunch. A constraint bunch has the following properties.

� pb(C) = fCig = C 0

� Ci partition C

� type(Ci) 6= type(Cj); i 6= j

A constraint cluster, Ci;m, is a set of constraints which are of the same constraint type
and are connected to each other. De�ne an operator, pc( ), which partitions a set of con-
straint bunches into a set of constraint clusters, C 00, according to constraint connectivity. A
constraint cluster has the following properties.

� pc(C 0) = fCi;mg = C 00

� Constraint clusters of the same constraint type have no variables in common

� If a constraint cluster contains more than one constraint, each constraint is connected
to at least one other constraint in the constraint cluster

By constraint partition, an NCSP is decomposed into a set of subproblems, each of which
is concerned with the satisfaction of constraints in a constraint cluster, and is assigned to an
agent. A solution to a subproblem is an instantiation of the variables in the constraint cluster
such that none of the constraints in the subproblem are violated. Agent type corresponds
to constraint type. Constraint enforcement is decoupled within the same type of agents.
Each agent has full jurisdiction over variables in the variable set of the assigned constraint
cluster. A variable constrained by more than one type of constraint is under the jurisdiction
of more than one agent. Agents responsible for the same variable have the same authority
on its value, i.e. they can independently change its value. Therefore, a given value of a given
variable is part of a solution, if it is agreed upon by all its responsible agents in the sense
that no agent seeks to further change it. When all subproblems are solved, a solution of the
NCSP is found.

3.2 A Society of Reactive Agents

In the framework of CP&CR, problem solving of an NCSP is transformed into collective
behaviors of reactive agents. Variables of an NCSP are regarded as objects which constitute
agents' environment. An instantiation of the variables characterizes a particular state of the
environment. Each agent examines and makes changes to only local environment (variables
under its responsibility), and seeks for satisfaction by ensuring that no constraint in its
assigned constraint cluster is violated. When an agent detects constraint violations, it reacts
by changing the instantiated values of some of the variables under its jurisdiction so that it
becomes satis�ed.

Agents are equipped with only primitive behavior. When activated, each agent reacts
to the current state of the environment by going through an Examine-Resolve-Encode cycle
(see Figure 3). It �rst examines its local view of current environment, i.e. the values
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of the variables under its jurisdiction. If there are constraint violations, it changes variable
instantiations to resolve conicts according to innate heuristics and coordination information.

Agents coordinate by passive communication. They do not communicate with each other
directly. Instead, each agent reads and writes coordination information on objects under
its jurisdiction. Coordination information on an object represents an agent's partial \view"
on the current state of the environment and is consulted when other agents are consider-
ing changing the current instantiation of the variable to resolve their conicts. Each time
an agent is activated and has ensured its satisfaction, it writes down its view on current
instantiations on each variable under its jurisdiction as coordination information.

Examine Local View

Encode Information

Constraint 
Violation?

Yes
Resolve Conflicts

No

Reaction of Agent Idle

Activated

Figure 3: Agent's reactive behavior

Agents are classi�ed according to perspective (e.g., constraint type). For example, in job
shop scheduling problems, one agent type is responsible for resolving capacity constraints,
whereas another agent type is responsible for resolving temporal precedence constraints. A
variable is under the jurisdiction of agents from di�erent perspectives. Agents of di�erent
types are activated in turn, while agents of the same type can be activated simultaneously.
An iteration cycle is an interval in which all agents are activated once. An initial instantiation
of all variables is constructed by a subset of agents. The agents, then, arrive at a solution
through collective and successive modi�cations.

A1

A2

B1

B2

A1

A2

A1 A2

B1

B2

V1 V2

V3V4

Agent

Agent

Agent

Agent

Environment

perceive

perceive

perceive

perceive

Evolving Process:

Initialization

constraint type 1

constraint type 2

Iteration cycle

Figure 4: Society of Reactive Agents

Figure 4 shows a society of reactive agents for a simple problem that involves only four
variables, v1, v2, v3, v4, whose instantiations are restricted by four constraints of two di�er-
ent types. Variables are assigned to two subgroups of agents, in which subgroup A is respon-
sible for constraint type 2, and subgroup B is responsible for constraint type 1. Within a
subgroup, each agent is in charge of a subset of variables that are not connected to the other
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variables by the same type of constraints. For example, agent A1 is assigned to variables
v1 and v4; agent A2 is assigned to variable v2 and v3. Similarly, agent B1 is responsible
for variable v1 and v2; agent B2 is responsible for variable v3 and v4. Variables consti-
tute agents' environment. Agents \perceive" only local environment in the sense that they
examine and make changes to only the variables under their jurisdiction.

3.3 Interaction Analysis

As the group of agents are searching for an instantiation of variables that is accepted by all,
instances of interaction set o� one another. In order to facilitate group convergence, sources
and results of interaction instances must be analyzed and controlled. For example, Figure
5 shows a particular state of the environment representing a simple job shop scheduling
problem which includes only three jobs on three resources.

Job i is a job agent and Res j is a resource agent. Each box is an activity with the �rst
number representing the number of the job and the second number representing its sequence
within the job, i.e., A23 is the third activity within job2. A single activity, e.g., A23, is under
the jurisdiction of a job agent Job2 and a resource agent Res.Z. In the particular state, Job1
is the only agent who is not satis�ed because the precedence constraint between A12 and
A13 is violated. In order to complete its task, Job1 agent would need to change the start
time of either A12 or A13. Similarly, suppose A23 now starts at time 50, Res.Z agent would
need to either change the start time of A33 or A23.

