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Abstract

When one rigid object (the pusher) pushes another (the
slider) across a horizontal support plane, Coulomb’s law
admits some surprising phenomena. First, it is possible to
move the slider by moving the pusher away from the slider:
pulling. Second, it is possible to obtain slip between the two
objects even with an infinite coefficient of friction. Thus the
common conception that infinite friction prevents slip is in
error. This paper shows examples of the phenomena with
both quasi-static and dynamic analysis. It also addresses
implications for the concept of perfectly rough surfaces.

1 Introduction

Consider the problem of two rigid objects in frictional
contact, supported by a horizontal planar surface, with
gravity acting along the vertical. The motion of one object,
the pusher, is given. The motion of the other object,
the slider, is subject to Newton’s laws. Frictional forces
are governed by Coulomb’s law. This paper constructs
examples exhibiting two counterintuitive phenomena:

1. Pulling. The slider can maintain contact even when
the pusher moves away from the slider.

2. Slipping with infinite friction. Even with an infinite
coefficient of friction, slip can occur between the slider
and pusher.

This second phenomenon has implications for the concept
of perfectly rough contact. Usually a perfectly rough
contact is defined as a contact that does not admit slip. Some
treatments assume, erroneously, that this is equivalent to
infinite friction. For example, Rutherford [11, page 41]
states

“In the second case in which � =1 no sliding is
possible and the surfaces are said to be perfectly
rough.”

Intuitively this seems correct, but we now see that the two
concepts are not equivalent.

The paper begins with a review of the general method
for solving frictional contact problems. Then we construct
examples exhibiting the two phenomena. First we apply
a quasi-static analysis, where forces of acceleration are
assumed negligible, and then we follow with a full dynamic
analysis. Finally we discuss alternative definitions of
infinite friction and the relation to perfectly rough surfaces.

2 Determining the motion of a pushed
object

The solution of frictional rigid-body contact problems
presents some unusual difficulties. Under Coulomb’s law,
the force felt by a point contacting a surface must satisfy

jftj � �fn

where ft is the tangential frictional component, fn is the
normal component, and � is the coefficient of friction.
During sliding contact,

jftj = �fn

and the frictional force is directed opposite the direction
of sliding. Thus Coulomb’s law does not directly specify
contact forces. Rather, it imposes constraints that vary
depending on the contact mode: whether the contact
is being maintained, and whether the contact is sliding
and in which direction. Frictional contact problems are
solved by case analysis. For each contact mode, we
determine whether forces and accelerations exist satisfying
the simultaneous constraints of Coulomb’s law, Newton’s
second law, and whatever kinematic constraints may be
present. Each consistent set of forces and accelerations is
deemed a solution to the problem. Problems with multiple
solutions are ambiguous. Problems with no solutions are
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Figure 1: Example pushing problem.

inconsistent. More detailed descriptions are given by
Lötstedt [8], Erdmann [5], Rajan et al. [10], Brost and
Mason [3], Baraff [2], Dupont [4], and Wang et al. [12].

3 Quasi-static pushing and pulling
All of the examples in this paper are of the form illustrated
in Figure 1. The pusher is a straight fence. The slider is
a ring of radius 1 and uniform mass. The support force
is distributed evenly about the ring, and the coefficient
of support friction is uniform. Attached to the ring is a
massless rod of length l which does not contact the support
surface. The slider is pushed at the free end of the rod.
The rod makes an angle of 45 degrees with the fence. The
coefficient of friction at the contact is�. The force f applied
by the pusher passes through the contact at an angle �. The
pusher velocity is denoted vp, at an angle of �p. The slider
velocity at the rod endpoint is vs, at an angle of �s. All
angles are measured with respect to the fence.

We will say that a vector is directed into the slider if it
has a nonnegative component along the outward-pointing
normal of the fence, that is, if the angle is in the closed
interval [0�; 180�]. Otherwise we will say that it is directed
away from the slider. Force vectors are drawn with filled
arrowheads and velocity and acceleration vectors are drawn
with open arrowheads.

