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ABSTRACT
In this paper, we present a new algorithm that adaptively selects the best possible reference frame for the predictive coding

of generalized, or multi-view, video signals, based on estimated prediction similarity with the desired frame. We define
similarity between two frames as the absence of occlusion, and we estimate this quantity from the variance of composite
displacement vector maps. The composite maps are obtained without requiring the computationally intensive process of
motion estimation for each candidate reference frame. We provide prediction and compression performance results for
generalized video signals using both this scheme and schemes where the reference frames were heuristically pre-selected.
When the predicted frames were used in a modified MPEG encoder simulation, the signal compressed using the adaptively
selected reference frames required, on average, more than 10% fewer bits to encode than the non-adaptive techniques; for
individual frames, the reduction in bits was sometimes more than 80%. These gains were obtained with an acceptable
computational increase and an inconsequential bit-count overhead.

Keywords: pre-processing for video compression, motion estimation, multi-view image sequence compression.

1. INTRODUCTION

We define astandard video signal as a sequence of images obtained by sampling a scene in the time domain. Ageneralized
video signal is an extension of this concept to the sampling of a scene in multiple domains. An example of a generalized video
signal is a stereoscopic image sequence, where a scene is sampled in both the temporal and perspective domains. Possible
applications of generalized video signals are remote inspection, tele-operation, and entertainment – or any application that
may benefit from additional information of a scene, provided by multiple views.

Efficient compression of generalized video signals is required to avoid the linear increase in the bandwidth otherwise
needed to transmit the signal with each additional view. We assume that each view is sampled in the time domain; thus, a gen-
eralized video signal can be viewed as a parallelization of individual standard video signals. A naive approach to coding a gen-
eralized video signal would be to treat each view, or stream, independently and to employ any available standard video signal

compression technique (e.g., MPEG1,2 or H.26P3). A more effective approach would attempt to exploit the potentially large
correlations between the sampling domains. This approach has been demonstrated previously for both stereoscopic sequences

and multi-spectral imagery, where compression is performed using both inter- and intra-view predictive coding.4,6,7,9,15,16,17

However, in all prior work known to us, the reference frames used to predict a desired frame were both fixed and heuristically
chosen. These reference frames do not necessarily yield the best prediction; compression performance suffers accordingly.

Prediction performance is related to the notion ofprediction similarity between two image frames. Two frames have maxi-
mum similarity if the scene is static during the sampling interval. For the case of a standard video signal, the previous and next
(or future) frames in time generally can be assumed to be the most similar to the current frame. The similarity relationship
between frames of a generalized video signal is not as straightforward; it depends on the structure and motion of both scene
objects and cameras, and it varies as the signal progresses. To improve compression performance, we desire a method to esti-
mate the prediction similarity among frames of a generalized video signal that avoids the computationally costly process of
motion estimation for each possible reference frame.

After a brief discussion on the generation of generalized video signals, we quantify prediction similarity as the absence of
occlusion, and provide an estimate of this quantity from the variance of composite displacement vector maps. These novel



steps lead to the key contribution of this paper: the application of the similarity estimate to the adaptive selection of the best
possible reference frame for the predictive coding of generalized video signals. We also provide comparisons with non-adap-
tive reference frame schemes, and we conclude with potential directions for future research.

2. GENERALIZED VIDEO SIGNAL PREDICTION

A standard video signal is obtained from a camera that samples the visual information of a scene in both a two-dimensional
spatial grid (i.e., the image raster) and also temporally. The camera capturing this signal can be parameterized by its position
and orientation in three-dimensional space, its zoom or scale factor, and its spectral band selectivity. While this video signal
provides an enormous amount of information on the scene, a single camera can provide visual information from only one ori-
entation/scale/wavelength-band at any given time instant. The benefits of added realism, improved scene analysis, and selec-
tive viewing can be achieved when multiple views of the scene are available.