A22 A23A21Job 2
time line
80

A31 A33Job 3
time line

A32

0 20 40 60 70

A12
A13

A21A31 A13Res. X

A22 A12A32Res. Y

A23A33

0 20 40 60 80

A11Res. Z

Release date Due date

Job 1

75

A11
time line

Figure 5: A State of the Environment: An Instantiation of Variables

An analysis on the interactions leads to the following intuitions. First, each agent's
action of changing the start time of an activity potentially disturbs others' satisfaction
status. To minimize reciprocal harmful interactions, agents' actions should take into account
the preference of others regarding variable instantiation. Second, a solution to the most
constrained subproblem is more likely to be part of a global solution than that of less
constrained subproblems1 and, therefore, can serve as an anchor of interactions. Third,
cyclic interactions should be prevented.

1In traditional constraint satisfaction literatures[39], there was a notion of most constrained variable
which has the least possible values. The intuition was instantiating the most constrained variable seemed
to be more critical than instantiating other less constrained variables and the instantiation would be more
likely to be correct than the instantiation from a large domain of possible values. We extend this intuition
to CP&CR in which a subset of variables instantiated from a local perspective that are most constrained
seems to be more reliable.
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3.4 Coordination Mechanism

In a coordinated group of agents, individual behavior is regulated by policies so that the
agents' collective actions achieve the common goals. Given the tasks of solving complex,
large-scale NCSPs, our coordination mechanisms emphasize convergence e�ciency by ex-
ploiting characteristics of agent group structure, agent tasks, and communicated informa-
tion.

3.4.1 Coordination Strategy

We have developed coordination strategies that promote rapid convergence by considering
the following principles of interaction control.

1. Least disturbance - When an agent is resolving conicts, interactions should be initiated
only when necessary and, in such a way as to reduce the chances of causing other
concerned agents to subsequently initiate further interaction.

2. Island of reliability - Consensus should be reached by a process of evolving coherent
group decision-making based on islands of reliability, and modifying islands of reliabil-
ity only when group coherence is perceived as infeasible under current assumptions.

3. Loop prevention - Looping behaviors, such as oscillatory value changes by a subset of
agents, should be prevented.

Least disturbance Least disturbance corresponds to an attempt to minimize ripple e�ects
of agents' actions. To reach group coherence, the number of unsatis�ed agents within an
operation cycle must be gradually reduced to zero. While an agent always becomes satis�ed
in an iteration cycle since it instantiates its variables to satisfy only its own constraints, its
actions may cause conicts to instantiations of other agents. Therefore, an agent should
resolve conicts in a way that minimizes the extent of causing disturbances to other agents.
Least disturbance is incorporated in agent's heuristics of conict resolution (see section 4.3).
The least disturbance principle is operationalized during conict resolution in two ways.
First, an agent changes the instantiated values of as few variables as possible. Second, for
a given selected variable, an agent changes the instantiated value such that it deviates from
the previous value as less as possible.

Island of reliability An island of reliability is a subset of variables whose consistent in-
stantiated values are more likely than others to be part of the solution. In particular, islands
of reliability should correspond to the most critical constraint clusters, i.e. clusters whose
variables have the least exibility in satisfying their constraints. Islands of reliability pro-
vide anchoring for reaching group coherence in terms of propagating more promising partial
solutions and are changed less often.2 For example, in job shop scheduling, a bottleneck

2Blackboard systems (e.g., Hearsay-II speech-understanding system [16]) have used the notion of solution
islands to conduct an incremental and opportunistic problem solving process. Partial solution islands emerge
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resource is an island of reliability. A variable which is a member of an island of reliability is
called a seed variable. A variable which is not a seed variable is a regular variable. Division
of seed and regular variables reects the inherent structure of the problem. The division is
static and is complemented by the dynamic interactions among di�erent kinds of agents as
described below.

Each agent assumes a role depending on the types of variables it controls. Dominant
agents are responsible only for seed variables and therefore, are in charge of making deci-
sions within islands of reliability. Intermediate agents control variable sets including both
seed variables and regular variables. Submissive agents are responsible for only regular vari-
ables. Intermediate agents interact with submissive agents in a group e�ort to evolve an
instantiation of regular variables compatible with the decisions of dominant agents regard-
ing seed variables. A counter associated with each regular variable records the number of
times that a submissive agent has changed the value of the regular variable and, thus, pro-
vides an estimate of the search e�orts of intermediate and submissive agents to comply with
islands of reliability. Intermediate agents monitor the value of the counter associated with
the regular variables under their jurisdiction. When the counter of a conicting regular vari-
able exceeds a threshold, the intermediate agent, instead of changing the conicting regular
variable again, changes the value of its seed variables. In response to value changes in seed
variables that result in conicts, the dominant agent modi�es its decisions on islands of re-
liability. All counters are reset to zero and, therefore, intermediate and submissive agents
resume the e�orts to evolve a compatible instantiation of regular variables.

Loop prevention Under the principles of least disturbance and islands of reliability, the
system exhibits only two types of cyclic behavior. First, a subset of intermediate and submis-
sive agents may be involved in cyclic value changes in order to �nd a compatible instantiation
with dominant agents' decisions. Secondly, a dominant agent may be changing the value of
its seed variables in a cyclic way.

The �rst type of looping behavior is interrupted by intermediate agents when the counter
of a conicting regular variable exceeds a threshold. To prevent the second type of looping
behavior, a dominant agent keeps a history of its value changes so that it does not repeat
the same con�guration of variable instantiations.

3.4.2 Coordination Information

Coordination information among agents is associated with each variable by its responsible
agents. When an agent is resolving constraint violations on a variable under its responsibility,
the coordination information provided by the other agents that govern the same variable is
used in decision-making. Two types of information, disturbance information and dominance
information, are exchanged between agents.

