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Abstract

When one rigid object (the pusher) pushes another (the
dider) across a horizontal support plane, Coulomb’s law
admits some surprising phenomena. First, itis possibleto
move thedlider by moving the pusher away fromthe dider:
pulling. Second, it ispossibleto obtaindlip between thetwo
objectseven with an infinitecoefficient of friction. Thusthe
common conception that infinitefriction prevents dipisin
error. This paper shows examples of the phenomena with
both quasi-static and dynamic analysis. It also addresses
implicationsfor the concept of perfectly rough surfaces.

1 Introduction

Consider the problem of two rigid objects in frictional
contact, supported by a horizontal planar surface, with
gravity acting along the vertical. The motion of one object,
the pusher, is given. The motion of the other object,
the dider, is subject to Newton's laws. Frictiona forces
are governed by Coulomb’s law. This paper constructs
examples exhibiting two counterintuitive phenomena:

1. Pulling. The dlider can maintain contact even when
the pusher moves away from the dider.

2. Sipping with infinite friction. Even with an infinite
coefficient of friction, dip can occur between thedider
and pusher.

This second phenomenon has implicationsfor the concept
of perfectly rough contact. Usually a perfectly rough
contact isdefined asacontact that doesnot admit dip. Some
treatments assume, erroneoudly, that thisis equivalent to
infinite friction. For example, Rutherford [11, page 41]
States

“Inthe second caseinwhich y = oo nodidingis
possible and the surfaces are said to be perfectly
rough.”

Intuitively this seems correct, but we now see that the two
concepts are not equivalent.

The paper begins with a review of the genera method
for solving frictional contact problems. Then we construct
examples exhibiting the two phenomena. First we apply
a quasi-static analysis, where forces of acceleration are
assumed negligible, and thenwefollow with afull dynamic
analysis. Finaly we discuss aternative definitions of
infinitefriction and therelation to perfectly rough surfaces.

2 Determining the motion of a pushed
obj ect

The solution of frictiona rigid-body contact problems
presents some unusual difficulties. Under Coulomb'’s law,
the force felt by a point contacting a surface must satisfy

where f; is the tangential frictional component, f, isthe
norma component, and y is the coefficient of friction.
During diding contact,

and the frictional force is directed opposite the direction
of diding. Thus Coulomb’s law does not directly specify
contact forces. Rather, it imposes constraints that vary
depending on the contact mode whether the contact
is being maintained, and whether the contact is diding
and in which direction. Frictional contact problems are
solved by case analysis. For each contact mode, we
determine whether forces and accel erations exist satisfying
the simultaneous constraints of Coulomb’s law, Newton's
second law, and whatever kinematic constraints may be
present. Each consistent set of forces and accelerations is
deemed a solution to the problem. Problems with multiple
solutions are ambiguous. Problems with no solutions are



Figure 1: Example pushing problem.

inconsistent. More detailed descriptions are given by
Lotstedt [8], Erdmann [5], Rajan et a. [10], Brost and
Mason [3], Baraff [2], Dupont [4], and Wang et al. [12].

3 Quasi-static pushing and pulling

All of the examples in this paper are of the form illustrated
in Figure 1. The pusher is a straight fence. The dider is
aring of radius 1 and uniform mass. The support force
is distributed evenly about the ring, and the coefficient
of support friction is uniform. Attached to the ring is a
massless rod of length [ which does not contact the support
surface. The dlider is pushed at the free end of the rod.
The rod makes an angle of 45 degrees with the fence. The
coefficient of friction at thecontact isy.. Theforcef applied
by the pusher passes through the contact at an angle ¢. The
pusher velocity is denoted v, at an angleof 6,. The slider
velocity at the rod endpoint is v, a an angle of 4,. All
angles are measured with respect to the fence.

We will say that a vector is directed into the slider if it
has a nonnegative component along the outward-pointing
norma of the fence, that is, if the angle is in the closed
interval [0°, 180°]. Otherwisewewill say that itisdirected
away from the dider. Force vectors are drawn with filled
arrowheads and vel ocity and accel eration vectorsare drawn
with open arrowheads.