The concept of a generalized video signal unifies the individual, standard video signals of applications that require more
than one view of a scene under a common framework that illustrates the relationship between and within the various views.
This multi-dimensional signal is indexed not only by the 2-D spatial grid and time axis of standard video signals, but also by
the parameters that uniquely describe the individual cameras. Possible sampling domains (and applications) of generalized
video signals include: perspective (binocular imagery), scale (multi-resolutional imagery), and wavelength (multi-spectral
imagery). For simplicity, in this paper, we only will consider generalized video signals obtained from spatially displaced cam-
eras.

A possible application requiring multiple views from spatially displaced cameras, with identical scale and wavelength

parameters, is that of a system designed to provide the viewer with simulated horizontal and vertical motion parallaxa. Two-
dimensional motion parallax can be synthesized by presenting the appropriate view, selected from a continuum of intermediate
views within a bounding planar surface, according the observer’s position. To avoid increases in camera complexity and trans-
mission bandwidth, only the extremum views on the bounding surface need to be captured and the intermediate views can be

generated via common image interpolation techniques.5,8,13 The camera configuration and sampling structure of such a gener-
alized video signal are depicted in Fig. 1. The bounding surface is an imaginary rectangle and the extremum views are
obtained from four cameras positioned on the corners of the rectangle. We denote each frame of the resulting generalized
video signal by its discrete sampling domain indices as: , where  and  respectively denote the horizon-
tal and vertical coordinates of the camera that captured the frame.

While content- or object-based compression techniques may provide extremely compact representations of video11, we
feel that real-time and robust systems employing these techniques are still quite a few years away from reality. Therefore, we
take the approach of a hybrid coder framework for the coding of generalized video signals, and consider the special character-
istics of these multi-view signals to achieve superior compression performance. A hybrid coder consists of a prediction opera-
tion followed by a residual image encoding step. This framework is the basis for the recently proposed multi-view extension to
the MPEG standard, which uses the temporal-scalability option of the standard to accommodate for multiple views of the

scene.14,15 In keeping with the MPEG class of video compression standards, the multi-view extension merely provides the
allowable bit-stream syntax and, hence, the decoder structure. The encoder can make signal dependent decisions during the

encoding process as long as the resulting bit-stream is compliant with the syntax.10 For generalized video signals, one such
decision that could provide substantial performance gains would be the adaptive selection of the best reference frame for the
prediction process.

Under certain conditions, two frames of a generalized video signal, offset in some sampling domain(s), will be very similar
or even identical. Consider, for example, the tetrocular camera configuration of Fig. 1 and the two streams denoted by

a. Motion parallax is the phenomena whereby changes in the viewer’s position result in objects appearing to move, with the amount of dis-
placement related inversely to the object’s distance from the viewer.
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 and . The two cameras that captured these streams were separated by a horizontal spacing oflx. We
assume that the two cameras have equal temporal sampling periods ofT. Two frames, offset in both time and perspective, will
be identical if the scene objects are static and if the cameras move with constant horizontal velocityv, wherelx equals an inte-

ger multiple ofvT. The same relationship would hold for the streams  and . For this situation one stream
could be reconstructed exactly from another stream and knowledge of the temporal offset; thus, this generalized video signal
could be compressed extremely compactly. While the scenario is an extremum where alignment is perfect, it illustrates the
gain that may be achieved, for more realistic situations, through the exploitation of inter-stream correlations.

We now consider the situation where inter-stream correlation is exploited by predicting an image frame from a reference
frame offset in one, or more, sampling domains. The prediction process for this signal is depicted by,

(1)

where the prediction operator ( ) generates the predicted frame ( ) from the reconstructed reference frame ( ), offset in the

three sampling domains by . The offsets that produce the best prediction, according to some criteria, depend on the

structure of the scene, the camera configuration, and the motion of both scene objects and cameras. Since at least some of these
quantities will most likely vary considerably as the scene evolves and changes, the reference frames used in the prediction pro-
cess should not be pre-selected. We find the optimum offsets through the maximization of estimated prediction similarity for
all candidate reference frames. Since we are performing the prediction in the context of compression, the criteria for ranking
the offsets that yield the best prediction should be based on the number of bits required to encode the residual image.