Disturbance information reveals how the variable is constrained by an agent regarding

and grow into larger islands, which it is hoped will culminate in a hypothesis spanning the entire solution
structure. In CP&CR, islands of reliability refer to partial solutions from some local perspectives and are
used as anchors of interaction during the iterative solution repairing process from di�erent local perspectives.
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potential value changes in two forms. One form of disturbance information is an interval
of values in which the variable may be instantiated free of conicts. The other form of
disturbance information is a value that measures the likelihood of the variable involving
in conicts with another variable in the same cluster, if its instantiated value is changed.
Di�erent disturbance information is used by intermediate agents and submissive agents in
their innate heuristics of least disturbance. Dominance information indicates special status of
seed variables and measures the search e�ort of intermediate and submissive agents between
each modi�cation on islands of reliability. Search e�orts are estimated in the form of the
number of times the value of each regular variable is changed by a submissive agent. This
type of information is used by intermediate agents to recognize seed variables and decide
when to contest seed variables. The following section describe how each agent behaves under
the inuence of coordination information.

3.5 Agents' Behavior

The design of agents' behavior incorporates the coordination strategies and the use of coor-
dination information. For each agent's role, we describe an abstract algorithmic process of
how it behaves.

Dominant Agents

1. Examine the instantiations of variables under its jurisdiction. If all constraints are
satis�ed, stop.

2. Resolve conicts by changing the instantiated values of some seed variables in a way
that the new value of a seed variable being changed by an intermediate agent is in the
same direction of modi�cation on the real line by the intermediate agent3 and that the
new con�guration of variable instantiations does not repeat an old one in the record.

3. Record the new con�guration of variable instantiations.

Intermediate Agents

1. Examine the instantiations of variables under its jurisdiction. If all constraints are
satis�ed, go to step 3.

2. Resolve conicts. Use the dominance information on the variables marked by dominant
agents to recognize seed variables.

(a) For conicts involving seed variables,

3For example, in job shop scheduling, when a bottleneck resource agent �nds a capacity constraint
violation due to a seed activity being changed to a later start time by a job agent, the bottleneck resource
agent would re-arrange its resource interval allocation such that the seed activity would not start earlier
than the start time set by the job agent.
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� If the conicting regular variable can not be changed to a value within its
domain that satis�es its constraint with current instantiation of the seed
variable, change the instantiated value of the seed variable.

� Otherwise, consult the dominance information (change counter) on the con-
icting regular variable written by a submissive agent. If the counter has
exceeded a threshold, change the instantiated value of the seed variable.

� Otherwise, change the instantiated value of the regular variable.

(b) For conicts involving only regular variables,

� Consult disturbance information (both value interval and change counter) on
both regular variables written by submissive agents. Change the instantiated
value of the regular variable that has less magnitude of disturbance. If one
of the conicting variables can be changed within its value interval to resolve
the conict, then the agent changes the value of that variable. Otherwise, the
agent chooses to change the variable that is changed less frequently (with a
change counter of lesser value).

3. Encode disturbance information (likelihood measure) on each variable under its juris-
diction based on their current instantiated values.

Submissive Agents

1. Examine the instantiations of variables under its jurisdiction. If all constraints are
satis�ed, go to step 4.

2. Resolve conicts. Consult the disturbance information (likelihood measure) on each
conicting regular variables written by intermediate agents. Change the instantiated
values of regular variables that have less magnitude of disturbance.

3. Encode dominance information (change counter) on changed variables. For each changed
variable, increase the associated counter by a number that represents the agent's cer-
tainty on the new value of the variable. Usually, the counter is increased by one so
that it records the number of times the agent has changed the value of the variable,
and provides an estimate of the search e�orts of intermediate and submissive agents.
However, if the agent encounters an intense conict (a number of variables involved
in conicts within a short interval of values), it can resolve the conict and set the
associated counters of the involved variables to a number larger than the threshold.
Therefore, decisions on the dynamically arised critical areas can be propagated.

4. Encode disturbance information (value interval) on each variable under its jurisdiction
based on their current instantiated values.

Figure 6 shows the interaction pattern between agents of di�erent roles. Dominant agents
are responsible for a consistent instantiation on the islands of reliability. A solid loop rep-
resents frequent interactions between intermediate and submissive agents as they modify
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instantiation on regular variables to satisfy their own constraints and try to evolve a com-
patible instantiation with islands of reliability. A dotted loop represents less frequent in-
teractions between intermediate and dominant agents that occur when intermediate agents
change the instantiation on the islands of reliability and dominant agents respond by making
further changes (if necessary) to the instantiation on the islands of reliability to make sure
they are consistent. The action ow is switched from solid loop to dotted loop when (1)
search e�orts on compatible instantiation on regular variables have reached a threshold, (2)
some submissive agent identi�es dynamic critical areas. Both conditions are perceived by
intermediate agents as some change frequency counter exceeds the threshold. Typically, the
action ow remains within several solid loops until it is switched by intermediate agents to
one dotted loop, and immediately returns to solid loops again.

Dominant
Agents

Intermediate
Agents

Regular
Variables

Islands of
Reliability

Submissive
Agents

compatible

modify modify

modifymodify

1. search efforts reach threshold
2. dynamic critical areas identified

Figure 6: Interaction Pattern

3.6 Coordinated Group Search

From the point of view of search, the collective problem solving process is a coordinated,
localized heuristic search with partially overlapping local search spaces (the values of vari-
ables that are the common responsibility of more than one agent). The process starts from
an initial instantiation of all variables. The search proceeds as the agents interact with each
other while seeking their own goals. Islands of reliability provide the means of anchoring
the search, thus providing long term stability of partial solutions. The principle of least
disturbance provides short term opportunistic search guidance. The search space is explored
based on local feedback. The group of agents essentially performs a search through a series
of modi�cations of islands of reliability. Within each con�guration of islands of reliability,
intermediate and submissive agents try to evolve a compatible instantiation on regular ac-
tivities. The search ends when a solution is found or when dominant agents have exhausted
all possible instantiation of the seed variables.
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CP&CR provides a general framework that is potentially applicable to many NCSPs. We
have applied it to solve the Zebra problem4 (classical test problem for constraint satisfaction
algorithms). Experimental results show that CP&CR obtained a favorable performance in
terms of the number of variable instantiations required as compared to a number of constraint
satisfaction algorithms. In the proposed research, we focus on the application of CP&CR in
job shop scheduling problems.