Velocities will sometimes be represented as velocity
centers. The velocity center is the point in the plane
about which the motionisapurerotation. Similarly, initia
accel erationswill sometimesberepresented asacceleration
centers.

Now suppose that the dider motion is slow enough that
inertial forces are negligible compared with contact forces.
Then a solution obtains whenever the support frictional
forces balance the pusher contact force. Consider Figure 2,
for example. For the velocity center shown, the frictiona
support forces acting on the dider are precisely balanced
by the pusher force f passing through the contact. For
a pusher velocity v, equal to the solution slider velocity
v, and a large enough coefficient of friction x, we have
a solution. There is nothing unusual about this solution.
Since the pusher velocity v,, is directed into the slider, we
have pushing, not pulling.

But consider the example of Figure 3, where the applied
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Figure 2: Quasi-static pushing.
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Figure 3: Quasi-static pulling.

force passes closaly on the other side of the ring center.
Here asolution is obtained for v, equal to v, but directed
away from the dider: pulling. Note that a second solution
isthat the dlider simply breaks contact and does not move.
This problem is ambiguous, as are dl of the pulling
examples that we will construct.

To show that the solutions shown in Figures 2 and 3
really are solutions, we integrate the support frictional
forces around the ring and show that the total frictional
force the dider applies to the support equals f. We use
two coordinate systems (Figure 4), one system z-y aligned
with the pusher, and a primed system =’-y" aligned with the
applied force but centered on the dlider.

With some modifications, Goyad [6] gives the following
expressions for frictiona force and torque applied by the
ring to the support surface in the primed system:

fx’ =0 (1)
worer 1+ % cosé
fyr = son(v > = do (2)
TJo \/1—|-(%)2+2% cosd
2n “ 4 cosé
00 = %n(v W + de (3)

27Jo 14 (2)2+ 22 cost



Figure 4: Coordinate conventions.

where W is the dlider weight multiplied by the support
friction coefficient, w is the dider angular velocity, and v
is the velocity of the slider center dong the ' axis. (The
velocity of the dlider center along the =’ axisiszero. The
velocity center will fall adirected distance —v /w aong the
x’ axis.) Theintegrasare élipticintegraswhich could be
reduced to normal form, asin [6].

Thefrictiona force and torquemeasured in the unprimed
systemis:

fo = [y cosé (4)
fy = fy’sm¢ ©)
O = To —|—lfyzsin((/>—45°) (6)

For quasi-static balance the torque about the contact point
must be zero:

0 = 0 (7)

Equation 7 implicitly definesavel ocity center asafunction
of theforceangle¢. In principle, we could solve equation 7
for w/v as afunction of ¢. The quantity —v/w gives the
velocity center as adirected distance along the z’-axis and
the sign of —ry givesthe rotation sense.

In practice, therelation of the pusher forcef tothe dider
motion can be obtained numerically. We can also employ
thelimit surface of Goyal et al. [ 7] to represent thisrelation.
The limit surface is the locus of (f., f,, ) arising from
support friction during all possible slider motions. It is
a closed, convex, two-dimensiona surface enclosing the
origin. Goyal showed that if a dider motion (v, vy, w)
causes the dider to apply aforce (f5, f,,, 7) to the support,
then (v, vy, w) is parald to the outward-pointing normal
of thelimit surface at ( f,, fy, 7).

For the present case, the limit surface can be reduced to
acurveinthe plane. The limit surface is constructed with
forces measured in the xz-y coordinate system and torques
measured about the pushing contact. But we are interested
only in those motions producing no torque about this point.
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Figure5: Limit curvesfor different rod lengths.

Therefore, we intersect the limit surface with the plane
70 = O to obtain a limit curve representing the locus of
frictional forces corresponding to possible solutions of the
slider motion. Now choose f' to be one such force on the
limit curve, and let v, be the corresponding velocity of the
dider contact point. Then v, isnormal to thelimit curve at
f.