Velocities will sometimes be represented as velocity
centers. The velocity center is the point in the plane
about which the motion is a pure rotation. Similarly, initial
accelerations will sometimes be represented as acceleration
centers.

Now suppose that the slider motion is slow enough that
inertial forces are negligible compared with contact forces.
Then a solution obtains whenever the support frictional
forces balance the pusher contact force. Consider Figure 2,
for example. For the velocity center shown, the frictional
support forces acting on the slider are precisely balanced
by the pusher force f passing through the contact. For
a pusher velocity vp equal to the solution slider velocity
vs, and a large enough coefficient of friction �, we have
a solution. There is nothing unusual about this solution.
Since the pusher velocity vp is directed into the slider, we
have pushing, not pulling.

But consider the example of Figure 3, where the applied
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Figure 2: Quasi-static pushing.
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Figure 3: Quasi-static pulling.

force passes closely on the other side of the ring center.
Here a solution is obtained for vp equal to vs but directed
away from the slider: pulling. Note that a second solution
is that the slider simply breaks contact and does not move.
This problem is ambiguous, as are all of the pulling
examples that we will construct.

To show that the solutions shown in Figures 2 and 3
really are solutions, we integrate the support frictional
forces around the ring and show that the total frictional
force the slider applies to the support equals f . We use
two coordinate systems (Figure 4), one system x-y aligned
with the pusher, and a primed system x0-y0 aligned with the
applied force but centered on the slider.

With some modifications, Goyal [6] gives the following
expressions for frictional force and torque applied by the
ring to the support surface in the primed system:

fx0 = 0 (1)

fy0 = sgn(v)
W

2�

Z 2�

0

1 + !

v
cos �q

1 + (!
v
)2 + 2!

v
cos �

d� (2)

�00 = sgn(v)
W

2�

Z 2�

0

!

v
+ cos �q

1 + (!
v
)2 + 2!

v
cos �

d� (3)



y

x

f

y’

x’

φ

Figure 4: Coordinate conventions.

where W is the slider weight multiplied by the support
friction coefficient, ! is the slider angular velocity, and v
is the velocity of the slider center along the y0 axis. (The
velocity of the slider center along the x0 axis is zero. The
velocity center will fall a directed distance�v=! along the
x0 axis.) The integrals are elliptic integrals which could be
reduced to normal form, as in [6].

The frictional force and torque measured in the unprimed
system is:

fx = fy0 cos� (4)

fy = fy0 sin� (5)

�0 = �00 + lfy0 sin(�� 45�) (6)

For quasi-static balance the torque about the contact point
must be zero:

�0 = 0 (7)

Equation 7 implicitly defines a velocity center as a function
of the force angle�. In principle, we could solve equation 7
for !=v as a function of �. The quantity �v=! gives the
velocity center as a directed distance along the x0-axis and
the sign of ��00 gives the rotation sense.

In practice, the relation of the pusher force f to the slider
motion can be obtained numerically. We can also employ
the limit surface of Goyal et al. [7] to represent this relation.
The limit surface is the locus of (fx; fy; � ) arising from
support friction during all possible slider motions. It is
a closed, convex, two-dimensional surface enclosing the
origin. Goyal showed that if a slider motion (vx; vy; !)
causes the slider to apply a force (fx; fy; � ) to the support,
then (vx; vy; !) is parallel to the outward-pointing normal
of the limit surface at (fx; fy ; � ).

For the present case, the limit surface can be reduced to
a curve in the plane. The limit surface is constructed with
forces measured in the x-y coordinate system and torques
measured about the pushing contact. But we are interested
only in those motions producing no torque about this point.
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Figure 5: Limit curves for different rod lengths.

Therefore, we intersect the limit surface with the plane
�0 = 0 to obtain a limit curve representing the locus of
frictional forces corresponding to possible solutions of the
slider motion. Now choose f to be one such force on the
limit curve, and let vs be the corresponding velocity of the
slider contact point. Then vs is normal to the limit curve at
f .