4 CP&CR in Job Shop Scheduling

Job shop scheduling with non-relaxable time windows involves synchronization of the com-
pletion of a number of jobs on a limited set of resources (machines). Each job is composed
of a sequence of activities (operations), each of which has a speci�ed processing time and
requires the exclusive use of a designated resource for the duration of its processing (i.e.
resources have only unit processing capacity). Each job must be completed within an inter-
val (a time window) speci�ed by its release and due time. A solution of the problem is a
schedule, which assigns start times to each activity, that satis�es all temporal activity prece-
dence, release and due date, and resource capacity constraints. This problem is known to be
NP-complete [20], and has been considered as one of the most di�cult CSPs. Traditional
constraint satisfaction algorithms are shown to be insu�cient for this problem [41].

4.1 Problem Decomposition and Transformation

Job shop scheduling with non-relaxable time windows is an NCSP, in which each activity is
viewed as a quantitative variable with a value corresponding to the start time of the activity,
and all constraints are expressed as numerical relations between variables. CP&CR, by
applying the pb( ) operator, partitions the constraint set into two constraint bunches: a
constraint bunch of exclusion-o� constraints to express temporal precedence constraints on
activities within each job5, and a constraint bunch of exclusion-around constraints to express
capacity constraints on resources.

By applying the pc( ) operator, CP&CR further partitions the constraint bunches into a
set of constraint clusters corresponding to jobs or resources. Each job is a constraint cluster
of exclusion-o� constraints and is assigned to a job agent. Each job agent is responsible
for enforcing temporal precedence constraints within the job. Similarly, each resource is a
constraint cluster of exclusion-around constraints and is assigned to a resource agent. Each
resource agent is responsible for enforcing capacity constraints on the resource. Therefore,
for a given scheduling problem, the number of subproblems (and the number of agents) is
equal to the sum of the number of jobs plus the number of resources.

An activity is governed both by a job agent and a resource agent. Manipulation of

4Zebra problem can be considered as an NCSP because (1) all variables (attributes) have domains of
numerical values (house numbers), (2) all constraints can be represented by numerical relations between two
variables, such as \equal", \not equal", etc.

5Release and due dates constraints are considered as temporal precedence constraints between activities
and �xed time points and are included in the exclusion-o� constraint bunch.
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activities by job agents may result in constraint violations for resource agents and vice-
versa. Therefore, coordination between agents is crucial for prompt convergence on a �nal
solution. A bottleneck resource is the most contended resource among the resources, and
corresponds to the most critical constraint cluster. The set of activities contending for
the use of a bottleneck resource constitute an island of reliability and, therefore, are seed
variables. A bottleneck resource agent assumes the role of a dominant agent, and a regular
resource agent is a submissive agent. With the assumption that each job has at least one
activity contending for the bottleneck resources, a job agent is an intermediate agent.

4.2 Coordination Information

Job  Agent

Boundary

Temporal Slack

Weight

Bottleneck Tag

Resource Slack

Change Frequency

Resource  Agent

Activity

consult
write write

consult

Figure 7: Coordination Information

Coordination information written by a job agent on an activity is referenced by a resource
agent, and vice-versa, as shown in Figure 7.

Job agents provide the following coordination information for resource agents.

1. Boundary is the interval between the earliest start time and latest �nish time of an
activity (see Figure 8). It represents the overall temporal exibility of an activity and is
calculated only once during initial activation of job agents. Boundary is a disturbance
information in the form of a value interval.

a b c d eedcba

activity-a
current finish time current start timeOrder A

Temporal Slack of activity-b
time line time lineactivity-a

latest finish timeearliest start time
activity-a Boundary of  activity-a

Boundary of activity-b
Release date Due date Release date Due date

activity-c

Figure 8: Coordination information: Boundary and Temporal Slack

2. Temporal Slack is an interval between the current �nish time of the previous activity
and current start time of the next activity (see Figure 8). It indicates the temporal
range within which an activity may be assigned to without causing temporal constraint
violations. (This is not guaranteed since temporal slacks of adjacent activities are
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overlapping with each other.) Temporal slack is a disturbance information in the form
of a value interval.

3. Weight is the weighted sum of relative temporal slack with respect to activity boundary
and relative temporal slack with respect to the interval bound by the closest seed
activities (see Figure 9). It is a measure of the likelihood of the activity \bumping"
into an adjacent activity, if its start time is changed. Therefore, a high weight represents
a job agent's preference for not changing the current start time of the activity. Weight
is a disturbance information in the form of a likelihood value. In Figure 9, activity-p
of job B will have a higher weight than that of activity-a of job A. If both activities use
the same resource and are involved in a resource capacity conict, the resource agent
will change the start time of activity-a rather than start time of activity-p.

b c d

Release date

e

Due dateJob B

Job A

a
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(length of M)

W 1
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temporal slack of activity-a (N)

boundary of activity-a (L)

restricted interval of activity-a
bound by closest bottleneck activity (M)

bottleneck activity

Release date

p q s t u
bottleneck activity

time line

time line

Figure 9: Coordination information: Weight

Resource agents provide the following coordination information for job agents.

1. Bottleneck Tag is a tag which marks that this activity uses a bottleneck resource.
It indicates the seed variable status of the activity. Bottleneck tag is a dominance
information.