3. PREDICTION SIMILARITY

A brute force solution to the problem of adaptively selecting the optimum offsets would be to predict the desired frame
from all possible reference frames and then just use the frame that yielded the best prediction. While this method is guaranteed
to yield the best prediction performance, its implementation is impractical. In many video coders the prediction operation con-
sumes the largest share of the processing cycles available. Each new view added to a generalized video signal would increase
the number of prediction operations in proportion, i.e., the process is exponential.

Prediction similarity between two frames can be quantified by examining the process of image frame prediction. Points, or
regions, within the desired frame can be accurately predicted only if corresponding points are also present in the reference
frame. Conversely, regions of the desired frame occluded in the reference frame cannot be accurately predicted. Therefore, we
wish to find the reference frame that has minimum occlusion with the desired frame to be predicted. Our definition of occlu-
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Figure 1: Four camera configuration (a) and sampling structure (b) of generalized video signal obtained from tetrocular set-up.
The scene is sampled in the horizontal perspective (x), vertical perspective (y), and temporal (t) domains. The dots at each
corner of the sampling structure represent the sampled image frames, and the horizontal lines represent the four image streams.
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sion incorporates all regions that prove difficult for the particular prediction process used, regardless of the source of this diffi-
culty. For example, if the displacement of a region between two frames is described by an affine transformation and the
prediction process only can handle translational motion (as is the case for common block-based techniques), we characterize
the region as occluded.

The prediction process is completely described by a displacement vector map, which specifies the set of vectors that map
pixels in the reference frame to each pixel in the desired frame. If a displacement vector map contains all zero vectors, the ref-
erence frame can be assumed to be identical to the desired frame since no displacement occurred between the frames. A high
level of similarity also would occur if all of the displacement vectors were a constant, non-zero value; all points are displaced
by a constant amount and occluded regions are present only at the borders of the images. Extending these observations leads to
a fundamental property of displacement vector maps: an occlusion can occur only when there exists a discontinuity between
the displacement vectors of neighboring pixels. The degree and size of discontinuity can be approximated from the variance of
the displacement vector map.

Generating displacement vector maps and calculating the variance for all possible reference frames, however, is equivalent
to the described brute force solution. We propose to estimate displacement vector maps for each possible reference frame
through the synthesis of composite displacement vector maps. The composite maps are obtained through the vector addition of
single-step displacement vector maps, which are analogous to partial derivatives of the pixel displacement with respect to the
various sampling domains. Prediction similarity then is taken as the inverse of the variance of the composite vector map.

We require that one of the streams of the generalized video signal be predicted and coded independently of the other
streams. This stipulation does not result in an overall loss of performance since prediction cannot be performed circularly. The
independent stream frames are predicted using any conceivable combination of forward and backward predictions in the time
domain. Each frame in the remaining, dependent streams is predicted from only one reference frame in another stream. The
reference frames used in the prediction of the dependent stream frames are organized in a grid-like pattern to ensure prediction
relationships between all frames. The displacement vector maps describing all predictions are retained. Since displacement
estimation is performed only once for each dependent stream frame, the number of prediction operations increases only lin-
early with each addition view.

Since we are concerned with the variance of the actual displacement of image points between two frames, we wish to elim-
inate erroneous displacement estimates. These false estimates may be due to errors in the prediction process or the meaning-
less calculation of displacement for occluded regions. For simplicity, we attempt to minimize false estimates by reversing the
estimated displacement vector maps. The first step in the reversal process is to count the number of times each pixel in the ref-
erence frame is used to predict the desired frame. If a pixel is referenced only one time, we assign the reversed-map pixel a dis-
placement vector equal to the negative of the vector that referenced it, and we mark the vector as valid. If a pixel is referenced
more than once, we select the vector that yielded minimum prediction distortion and mark the other vectors as invalid. We
assume that the prediction process provides the distortion (e.g., the mean-squared error) for each vector. Finally, if a pixel is
not referenced by any vectors, we also mark it as invalid. Only valid vectors are used in subsequent processing. Reversing the
vector maps achieves the goals of reducing erroneous estimates and it allows for similarity calculations in both directions,
without requiring bidirectional displacement estimation.