Figure 5 shows limit curves for several different values
of [. (Thelimit curves may appear to be elliptical, but they
arenot.) As! approacheszero, thelimit curve approachesa
circle. As! approaches infinity, the limit curve approaches
a line segment aigned with therod. The force f and the
velocity v, are paralel only at local extrema of the limit
curve. The force which the support friction can resist is
maximized at ¢ equal to 45 degrees and 225 degrees, which
correspond to purelengthwisetrand ationsof thedider, and
minimized at ¢ equal to 135 degrees and 315 degrees. At
these four force angles, 6, isequal to ¢.

3.1 Friction conesand velocity cones

Coulomb’slaw impliesasimpleconstraint on thetotal force
acting at apoint contact: theforcemust act onalinethrough
the contact and inside afriction cone defined by the directed
lines which make an angle of tan—!y with the contact
norma. Similarly, we can define thevel ocity cone [9] to be
aconstraint on the possiblevelocity directions of the dider
contact point. Each force insidethe contact friction coneis
mapped by the limit curve to a corresponding contact point
velocity angle 8. These velocity vector directions sweep
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Figure 6: Mapping a friction cone (u = 2) to a velocity
cone through the limit curve for [ = 2.

out the velocity cone. Note that the convexity of the limit
curve impliesthat ¢, changes monotonically with ¢.

Now it is rather easy to see how pulling is possible.
Coulomb’s law is satisfied only by forces applied into the
dider, but thereisno similar requirement on velocities. For
alarge coefficient of friction, the velocity cone can include
velocities away from the dlider. Figure 6, for example,
shows the velocity cone for [ = 2 and ¢ = 2. Note,
however, that the quantity f - v, must be nonnegative; that
is, the pusher must perform nonnegative work in order to
move the dider. Therefore, the velocity cone will always
lie within 90 degrees of the friction cone.

3.2 Slipping with infinitefriction

An infinite coefficient of friction results in a friction
cone spanning 180 degrees, including exactly those forces
directed intothedlider. Dueto symmetry inthelimit curve,
the velocity cone aso spans 180 degrees. But unless this
velocity coneisaligned with thefriction cone, dlipping may
occur at the pusher-dider contact. Slipping occurs for any
pusher velocity such that (1) v, has a positive component
in the contact normd (v,, > 0), and (2) v, is outside the
velocity cone. The first constraint ensures that the slider
must move in response to the push: the pushing constraint
is active. The second constraint ensures that the dlider
velocity v, is not equa to the pusher velocity v,: the
contact is dipping. For sticking contact to occur the fence
would haveto apply aforce f away from the dider, which
isimpossible without adhesion.

Figure 7 shows the velocity cones for infinite p and
severa choices of [. The pusher-dider contact will dlip
for 8, just less than 180 degrees. Figure 8 demonstrates
dlipping contact for [ = 5. The rod endpoint velocity v,
cannot equal the pusher velocity v, because v, liesto the
left of the velocity cone. Therefore, the contact is dipping
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Figure 7: Infinitefriction velocity cones.

to the right and the applied force f lies on the left edge of
the friction cone. This givesriseto arod endpoint vel ocity
v, ontheleft edge of the velocity cone. The pusher, dider,
and dlipping velocitiesareillustrated in Figure 8.

Sticking contact will always occur for infinite g,
regardless of the slider’s support distribution, if the pusher
moves exactly in the direction of the contact normal. The
infinite friction velocity cone must lie within 90 degrees
of the friction cone, and therefore the velocity cone must
always include the contact normal. Slip isimpossible for
a normal push with infinite p because it implies that the
pusher performs negative work, i.e., f - v is negative.

4 Dynamic pushing and pulling

In this section we first anayze the dynamic motion of a
dider on a frictionless support, and then we incorporate
support frictiona forces.

In the case of pure dynamic pushing, support frictional
forces are negligible compared to inertial forces. It isa
simple matter to show that the two effects demonstrated
above for the quasi-static case also apply to the pure
dynamic case. The example used here is anaogous to
that for the quasi-static case. The dider has unit mass
uniformly distributed over the ring, giving it a unit radius
of gyration. The linear acceleration of the pusher isa,, and
the acceleration of therod endpointisa,. Wewill consider
theinitial motion of the dider starting from rest.