2. Resource Slack is an interval between the current �nish time of the previous activity and
the current start time of the next activity on the resource timeline (see Figure 10). It
indicates the range of activity start time in which an activity may be changed without
causing capacity constraint violations. (There is no guaranteed since resource slacks
of adjacent activities are overlapping with each other.) Resource slack is a disturbance
information in the form of a value interval.

aResource X

resource slack of activity-a
time line

Figure 10: Coordination information: Resource Slack

3. Change Frequency is a counter of how frequently the start time of this regular activity
set by a job agent is changed by a submissive resource agent. It measures the search
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e�ort of job and regular resource agents between each modi�cation on islands of reli-
ability. In addition, it can be used by submissive resource agents to propagate their
decisions on the dynamically arised bottleneck resource intervals by setting the counter
to a number larger than the threshold. Change frequency is a dominance information.

4.3 Reaction Heuristics

Agents' reaction heuristics attempt to minimize the ripple e�ects of causing conicts to
other agents as a result of �xing the current constraint violations. Conict minimization is
achieved by minimizing the number and extent of activity start time changes. The reaction
heuristics utilize perceived coordination information and incorporate coordination strategies
of group behaviors.

4.3.1 Reaction Heuristics of Job Agent

Job agents resolve conicts by considering conict pairs. A conict pair involves two adjacent
activities whose current start times violate the precedence constraint between them (see
Figure 11). Conict pairs are resolved one by one. A conict pair involving a seed activity,
i.e., an activity with tighter constraints, is given a higher conict resolution priority. To
resolve a conict pair, job agents essentially determine which activity's current start time
should be changed. If a conict pair includes a seed and a regular activity, depending on
whether the change frequency counter on the regular activity in the conict pair is still under
a threshold, job agents change the start time of either the regular or the seed activity. For
conict pairs of regular activities, job agents take into consideration additional factors, such
as value changes feasibility of each activity, change frequency, and resource slack. If one of
the two activities can be changed within its boundary and resource slack, job agents will
change that activity. Otherwise, job agents change the activity with less change frequency.
In any conditions, depending on the precedent relation between the two activities, the start
time of the selected activity is changed to a value that is either the end time of the other
activity or the start time of the other activity minus the duration of the selected activity.

Job Agent A bottleneck conflict pair:

regular conflict pair:

activity-A2
activity-A3

activity-A0
activity-A1

regular conflict pair:
activity-A4
activity-A3

A2
A3

A4
time line

A1 A0
seed activity

T3
T2T1

minus T2
plus T2

minus T1
plus T1

minus T3
plus T3

considered change of start time

Figure 11: Conict Resolution of Job Agent

In Figure 11, the conict pair of activity-A2 and activity-A3 will be resolved �rst since
activity-A2 is a seed variable. If the change frequency of activity-A3 is still below a threshold,
start time of activity-A3 will be changed by an addition of T2 (the distance between current
start time of activity-A3 and current end time of activity-A2) to its current start time.
Otherwise, start time of activity-A2 will be changed by a subtraction of T2 from its current
start time. In both cases, start time of activity-A4 will be changed to the end time of
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activity-A3. To resolve the conict pair of activity-A0 and activity-A1, either start time of
activity-A0 will be changed by a subtraction of T1 from its current start time or start time
of activity-A1 will be changed by an addition of T1 to its current start time. The decision
is based on the boundary, resource slack, and change frequency of both activities.

4.3.2 Reaction Heuristics of Regular Resource Agents

To resolve constraint violations, resource agents re-allocate the over-contended resource in-
tervals to the competing activities in such a way as to resolve the conicts and, at the same
time, keep changes to the start times of these activities to a minimum. Conicted activities
are allocated in a sequence based on their weights. If their original resource intervals have
been preempted by other activities, a most adjacent resource interval within their boundaries
are allocated considering the preference of staying within their temporal slacks. Since an
activity's weight is a measure of the desire of the corresponding job agent to keep the activity
at its current value, activity start time decisions based on weight reect group coordination.

Resource Agent X

C3

A4G0C3

G0
Before conflict resolution

A4
time line

B1 F4
E1D0

Sequence of allocation:
activity-E1  ->  activity-D0 

->  activity-G0  ->  activity-A4  ->  activity-C3

(activity-E1  has the highest weight,  

activity-C3  has the lowest weight)
time line

B1 F4E1D0

After conflict resolution

Figure 12: Conict Resolution of Regular Resource Agent

For example, in Figure 12, activity-A4 was preempted by activity-E1 which has higher
weight. A most adjacent resource interval is allocated to activity-A4. In addition, when a
resource agent perceives a high resource contention during a particular time interval (such
as the conict involving activity-C3, activity-D0, and activity-G0), it allocates the resource
intervals and assigns high change frequency to these activities, and thus dynamically changes
the priority of these instantiation.

4.3.3 Reaction Heuristics of Bottleneck Resource Agents

Resource Agent Y

A2G2 F2 B2 C2E2
D2

A2G2 F2 D2 B2 C2E2

Before conflict resolution

After conflict resolution
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Resource Agent Y

A2G2 F2 B2 C2E2

A2G2 F2

D2

D2B2 E2
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After conflict resolution

time line

time line
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C2
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Figure 13: Conict Resolution of Bottleneck Resource Agent
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A bottleneck resource agent has high resource contention. This means that most of the
time a bottleneck resource agent does not have resource slack between activities. When
the start time of a seed activity is changed, capacity constraint violations are very likely
to occur. A bottleneck resource agent considers the amount of overlap of activity resource
intervals on the resource to decide whether to right-shift some activities (Figure 13 (i)) or
re-sequence some activities according to their current start times by swapping the changed
activity with an appropriate activity. In Figure 13 (ii), the changed activity-D2 is swapped
with activity-B2 since the changed start time of activity-D2 is later than the start time of
activity-E2. Resource intervals are then allocated to the new sequence - activity-B2, activity-
E2, activity-D2. The intuition behind the heuristics is to keep the changes as minimum as
possible. Note that the new start time of activity-D2 is in the same direction (on the real
line) of modi�cation made by a job agent on activity-D2.