The next step in our prediction similarity estimation procedure is to calculate composite displacement vector maps for each
reference frame to be examined. The composite maps are generated through the addition of valid vectors from the processed

single-step displacement maps that relate the reference frame to the desired frameb. The relative presence of occlusion (r), in
one image frame dimension, is estimated from (2) and (3),

b. These composite displacement vector maps cannot be used to provide an accurate estimate of prediction similarity through direct pre-
diction. The composite maps are generated for regions that are assumed to be unoccluded, and do not cover the entire frame. The
resulting prediction performance from using these maps will likely be unrelated to the actual prediction performance for the complete
frame.



(2)

(3)

where , , and  are the variances of the composite, previous composite, and current displacement

vector maps, respectively. The quantityβ weights the composite map variance by the relative increase in variance due to the
addition of the two vector maps. This weighting attempts to compensate for the accumulation of errors when generating com-
posite maps from multiple single-step displacement vector maps. The prediction similarity measure is taken as the inverse of
the L2-norm of the relative presence of occlusion in both horizontal and vertical image dimensions (ru andrv). The reference
frame that yields the maximum estimated similarity is selected and used for the final prediction of the desired frame.

4. EXPERIMENTAL RESULTS

The algorithm was tested on three generalized video signals. All predictions were performed using a block-based technique

with  blocks.12 For simplicity, the independent streams were predicted using forward prediction only, similar to the

H.261 standard.3

As a proof of concept, the first signal examined was generated by modifying the standard video signal,Flower Garden. A
sample frame of this sequence is shown in Fig. 2a. A two-view generalized video signal was simulated by using the same
sequence twice with a variable temporal offset. The independent stream consisted of the continuously numbered 149 frames of

the original sequence. The dependent stream had a relative offset that randomly varied from  frames. The single-

step prediction structure used to generate the composite displacement vector maps and to estimate the prediction similarity is
shown in Fig. 2b. The known, optimum reference frame was selected correctly approximately 75% of the time. When an error
did occur, the similarity measure for the correct reference frame was only slightly less than that of the selected reference
frame.

For a more meaningful evaluation, we examined the algorithm’s performance on two stereoscopic sequences (Buggy and
Finish Line) captured by the authors. The stereoscopic camera consisted of two cameras offset by a horizontal distance of 50
mm. The odd-line fields of a standard NTSC frame were captured by the left-eye camera, and the even-line fields by the right-

eye camera. The resulting temporal sampling of the two streams was offset by  of a second. For both sequences the
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Figure 2:Flower Gardensequence. a) Original stream 0, frame 25, b) Prediction structure used to compute single-step
predictions. Curved arrows represent prediction of desired frame (at arrow head) from reference frame.
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left-eye image stream was predicted independently of the right-eye stream. The single-step predictions used to generate the
composite displacement vector maps are shown in Fig. 3a. The relative positions of the three possible reference frames for the
prediction of the dependent stream are shown in Fig. 3b. The reference frame used by the prediction denoted by P1 was used
to generate the single-step displacement vector map relating the dependent and independent streams. The prediction similarity
for the reference frames of all three possible predictions (P1, P2 and P3) were estimated using the described procedure. If the
maximum estimated similarity was obtained for the reference frames of P2 or P3, the frame was predicted using the specified
reference frame; otherwise, the initial prediction was used. Sample frames for both sequences are shown in Figs. 4a and 4b.

The Buggy sequence is characterized as containing a large degree of both camera and object motion. Prediction and bit
count performance results for the adaptive reference frame selection algorithm are shown in Figs. 5a and 5b, respectively. The
performance results for prediction schemes that used fixed reference frames, denoted by P1, P2, and P3, are also included. Pre-
diction performance was quantified with the peak signal-to-noise ratio (PSNR) between the luminance component of the pre-
dicted and original images. The frame bit counts were obtained from a modified MPEG-1 simulation that performed
conventional DCT-based compression on the residual between the predicted and original frames. The bits-per-frame values
include the bits required to describe the selected reference frame, displacement vectors, and header information. The quantiza-
tion step-size of the coder was fixed, resulting in a fixed reconstructed image quality of approximately 35 dB (PSNR). We
believe the eight sharp peaks in both plots are due to a malfunction in our image digitization mechanism that resulted in some