Figure 5 shows limit curves for several different values
of l. (The limit curves may appear to be elliptical, but they
are not.) As l approaches zero, the limit curve approaches a
circle. As l approaches infinity, the limit curve approaches
a line segment aligned with the rod. The force f and the
velocity vs are parallel only at local extrema of the limit
curve. The force which the support friction can resist is
maximized at � equal to 45 degrees and 225 degrees, which
correspond to pure lengthwise translations of the slider, and
minimized at � equal to 135 degrees and 315 degrees. At
these four force angles, �s is equal to �.

3.1 Friction cones and velocity cones

Coulomb’s law implies a simple constraint on the total force
acting at a point contact: the force must act on a line through
the contact and inside a friction cone defined by the directed
lines which make an angle of tan�1 � with the contact
normal. Similarly, we can define the velocity cone [9] to be
a constraint on the possible velocity directions of the slider
contact point. Each force inside the contact friction cone is
mapped by the limit curve to a corresponding contact point
velocity angle �s. These velocity vector directions sweep
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Figure 6: Mapping a friction cone (� = 2) to a velocity
cone through the limit curve for l = 2.

out the velocity cone. Note that the convexity of the limit
curve implies that �s changes monotonically with �.

Now it is rather easy to see how pulling is possible.
Coulomb’s law is satisfied only by forces applied into the
slider, but there is no similar requirement on velocities. For
a large coefficient of friction, the velocity cone can include
velocities away from the slider. Figure 6, for example,
shows the velocity cone for l = 2 and � = 2. Note,
however, that the quantity f � vs must be nonnegative; that
is, the pusher must perform nonnegative work in order to
move the slider. Therefore, the velocity cone will always
lie within 90 degrees of the friction cone.

3.2 Slipping with infinite friction

An infinite coefficient of friction results in a friction
cone spanning 180 degrees, including exactly those forces
directed into the slider. Due to symmetry in the limit curve,
the velocity cone also spans 180 degrees. But unless this
velocity cone is aligned with the friction cone, slipping may
occur at the pusher-slider contact. Slipping occurs for any
pusher velocity such that (1) vp has a positive component
in the contact normal (vpy > 0), and (2) vp is outside the
velocity cone. The first constraint ensures that the slider
must move in response to the push: the pushing constraint
is active. The second constraint ensures that the slider
velocity vs is not equal to the pusher velocity vp: the
contact is slipping. For sticking contact to occur the fence
would have to apply a force f away from the slider, which
is impossible without adhesion.

Figure 7 shows the velocity cones for infinite � and
several choices of l. The pusher-slider contact will slip
for �p just less than 180 degrees. Figure 8 demonstrates
slipping contact for l = 5. The rod endpoint velocity vs

cannot equal the pusher velocity vp because vp lies to the
left of the velocity cone. Therefore, the contact is slipping

fx

fy

vx

vy

l = 
l = 

l = 
l = 

1
2
5
10

l = 10
l = 5

l = 2
l = 1

Figure 7: Infinite friction velocity cones.

to the right and the applied force f lies on the left edge of
the friction cone. This gives rise to a rod endpoint velocity
vs on the left edge of the velocity cone. The pusher, slider,
and slipping velocities are illustrated in Figure 8.

Sticking contact will always occur for infinite �,
regardless of the slider’s support distribution, if the pusher
moves exactly in the direction of the contact normal. The
infinite friction velocity cone must lie within 90 degrees
of the friction cone, and therefore the velocity cone must
always include the contact normal. Slip is impossible for
a normal push with infinite � because it implies that the
pusher performs negative work, i.e., f � vs is negative.

4 Dynamic pushing and pulling

In this section we first analyze the dynamic motion of a
slider on a frictionless support, and then we incorporate
support frictional forces.

In the case of pure dynamic pushing, support frictional
forces are negligible compared to inertial forces. It is a
simple matter to show that the two effects demonstrated
above for the quasi-static case also apply to the pure
dynamic case. The example used here is analogous to
that for the quasi-static case. The slider has unit mass
uniformly distributed over the ring, giving it a unit radius
of gyration. The linear acceleration of the pusher is ap and
the acceleration of the rod endpoint is as. We will consider
the initial motion of the slider starting from rest.