4.4 System

4.4.1 System Operations

System initialization is done as follows: (1) decomposition of the input scheduling problem
according to resource and job constraints, (2) creation of the corresponding resource and
job agents, (3) activation of the agents (see Figure 14). Initially each job agent calculates
boundary for each variable under its jurisdiction considering its release and due date con-
straints. Each resource agent calculates the contention ratio for its resource by summing
the durations of activities on the resource and dividing by the interval length between the
earliest and latest time boundary among the activities. If this ratio is larger than a certain
threshold, a resource agent concludes that it is a bottleneck resource agent.6

Problem
Divide problem

Create agents
& Provide solution

Activate all Resource Agents

All Agents
satisfied?

Activate all Job Agents

Solution

Initiate all Resource Agents

Initiate all Job Agents

YesNo

Figure 14: System Control Flow

In job shop scheduling, the notion of bottleneck corresponds to a particular resource
interval demanded by activities that exceeds the resource's capacity. Most state-of-the-art
techniques emphasize the capability to identify dynamic bottlenecks that arise during the
construction of solution. In our approach, the notion of bottleneck is static (i.e., �xed
resource contention ratio) and corresponds to a resource within the entire interval speci�ed

6If no bottleneck resource is identi�ed, threshold value is lowered until the most contended resource is
identi�ed.
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by the problem. We exploit the dynamic local interactions of agents that utilize both notions
of static and dynamic bottlenecks. For example, static bottleneck is regarded as islands of
reliability. Regular resource agents are able to identify high resource contention during
particular time intervals (dynamic bottlenecks) and assign high change frequency to the
involved activities in order to propagate their decisions.

Activities under the jurisdiction of a bottleneck resource agent are marked as seed ac-
tivities by the agent. Each resource agent heuristically allocates the earliest free resource
interval to each activity under its jurisdiction according to each activity's boundary. After
the initial activation of resource agents, all activities are instantiated with a start time. This
initial instantiation of all variables represents the initial con�guration of the solution.7

Subsequently, job agents and resource agents engage in an evolving process of reacting
to constraint violations and making changes to the current instantiation. In each operation
cycle, job and resource agents are activated alternatively, while agents of the same type
are activated simultaneously, each working independently. When an agent �nds constraint
violations under its jurisdiction, it employs local reaction heuristics to resolve the violations.
The process stops when none of the agents detect constraint violations during an iteration
cycle. The system outputs the current instantiation of variables as a solution to the problem.

4.4.2 Solution Evolution
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Figure 15: A Simpli�ed Scenario

Figure 15 shows a solution evolution process of a very simple problem where resource Y
is regarded as a bottleneck resource. In (a), resource agents allocate their earliest possible
free resource intervals to activities, and thus construct the initial con�guration of variable
instantiation which is a conict-free schedule from the point of view of resource agents. In
(b), A13, A23 within dotted rectangular boxes represent the start times assigned by resource

7We have conducted experiments with random initial con�gurations and con�rmed that the search is
barely a�ected by its starting point, i.e. the search procedure has equal overall performance with heuristic
and random initial con�gurations.
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agents Res.X and Res.Z, respectively. Job1 and Job2 agents are not satis�ed with current
instantiation because the pairs of (A12 A13) and (A22 A23) are violating their precedence
constraints. Job1 (cf. Job2) agent changes the start times of A13 (cf. A23) (shown by solid
rectangular box) because A12 (cf. A22) is a seed activity and change frequency of A13 (cf.
A23) is zero (have not exceed the threshold). In (c), Res.Z agent �nds a capacity constraint
violation between A23 and A33 (shown by dotted rectangular box before conict resolution),
and changes the start time of A33 because A23 has a higher weight. All agents are satis�ed
with the current instantiation of variables in (d) which represents a solution to the problem.
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Figure 16: Conicts Evolution of a more di�cult problem

Figure 16 shows a solution evolution process in terms of occurred conicts for a more
di�cult problem which involves 10 jobs on 5 resources. In cycle 0, resource agents construct
an initial instantiation of variables that includes islands of reliability set by dominant (bot-
tleneck resource) agents. During cycle 1 to cycle 9, intermediate (job) agents and submissive
(regular resource) agents try to evolve a compatible instantiation with islands of reliability,
i.e., the instantiation of variables (activities) on the bottleneck resource. In cycle 10, some
job agents perceive the e�ort as having failed and change the values of their seed variables.
Bottleneck resource agents respond to constraint violations by modifying instantiation on the
islands of reliability. This results in a sharp increase of conicting activities for job agents in
cycle 11. Again, the search for compatible instantiation resumes until another modi�cation
on islands of reliability in cycle 16. In cycle 18, the solution is found.

5 Evaluation on Experimental Results

We evaluated the performance of CP&CR on a suite of job shop scheduling CSPs proposed in
[41]. The benchmark consists of 6 groups, representing di�erent scheduling conditions, of 10
problems, each of which has 10 jobs of 5 activities and 5 resources. Each group of problems
di�ers in two respects: (1) spread of the release and due dates among jobs; (2) number
of a-priori bottlenecks. The spread is controlled by varying the amplitude of the intervals
within which release and due dates are generated. Three spread levels are introduced: wide
(w), narrow (n), and null (0), i.e., both release and due date intervals are collapsed to single
points. Aside from di�erent spread levels of release and due dates, the benchmark also
considered one and two a-priori bottlenecks conditions. Each problem in the benchmark has
at least one feasible solution.
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CP&CR has been implemented in a system, called CORA (COordinated Reactive Agents).
We experimentally (1) investigated the e�ects of coordination information in the system, (2)
compared CORA's performance to other constraint-based as well as priority dispatch schedul-
ing methods, (3) investigated the e�ects of initial solution con�guration in the system, (4)
investigated CORA's scaling up characteristics on problems of larger sizes.

5.1 E�ects of Coordination Information

In order to investigate the e�ects of coordination information on the system's performance,
we constructed a set of four coordination con�gurations.