Figure 3: Stereoscopic sequence prediction structure. a) Single-step predictions b) Relative positions of possible reference
frames for dependent stream, for both fixed and adaptively selected reference frame schemes.
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Figure 5: Buggy sequence performance comparison of adaptively selected versus fixed reference frame schemes. The
reference frames used in the three fixed schemes are illustrated in Fig. 3b. The best reference frame is almost always selected
by the adaptive scheme. When the optimum reference frame is not correctly selected, the chosen reference frame is most often
only slightly inferior.a) Prediction PSNR comparison, b) Bits per frame comparison.
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frames being recorded twice. Regardless of the source of these anomalies, the algorithm correctly selected the best frame for
the prediction process.

The Finish Line sequence also was predicted and encoded using both adaptively selected and fixed reference frames
schemes denoted by P1, P2, and P3. The average prediction PSNR and frame bit counts for these fixed schemes are shown in
Table 1. This sequence contains almost no camera or object motion over time. However, the two views have a large degree of
occlusion across the perspective sampling domain due to the proximity of objects to the stereo-camera. The algorithm, conse-
quently, always selected the inter-view reference frame (i.e., prediction P2) as the frame with maximum similarity.

5. CONCLUSION

We have presented a simple scheme for adaptively selecting the best possible reference frame for the predictive coding of
generalized video signals. One stream of the generalized video signal is predicted and coded independently of the other depen-
dent streams. Single-step displacement vector maps are estimated for each frame in the dependent streams. Vector estimates
for occluded regions are discarded through processing of the single-step maps, and composite maps are generated for each
candidate reference frame. The composite maps estimate the prediction operation for unoccluded regions from the given refer-
ence frame. The reference frame with the estimated maximum similarity with the desired frame is chosen for the final predic-
tion, where similarity is defined as the absence of occlusion. This scheme requires a maximum of two frame predictions for
each image, as opposed to an exponential increase, with each additional view, for a brute force solution.

The results for the signal obtained by modifying theFlower Garden sequence indicate that this scheme most often selects
the known, optimum reference frame. The correct reference frame was not selected only on a few occasions when the relative
temporal offset between the two streams was±2 frames.

Prediction and compression of the stereoscopic sequence,Buggy, was performed using both adaptive and fixed reference
frame schemes. The relative location of the optimum reference frame varied greatly throughout the sequence. This variation is
most likely the result of the large degree of motion contained within this sequence and it validates the hypothesis that the ref-
erence frame should be adaptively selected. The average PSNR prediction gain of the adaptive technique over the fixed
schemes P1, P2, and P3 was 0.7 dB, 1.0 dB, and 1.2 dB, respectively. The average reduction in bits per frame was approxi-
mately 9%, 13%, and 10% over P1, P2, and P3, respectively. While the average reduction in bits is modest, for certain frames,
the number of bits required to encode the residual was reduced by over 80%. Also, we anticipate improved performance gains
with increased signal dimension, and, hence, an increased number of candidate reference frames.

While the relative location of the best reference frame did not vary for theFinish Line sequence, this location likely would
not be known a priori. In fact, if either fixed prediction schemes P1 or P3 were used in the predictive coding of this sequence,
the prediction PSNR would have decreased by over 4 dB and the bit rate would have increased by more than 44% when com-
pared to scheme P2, which was adaptively selected by our algorithm.

These experimental results indicate that the algorithm works and that it should be performed to improve the compression
performance for generalized video signals. Future work includes the application of this technique to more elaborate general-
ized video signals, and the possible refinement of the estimated similarity measure to further improve the accuracy of the
selection. Throughout this discussion we have conveniently neglected the issues of storage and delay required to allow for
adaptively selected reference frames. The cost/benefit analysis of this flexibility will be addressed in a future paper.

Prediction PSNR Bits-per-frame

P1 25.73 92284

P2 29.94 64130

P3 25.57 94291

Table 1: Average per-frame prediction and compression performance for the non-adaptive reference frame schemes. The
adaptive algorithm always selected the reference frame used by the P2 prediction structure.
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