To appear in the proceedings of IJCAI-95

Multiresolution Instance-Based Learning

Kan DengandAndrew W. Moore
The Robotics Institute, Smith Hall 221
Carnegie Mellon University,
phone: (412) 268-7599
kdeng@cs.cmu.edu awm@cs.cmu.edu

Abstract Flexible Inductive Bias

Instance-based |earning methods exp|icit|y remem- With very little data, a method such as nearest neighbor
ber all the data that they receive. They usually have gives sensible, conservative predictions: it does not wildly
no training phase, and only at prediction time do €Xxtrapolate. But as the amount of data increases, so does
they perform computation. Then, they take a query, the complexity of the function that nearest neighbor can
search the database for similar datapoints and build approximate. This contrasts with, for example, multi-layer
an on-line local model (such as a local average or heural networks that do not by default have this property
local regression) with which to predict an output Of representative power increasing locally according to the
value. In this paper we review the advantages of amount of local data. In the limit, very local methods can
instance based methods for autonomous systems, learn any piecewise continuous function to arbitrary preci-
but we also note the ensuing cost: hopelessly slow Sion (although with high dimensional, uniformly distrib-
computation as the database grows large. We uted input the amount of data to do this can be enormous).

present and evaluate a new way of structuring a For practical use in function approximation, much better
database and a new algorithm for accessing it that instance-based methods than nearest neighbor are avail-
maintains the advantages of instance-based learn- able that form local linear models, and compute weighted
ing. Earlier attempts to combat the cost of instance- averages of data to remove the noise from predictions (e.g,
based learning have sacrificed the explicit retention ~ See [Atkeson, 1989; Grosse, 1989]).

of all data, or been applicable only to instance-
based predictions based on a small number of near
neighbors or have had to re-introduce an explicit
training phase in the form of an interpolative data
structure. Our approach builds a multiresolution
data structure to summarize the database of experi-
ences at all resolutions of interest simultaneously.
This permits us to query the database with the same
flexibility as a conventional linear search, but at
greatly reduced computational cost.

Learning parameters need not be fixed in advance

There are many learning parameters in instance-based
algorithms. One of the most important concerns the extent
to which the smoothing of noise is traded against goodness
of fit. Others include (i) the parameters of a distance metric
for determining the similarity between an input point and
the query and (ii) the discrete decision of which attributes
are relevant. Instance-based methods do not need to decide
on these learning parameters in advance. They can use
whichever parameters they desire for one prediction and
then have the option of using an entirely different set for
another prediction. This is of immense use in an autono-
mous system that is both making new predictions online
and tuning its learning parameters online as new data is
arriving [Mooreet al, 1992]. In contrast, a non-instance-
based method must choose a parameter set and then train
with it. If a different parameter set is later needed then it is
necessary for a non-instance-based method to retrain itself
(and it is therefore also necessary for it to remember all
previous data).

1. Introduction
Instance-based learning methods [Stardill al, 1986;
Atkeson, 1989; Ahat al, 1991; Moore, 1990] are highly
flexible, general purpose techniques for making predic
tions from earlier data. Instance-based methods (als
known as “memory-based” methods or “lazy-learning”
methods, and closely related to “case-based” method:
explicitly remember all the data they are shown. Only a
prediction time do they perform non-trivial amounts of
computation. This behavior differs from more conven-
tional machine learning algorithms, in which training Instance-based can cover the global-local spectrum
occurs between the reception of data and predictiorinstance-based methods do not necessarily have to be
Examples of instance-based methods are nearest neighklocal predictors, based on a small handful of local
kernel regression, and locally weighted linear regressiordatapoints. This is particularly important for large num-
Example of non-instance-based techniques (they havebers of attributes, highly noisy data, and for small data-
training phase) are neural networks and decision treebases. Many of our own applications involve very noisy
Instance based methods can sometimes be a preferasystems in which the underlying function is non-linear but
form of function approximator. There are three main reagenerally smooth. In these cases the best instance-based
sons for this: function approximator might, for example, use the closest
30% of all datapoints to the query to form its prediction. In

some extreme cases, for example if the underlying funcby a gaussian:

tion were _nearly I_mea_r and local linear regression was ir g Distancez(xq Xi)g
use, this figure might increase to 80% of the datapoints-- W e —— g o
essentially a global, not local, function approximator.