� C0 represents a con�guration in which the system ran with no coordination information
at all. Without boundary information, when initially activated, resource agents allocate
resource intervals according to random sequences. When job agents are activated, they
resolve conicts by randomly changing the instantiation of one of the two activities in
each conict pair. Similarly, resource agents resolve conicts based on random priority
sequences.

� C1 represents a con�guration in which only boundary information is available. Re-
source agents use this information for heuristic initial allocation of resource intervals.
After the initial schedule is generated, no other information is available for conict
resolutions.

� C2 represents a con�guration in which boundary and bottleneck tag information is
available. Resource agents use the boundary information for heuristic initial allocation
of resource intervals. Job agents use the bottleneck tag information to bias resolution
of conict pairs.

� C3 represents a complete con�guration in which all coordination information is pro-
vided for resource agents and job agents.
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Figure 17: Comparative Performance between Coordination Con�gurations
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Figure 17 shows the comparative performance of di�erent con�gurations on the suite
of benchmark problems. The additional coordination information for each con�guration is
underlined in Figure 17 (i). The number of cycles that the system was allowed was limited to
100. If there were still conicts at cycle 100, the system gave up solving the problem. Since
system operations in C0, C1, and C2 have random nature, they were ran on each problem
10 times. The numbers reported are the average number, e.g. 15.8 out of 60 problems were
solved means that there were 158 successful runs among 600 (10 runs for each problem).
C3 is deterministic and for it each problem was tried only once. We con�rm that adding
coordination information enables the system to solve more problems within fewer cycles.
The results shows the utility of coordination information.

Figure 17 (ii) shows, for di�erent coordination con�gurations, the successful overall prob-
lem solving processes8 in terms of the number of activities involved in conicts at each cycle.
As the coordination information increases, the shape of the curve indicates a steeper drop in
the number of conicts in fewer cycles. This indicates that increasing rates of convergence
are facilitated by more coordination information. The curve for deterministic C3 has a peak
at cycle 5. This reveals that when the problem was not solved within the �rst few cycles,
an instantiation modi�cation on the activities using bottleneck resources typically occurred.
The curves for C0, C1, and C2 do not exhibit a peak because the system does not have
particular pattern of interaction in those coordination con�gurations.

5.2 Comparison with Other Scheduling Techniques

CORA was compared to four other heuristic search scheduling techniques, ORR/FSS, MCIR,
CPS, and PCP. ORR/FSS [41] incrementally constructs a solution by chronological back-
tracking search guided by specialized variable and value ordering heuristics. ORR/FSS+ is
an improved version augmented with an intelligent backtracking technique [48]. Min-Conict
Iterative Repair (MCIR) [34] starts with an initial, inconsistent solution and searches through
the space of possible repairs based on a min-conicts heuristic which attempts to minimize
the number of constraint violations after each step. Conict Partition Scheduling (CPS)
[38] employs a search space analysis methodology based on stochastic simulation which it-
eratively prunes the search space by posting additional constraints. Precedence Constraint
Posting (PCP) [43] conducts the search by establishing sequencing constraints between pairs
of activities using the same resource based on slack-based heuristics. In addition, three fre-
quently used and appreciated priority dispatch rules from the �eld of Operations Research:
EDD, COVERT, and R&M [37], are also included for comparison.

Table 1 reports the number of problems solved9 and the average CPU time spent over all
the benchmark problems for each technique. Note that the results of ORR/FSS, ORR/FSS+,
MCIR, CPS, and PCP were obtained from published reports, of mostly the developers of the
techniques. MCIR is the only exception, which is implemented by Muscettola who reported
its results based on randomly generated initial solutions[38]. All CPU times were obtained
from Lisp implementations on a DEC 5000/200. In particular, CORA was implemented

8For C0, C1, and C2, only successful overall problem solving processes are averaged and shown.
9PCP's performance is sensitive to the parameters that specify search bias [43].
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in CLOS (Common Lisp Object System). CPS, MCIR, ORR/FSS, and ORR/FSS+ were
implemented using CRL (Carnegie Representation Language) as an underlying frame-based
knowledge representation language. CPU times of CPS, MCIR, ORR/FSS, and ORR/FSS+
were divided by six from the published numbers as an estimate of translating to straight
Common Lisp implementation.10 PCP's CPU times are not listed for comparison because
its CPU times in Lisp are not available. Its reported CPU times in C are 0.3 second [43].
Although CORA can operate asynchronously, it was sequentially implemented for fair com-
parison. The results show that CORA works considerably well as compared to the other
techniques both on feasibility and e�ciency in �nding a solution.
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Table 1: Performance Comparison

5.3 E�ects of Initial Solution Con�guration

CORA essentially employs reactive agents to iteratively repair current solution until a valid
solution evolved. Agents' local interactions direct the solution repairing process, which
is di�erent from iterative improvement (hill-climbing) methods [50] [35] that make local
changes to reduce a cost function. Previous study [36] indicates that the goodness of a rough
initial solution has great e�ects on the performance of iterative improvement methods. The
performance of MCIR based on randomly generated initial solutions provides evidence to
this observation.

In order to investigate the e�ects of initial solution con�gurations on the system's perfor-
mance, we conducted experiments with both heuristic and random initial con�gurations. In
heuristic initial con�guration, resource agents allocate free resource intervals to an activity
with the earliest due date. In random initial con�guration, the selection of activity for free
resource intervals was random among the eligible activities (i.e., those activities with release
dates before the current start time of free resource interval). CORA was ran on each problem
for 10 randomly generated initial solution con�gurations.