Wewill employ anaccel eration cone, whichisanal ogous
to the velocity cone for quasi-static pushing. The forces
which may be applied by the pusher, represented by
the friction cone, map to a set of possible rod endpoint
accelerations, represented by the acceleration cone. The
acceleration cone possesses properties similar to those of
the velocity cone. In particular, the angle of a, changes
monotonicaly with ¢, and f - a; must always be positive,
i.e., the acceleration cone aways lies within 90 degrees of
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Figure 8: Slipping with infinitefrictionfor [ = 5.

the friction cone. This is another way of saying that the
mass matrix of the slider must be positive definite.

For adlider of unit mass, unit radius of gyration, and the
genera rod angle v, we find the generalized acceleration
of the slider center of mass (a.q, d.y, o, ):

Aeg = fx‘ (8)
Qey = fy (9)
a, = (flsiny — f,lcosy) (20)

The rod endpoint acceleration a, isthen

Usg = Qeg + aclSin’l/)
= fo(14Ps€n?y) — f,Psinycosy (11)
Usy = Gey — .l COSY

= f,(1+Pco ) — fl?sinycosy (12)

Pulling is possible when the rod endpoint acceleration is
away fromthedider (a,, < 0), i.e., when

fy(L+Pcos? o) — frl?sinycosyy <0 (13)

Substituting p f,, for f, and choosing ¢ = 45° and { = 2,
this condition becomes 3f, — 2uf, < 0, whichis satisfied
for p > 1.5.

Figure 9 shows the possible initial acceleration centers
(found by theforce-dua method of [3]) and theaccel eration
cones for { = 2 and two different values of the coefficient
of friction: (8 ¢ = 2; and (b) 4 = o~o. The pusher
and dider are initialy at rest. In Figure 9(a), pullingis a
consistent solution if the pusher acceleration a,, is inside
the accel eration cone and away from the slider (a,, < 0).
In Figure 9(b), dipping contact is the only solution if the
pusher acceleration a,, isoutsidethe accel eration conewith
apy > 0.

Continuing the analogy with the quasi-static case, we
note that the mapping between the applied force angle ¢
and the angle of a; is governed by an elipsoidal surface
analogous to the limit surface of the quasi-static case. An
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Figure 9: Acceleration conesforl = 2. (&) u = 2. (b)

@ = oo.

appliedforce( fz, f,, 7) mapstoan acceleration (a,, ay, «)
normal to thisellipsoid at (£, f,, 7). The iy = 0 plane of
thiselipsoid is an elipse with a mgjor axis of half-length
¢ aligned with the rod and a perpendicular minor axis of
haf-length ¢/+/1 + (I/p)?, where p is the (unit) radius of
gyration and ¢ is a scaling factor depending on the force
magnitude. Figure 10 shows the ellipses corresponding to
several rod lengths and the mapping of afriction coneto an
acceleration conefor thecase ! = 1. These elipses clearly
indicate the possibility of pulling and dlipping with infinite
friction.

We note that the dynamic pulling example is equivalent
to a well known example of frictional ambiguity: a rod
touching a nearly vertica wall in a gravity field. (See
[8, 5, 10].) As far as we know, no example of dip with
infinitefriction has previously been published.

Finally we address a case where neither friction nor
dynamic forces can be neglected. In such a case neither
the velocity cone nor the acceleration cone is directly
applicable, but it is still easy to construct examples where
the initial motion involves pulling or dip with infinite
friction.

Againwe consider theinitial motion of an object starting
from rest. The initial acceleration is represented by an
acceleration center. This acceleration center is aso the
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Figure 10: Ellipsesgoverningthe mappingfromf toa, for
the pure dynamic case and four different rod lengths. Also
shownisthemapping from africtionconeto an accel eration
conefor{ = 1.
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Figure 11: A pulling example, including support friction
and inertia forces. = 5.

impending velocity center, from which we can derive the
support frictional forces.

Figure 11 shows a possible pulling solution for [ = 5.
Consider aninitial acceleration center on thering as shown.
For thisaccel eration center, both the dynamic force and the
frictional force act along a line through the contact point
and tangent tothering. Whatever their rel ativemagnitudes,
the resultant must act along the same line. A dynamic
balance results from an applied force f acting along the
same line in the opposite direction, as shown. Notice
that this acceleration center gives an initial rod endpoint
acceleration away from the dider: pulling.