We will employ an acceleration cone, which is analogous
to the velocity cone for quasi-static pushing. The forces
which may be applied by the pusher, represented by
the friction cone, map to a set of possible rod endpoint
accelerations, represented by the acceleration cone. The
acceleration cone possesses properties similar to those of
the velocity cone. In particular, the angle of as changes
monotonically with �, and f � as must always be positive,
i.e., the acceleration cone always lies within 90 degrees of
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Figure 8: Slipping with infinite friction for l = 5.

the friction cone. This is another way of saying that the
mass matrix of the slider must be positive definite.

For a slider of unit mass, unit radius of gyration, and the
general rod angle  , we find the generalized acceleration
of the slider center of mass (acx; acy; �c):

acx = fx (8)

acy = fy (9)

�c = (fxl sin � fyl cos ) (10)

The rod endpoint acceleration as is then

asx = acx + �cl sin 

= fx(1 + l2 sin2  ) � fy l
2 sin cos (11)

asy = acy � �cl cos 

= fy(1 + l2 cos2  ) � fxl
2 sin cos (12)

Pulling is possible when the rod endpoint acceleration is
away from the slider (asy < 0), i.e., when

fy(1 + l2 cos2  ) � fxl
2 sin cos < 0 (13)

Substituting �fy for fx and choosing  = 45� and l = 2,
this condition becomes 3fy � 2�fy < 0, which is satisfied
for � > 1:5.

Figure 9 shows the possible initial acceleration centers
(found by the force-dual method of [3]) and the acceleration
cones for l = 2 and two different values of the coefficient
of friction: (a) � = 2; and (b) � = 1. The pusher
and slider are initially at rest. In Figure 9(a), pulling is a
consistent solution if the pusher acceleration ap is inside
the acceleration cone and away from the slider (apy < 0).
In Figure 9(b), slipping contact is the only solution if the
pusher acceleration ap is outside the acceleration cone with
apy > 0.

Continuing the analogy with the quasi-static case, we
note that the mapping between the applied force angle �
and the angle of as is governed by an ellipsoidal surface
analogous to the limit surface of the quasi-static case. An
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Figure 9: Acceleration cones for l = 2. (a) � = 2. (b)
� =1.

applied force (fx; fy; �) maps to an acceleration (ax; ay; �)
normal to this ellipsoid at (fx; fy; � ). The �0 = 0 plane of
this ellipsoid is an ellipse with a major axis of half-length
c aligned with the rod and a perpendicular minor axis of
half-length c=

p
1 + (l=�)2, where � is the (unit) radius of

gyration and c is a scaling factor depending on the force
magnitude. Figure 10 shows the ellipses corresponding to
several rod lengths and the mapping of a friction cone to an
acceleration cone for the case l = 1. These ellipses clearly
indicate the possibility of pulling and slipping with infinite
friction.

We note that the dynamic pulling example is equivalent
to a well known example of frictional ambiguity: a rod
touching a nearly vertical wall in a gravity field. (See
[8, 5, 10].) As far as we know, no example of slip with
infinite friction has previously been published.

Finally we address a case where neither friction nor
dynamic forces can be neglected. In such a case neither
the velocity cone nor the acceleration cone is directly
applicable, but it is still easy to construct examples where
the initial motion involves pulling or slip with infinite
friction.

Again we consider the initial motion of an object starting
from rest. The initial acceleration is represented by an
acceleration center. This acceleration center is also the
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Figure 10: Ellipses governing the mapping from f to as for
the pure dynamic case and four different rod lengths. Also
shown is the mapping from a friction cone to an acceleration
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Figure 11: A pulling example, including support friction
and inertial forces. l = 5.

impending velocity center, from which we can derive the
support frictional forces.

Figure 11 shows a possible pulling solution for l = 5.
Consider an initial acceleration center on the ring as shown.
For this acceleration center, both the dynamic force and the
frictional force act along a line through the contact point
and tangent to the ring. Whatever their relative magnitudes,
the resultant must act along the same line. A dynamic
balance results from an applied force f acting along the
same line in the opposite direction, as shown. Notice
that this acceleration center gives an initial rod endpoint
acceleration away from the slider: pulling.