Table 2 shows CORA's performance on both heuristic and random initial solution con-
�gurations in terms of the number of cycles required to �nd a solution for a problem. CORA

10ORR/FSS and ORR/FSS+ obtained 30 times speedup in C/C++ implementation. We assumed a factor
of �ve between Common Lisp and C/C++ implementations.
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was able to solve all 60 problems for both heuristic and random initial solution con�gu-
rations. Within each problem category, the number of cycles required to �nd a solution
for a problem was averaged. The results show that CORA has equal overall performance
with heuristic and random initial solution con�gurations. We experimentally con�rmed that
CORA is barely e�ected by its starting point of search.

Heuristic 5.6

w/1

5.4Random

w/2

6.3

6.5

n/1 n/2

4.0

4.9

4.9

4.7

0/1 0/2

4.4

4.3

6.2

6.2

Average

5.2

5.3

Table 2: Comparative Performance between Initial Solution Con�gurations

5.4 Scaling Up Characteristics

Because of its asynchronous, interactive nature, CORA does not render itself to algorithmic
complexity analysis. In order to experimentally investigate CORA's scaling up character-
istics, we used the same problem generator function producing the benchmark problems to
produce two sets of 60 problems that involve 250 and 500 variables (e.g. 100 factory jobs
on 5 machines which is a problem of realistic size). These problems exhibit similar schedul-
ing conditions to the benchmark problems. Figure 18 shows CORA's performance on these
larger sized problems, which exhibits favorable, near-linear scaling-up characteristics. The
results seem to indicate that CORA's search mechanism is polynomial to the size of the
search space.

Problem Size

CPU  Time

5

25

60

250 50050

4.8

26.2

60.2

Figure 18: CORA's Scaling Up Property

5.5 Evaluation

The primary purpose of the experiments is to evaluate the utility of CP&CR as a tool to
divide and conquer tightly coupled problems, such as job shop scheduling. CP&CR provides
a framework in which an NCSP can be decomposed and assigned to di�erent problem solving
agents according to disjoint functionality (constraint types) and overlapping responsibility
(variable subsets). This decomposition leads to utilization of interaction characteristics that
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is further exploited to achieve problem solving by asynchronous and well coordinated local
interactions. Experimental results show that CORA, facilitated by coordination information,
e�ciently performed divide-and-conquer on the set of job shop scheduling problems. In ad-
dition, CORA exhibits two favorable properties: (1) the performance is relatively insensitive
to the initial solution con�guration, (2) computational cost seems to be near-linear to the
problem size. Furthermore, with a mechanism based on collective operations, CORA can be
readily implemented in parallel processing such that only two kinds of agents are activated
sequentially in each iteration cycle, instead of 10 job agents and 5 resource agents under
current implementation. This would result in an approximate time-reducing factor of 7 (i.e.,
15/2) and would enable CORA to outperform all other scheduling techniques in comparison.

As a scheduling technique, CORA performs a heuristic approximate search in the sense
that it does not systematically try all possible con�gurations. Although there are other
centralized scheduling techniques that employ similar search strategies, CORA distinguishes
itself by an interaction driven search mechanism based on well-coordinated asynchronous
local reactions. Heuristic approximate search provides a middle ground between the general-
ity of domain-independent search mechanisms and the e�ciency of domain-speci�c heuristic
rules. Instead of the rigidity of one-pass attempt in solution construction (either it succeeds
or fails, and the decisions are never revised) in approaches using heuristic rules, CORA
adapts to constraint violations and performs an e�ective search for a solution. As opposed
to generic search approaches, in which a single search is performed on the whole search space
and search knowledge is obtained by analyzing the whole space at each step, CORA exploits
local interactions by analyzing problem characteristics and conducts well-coordinated asyn-
chronous local searches.

The experimental results obtained by various approaches concur with the above obser-
vations. Approaches using generic search techniques augmented by domain-speci�c search-
focus heuristics (ORR/FSS, ORR/FSS+, MCIR, CPS) required substantial amount of com-
putational e�ort. Some of them could not solve all problems in the sense that they failed
to �nd a solution for a problem within the time limit set by their investigators. Approaches
using dispatch rules (EDD, COVERT, R&M) were computationally e�cient, but did not
succeed in all problems. PCP relies on heuristic rules to conduct one-pass search and its
performance is sensitive to parameters that specify search bias. CORA struck a good balance
in terms of solving all problems with considerable e�ciency.

CORA exploits local interactions based on the notion of islands of reliability and has
showed to perform quite well on problems with clear resource bottlenecks. For problems
with no clear bottlenecks and all resources are loosely utilized (say, below 50 percents of
utilization), we expect CORA perform with the same e�ciency by selecting the most utilized
resource as islands of reliability. However, CORA's current mechanism based on dominant
coordination may not be su�cient for problems in which all resources are at least moderately
utilized (say, above 60 percents of utilization) and there is no outstanding bottleneck. We are
interested in developing a more sophisticated mechanism based on competing coordination
and investigate its utility in various scheduling conditions.
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6 Conclusions

In this paper, we have presented a collective problem solving framework, where problem solv-
ing is viewed as an emergent functionality from the evolving process of a society of diverse,
interacting, well-coordinated reactive agents. We show that large-scaled NCSPs can be de-
composed and assigned to di�erent problem solving agents according to disjoint functionality
(constraint types) and overlapping responsibility (variable subsets). This decomposition re-
sults in utilization of interaction characteristics to achieve problem solving by asynchronous
and well coordinated local interactions. Application of the methodology to job shop schedul-
ing with non-relaxable time windows results in very good performance. Our experimental
results show that the coordination mechanism (1) incorporates search knowledge and guides
the search space exploration by the society of interacting agents, facilitating rapid conver-
gence to a solution, and (2) is independent of initial con�guration. In addition, the search
complexity grows only linearly with problem size. We are currently applying the CP&CR
methodology to Constraint Optimization Problems (COPs). Preliminary experiments show
encouraging results compared to both heuristic search and simulated-annealing-based tech-
niques. We are also investigating the utility of CP&CR in other domains with di�erent
problem structures.
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