Demonstrating slip with infinite friction is a little more
involved. We note the following geometrical relationsthat
apply to the lines of action of both the support frictional
force and the dynamic force:

1. Given an initid acceleration center with the dider

initially at rest, each line of force is perpendicular to
the line through the accel eration center and the slider
center of mass.

2. Both lines of force are directed so as to oppose the
accel eration.

3. Therefore, the two lines of force are paralld to each
other, and to their resultant force.

4. Both linesof forcelie on the opposite side of thering
center from the acceleration center.

5. If the acceleration center is outside the ring, each line
of force passes through the ring.

6. If the acceleration center is on the ring, each line of
force istangent to thering.

7. If the acceleration center is inside the ring, each line
of force passes outside the ring.

Now we consider several cases, depending on the
direction of the applied force. First, suppose the applied
force acts within the friction cone, but along a line wholly
to the right of the ring. Then both the support friction and
the dynamic force must al so passthering on the same side.
Hence the acceleration center is inside the ring, on aline
perpendicular to the applied force, and on the oppositeside
of thering center. Aswe sweep the applied force through
thisrange, the possibleaccel eration centers must fall within
a sector of thering interior.

Second, suppose the applied force istangent to the ring.
Both the support friction and the dynamic force must act
along the same line. The acceleration center must lie on
the opposite side of thering.

Third, suppose the applied force passes to the right of
the ring center, but through the ring. The support friction
and the dynamic force must act on the same side of the
ring center and through the ring. The acceleration center
must lieon aline perpendicular to the applied force, on the
oppositeside of thering center, and outsidethering. Asthe
applied forceis swept through thisregion, the acceleration
center is confined to a sector of the plane outside the ring.

Fourth, suppose the applied force passes through thering
center. The support friction and the dynamic force cannot
act on opposite sides of the center, so they must both act
through the center. The acceleration center is at infinity,
correspondingto atrandationin thedirection of theapplied
force.

There are three more cases, but they are similar to the
first three. Taking al seven cases together, we find that
the possible acceleration centers for [ = 5 are confined to
the region shown in Figure 12. The corresponding initial
accel erations of the rod endpoint are a so shown. Noinitial
accel eration outside that cone is possible. Slipping occurs
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Figure 12: Slip with infinite friction, including support
friction and inertial forces. [ = 5.

for an initia pusher acceleration a,, at angles just less than
180°, regardlessof themagnitude of theacceleration. (Note
that the bounds on the initial accelerations shown are a
conservative approximation found using the geometrical
facts given. Tighter bounds may be obtained with an
exact analysis, but these bounds serve to demonstrate the
phenomenon.)

5 Remarks

One of the difficulties in this work was that definitions
of “infinite friction” and “perfectly rough” are generally
imprecise and vary from one author to the next. In
our sampling it appears that most authors really intend
“perfectly rough” to mean a kinematic constraint that
prevents dip, which is the definition we adopted. This
definition does not need to be amended, but it is wise to
bear in mind that it sometimes implies adhesive forces.
With respect to the notion of “infinite friction” the
situation is less clear. It should be noted that dlipping
is possible with infinite friction because zero normal
force is applied to the dider, thus allowing the tangential
frictional force to be finite during slipping. Alexander and
Maddocks[1] adopt adifferent definition of infinitefriction
which preventsatangential forceintheabsence of anormal
force. This definition changes the range of force angles
which may be applied by thefence from the closed interval
[0°,180°] totheopeninterval (0°, 180°). These definitions
of infinite friction correspond to (1) f, = 0 = f;
unrestricted (and during dlip, thefrictional forceisdirected
opposite the lipping velocity), and (2) f, = 0= f; =0,
respectively, where f,, is the normal force and f; is the
tangentia frictional force. In our examples, any situation

inwhich definition 1 prevents sticking contact, definition 2
also disallows sticking contact. Definition 2, however, aso
disalows dlipping contact; the slipping examples given
above have no solution. Neither definition implements the
perfectly rough surface of classica mechanics.
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