The bigger the parametiris, the flatter the weight func-

The properties described above make instance-bas:, : : :
tion curve is, which means that many memory points con-

methods particularly desirable for autonomous system . : o
tribute quite evenly to the regression. Kgends to infinity

that spend their lives in environments that are not know h dicti h the alobal f all poInts i
in advance and in which the designers will not be able gthe predictions approac the global average o al points in
the database. If the is very small, only closely neighbor-

manually tweak the learning parameters during operation, . S oo
y gp gop ing datapoints make a significant contribution.

Unfortunately, instance-based methods have a seriot . . .

problem. As the database grows large it becomes increaK_ IS an |mportant_smooth|ng pargmeter for kernel regres-
ingly expensive to make predictions. Each predictiors'on' If the cljat.a IS relat|ve_ly noisy, we expect to obtain
involves searching the database to find similar earliesm""".er pr_ed|ct|on errors with a relat!vely Iarge If the
datapoints. This can mean hopelessly slow performancd.ata IS hoise free then'a SmI.W'.” aVO'd smearing away
after merely tens of thousands of predictions. Variou:fme details in the function. This is illustrated in Figure 1.
researchers have attempted to deal with this problem [Afr K is small

et al, 1991; Grosse, 1989; Moore, 1990; Skalak, 1994] | 4

but, as we will see in Section 7, none in a manner the /’\ /‘\

avoids sacrificing at least one of the benefits of instance A Kﬁ bi&

based methods described above. This paper describes)'/

new solution, based on a multiresolution hierarchica >
structuring of data, which retains all the above propertie

of instance-based learning while providing fast instance e K'is big
based performance. Asymptotically it reduces the cost of ,./‘._‘_\.\ e
query from linear to logarithmic in the number of P TN

datapoints. Kis §h‘a:ﬂ\,\
|

2. Kernel Regression

The approach taken in this paper can be applied to a wic
variety of instance-based algorithms, but here we will con
centrate on one of the most well known examples: Kerne
Regression (see, for example, [Franke, 1982]). Assum
that datapoints consist of {input, output} pairs such asThe drawback of kernel regression is the expense of enu-
(X1.Y1), (X2.Y2),. - - &n.Yn) Where the inputs amelement merating all the distances and weights from the memory
real-valued vectors and the outputs are scalars, and to dipoints to the query. Several methods have been proposed
we have observel datapoints. The prediction problem is: to address this problem, reviewed in Section 7.

given an input vectax,, which is called thguery how to] .])

predict the output%/{(x)? 3. Multiresolution structuring of datapoints

The main idea of multiresolution instance-based regres-
sion is grouping. The following figure shows a 2-d input
space case. Given a query, based on the distance from each
point to the query, we could calculate a weight for every
point in the input space.

Figure 1: For the noiseless data in the top example, a
small K gives the best regression (in terms of future
predictive accuracy). For the noisy data in the bottom
example, a larger K is preferable.

The k-nearest neighbor solution to this problem would be
to find thek datapoints that have input vectors closest tc
the query and to take the average of the corresponding ot
put values aseﬂxq). Kernel regression uses a similar idea
except that aveighted averagef all the points in the data-

. . []
base is used, and the points closest to the query a
assigned the largest weight. Thus:
YES[(xq) = M °

PR

where w is the weight assigned to tfte datapoint in our

memory, and is large for points close to the query an
almost zero for points far from the query. It is calculated a °
a decreasing function of Euclidean distance, for exampl

Figure 2: Grouping data according to distance from
query.