Demonstrating slip with infinite friction is a little more
involved. We note the following geometrical relations that
apply to the lines of action of both the support frictional
force and the dynamic force:

1. Given an initial acceleration center with the slider

initially at rest, each line of force is perpendicular to
the line through the acceleration center and the slider
center of mass.

2. Both lines of force are directed so as to oppose the
acceleration.

3. Therefore, the two lines of force are parallel to each
other, and to their resultant force.

4. Both lines of force lie on the opposite side of the ring
center from the acceleration center.

5. If the acceleration center is outside the ring, each line
of force passes through the ring.

6. If the acceleration center is on the ring, each line of
force is tangent to the ring.

7. If the acceleration center is inside the ring, each line
of force passes outside the ring.

Now we consider several cases, depending on the
direction of the applied force. First, suppose the applied
force acts within the friction cone, but along a line wholly
to the right of the ring. Then both the support friction and
the dynamic force must also pass the ring on the same side.
Hence the acceleration center is inside the ring, on a line
perpendicular to the applied force, and on the opposite side
of the ring center. As we sweep the applied force through
this range, the possible acceleration centers must fall within
a sector of the ring interior.

Second, suppose the applied force is tangent to the ring.
Both the support friction and the dynamic force must act
along the same line. The acceleration center must lie on
the opposite side of the ring.

Third, suppose the applied force passes to the right of
the ring center, but through the ring. The support friction
and the dynamic force must act on the same side of the
ring center and through the ring. The acceleration center
must lie on a line perpendicular to the applied force, on the
opposite side of the ring center, and outside the ring. As the
applied force is swept through this region, the acceleration
center is confined to a sector of the plane outside the ring.

Fourth, suppose the applied force passes through the ring
center. The support friction and the dynamic force cannot
act on opposite sides of the center, so they must both act
through the center. The acceleration center is at infinity,
corresponding to a translation in the direction of the applied
force.

There are three more cases, but they are similar to the
first three. Taking all seven cases together, we find that
the possible acceleration centers for l = 5 are confined to
the region shown in Figure 12. The corresponding initial
accelerations of the rod endpoint are also shown. No initial
acceleration outside that cone is possible. Slipping occurs
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Figure 12: Slip with infinite friction, including support
friction and inertial forces. l = 5.

for an initial pusher acceleration ap at angles just less than
180�, regardless of the magnitude of the acceleration. (Note
that the bounds on the initial accelerations shown are a
conservative approximation found using the geometrical
facts given. Tighter bounds may be obtained with an
exact analysis, but these bounds serve to demonstrate the
phenomenon.)

5 Remarks

One of the difficulties in this work was that definitions
of “infinite friction” and “perfectly rough” are generally
imprecise and vary from one author to the next. In
our sampling it appears that most authors really intend
“perfectly rough” to mean a kinematic constraint that
prevents slip, which is the definition we adopted. This
definition does not need to be amended, but it is wise to
bear in mind that it sometimes implies adhesive forces.

With respect to the notion of “infinite friction” the
situation is less clear. It should be noted that slipping
is possible with infinite friction because zero normal
force is applied to the slider, thus allowing the tangential
frictional force to be finite during slipping. Alexander and
Maddocks [1] adopt a different definition of infinite friction
which prevents a tangential force in the absence of a normal
force. This definition changes the range of force angles
which may be applied by the fence from the closed interval
[0�; 180�] to the open interval (0�; 180�). These definitions
of infinite friction correspond to (1) fn = 0 ) ft
unrestricted (and during slip, the frictional force is directed
opposite the slipping velocity), and (2) fn = 0 ) ft = 0,
respectively, where fn is the normal force and ft is the
tangential frictional force. In our examples, any situation

in which definition 1 prevents sticking contact, definition 2
also disallows sticking contact. Definition 2, however, also
disallows slipping contact; the slipping examples given
above have no solution. Neither definition implements the
perfectly rough surface of classical mechanics.
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