If we split space into several rings as illustrated, we willtree. Which nodes are selected for a given query? They are
see that for each group or ring, all the individual weights<chosen to be nodes that represent hyper-rectangles in input
inside are approximately equal. Assume we have a grolspace over which the weight function (relative to the cur-
with n datapoints in which we know that all weights in therent query) varies little. Hence, at parts of state space with
group are close to the same valud et theith member of a highly varying weight function (often the part near the
the group have weight; = w + & where allgjs are small. query) we use leaves or lower-level internal nodes---small-
When performing kernel regression we need to accumulasized partitions. And at parts of state space with little vari-
two sums over all datapoints in the database: ation in the weight function (often the parts far from the

query) we use the higher-level internal nodes. This is illus-

Zwiyi and ZWi

trated in figure 3.

The former of these sums will then be divided by the lattel

Let us consider how we can compute the contribution ySpace in our diagram, the circled nodes in the tree are the
groups used for the prediction. The radii of the circles

these sums from all the points in our current group .
Restricting our attention to summations over thgoints depend on the_ distances from the hyper_-rectangles to the
query. For a different quer®)*, we use different group-

in th rrent gr we hav) :
the current group we have ings, shown by nodes with*amark.

3 wy; = z%ﬂusi%i :\7v23/i+28iyi and

When the queryQ, is at the top-right corner of the input

Sw = z%ﬂusi%: nw+ Se : . :

Providing we known, w andxy; for the current group we 3 . o]

can therefore compute an approximatiortegy; and>w; Q*\) - be e ST
in constant time without needing to sum individual mem-

bers of the group. This approximation to the partial sums i
good to the extent thatk;y; is small with respect taXy; .
andXg; is small with respect tow.

Kd-trees for grouping

We now understand that if we are given a query, and |
someone has structured the set of datapoints into grou
for which, relative to the current query, all weights in eact
group are very similar, then we can compute approxima
tions to the sumiwiyi angwi in time proportional to *

the number of groups instead of the number of individua
datapoints. But how can such a set of groupings b
obtained? And how can we ensure that all weights withi
each grouping are very similar?

We can use &d-tree [Preparatat al, 1985], enhanced

with extra cached information, as an implementation o
this grouping idea. Ad-tree is a binary tree that recur-
sively splits the whole input space into partitions, in a

manner similar to a decision tree acting on real-valuel
inputs. Each node in tHal-tree represents a certain parti-
tion of the input space; the children of this node denot
subsets of the partition. Hence, the root ofiih¢ree is the

whole input space, while the leaves are the smallest pos:
ble partitions thikd-tree offers. The tree is built in a man-

Figure 3. To implement the grouping idea, we use hyper-
rectangles wittkd-tree. Lower-level nodes or leaves are
chosen (circled) to present the partition of input space
closer to the query. For different query (with *), we can
use the same kd-tree but choose different nodes.

ner that adapts to the local density of input points and Skernel Regression Trees Defined

the sizes of partitions at the same level are not necessar-, .1, node of thd-tree denotes a hyper-

equal to each other.

rectangle of input

space, and also is defined to contain all datapoints that

Instead of d|V|d|ng the input space into ringS, we usfhave input vectors inside this hyper—rectangle. The root
hyper-rectangles within théd-tree to implement the node covers the whole of input space and contains all the

grouping idea. The groups are internal nodes ofkthe

datapoints. The leaf nodes explicitly record the datapoints

that reside in the leaf. 1. (Cutoff) Treat all the points in this node as one
group (a cheap operation) or

Each node records the hyper-rectangle covered by it. Th 2. (Recurse) search the children.

is defined as the smallest bounding box that contains &
the datapoints owned by this node of the tree. We will use the cutoff option if we are confident that all

. . .weights inside the node are similar. Given the current
Each non-leaf node has two children representing two dis g

. ! queryxq and the hyper-rectangle of the current node it is
joint subr'eglon.s of the parent node.. The brgak betwgen o easy matter to compul,;, andDy,c the minimum
children is defined by two valuesplit d s the split-

:) : :) . and maximum possible distances of any datapoint in this
ting dimension, and determines which component of inpu

e N . : . node to the query (computational cost is linear in the num-
space (which *attribute”) the children will be split upon. ber of dimensions). From these values one can then com-
split_ v determines the numerical value at which each

split occurs, The datapoints owned by the left child of ¢ Drmin
node are those datapoints owned by the node which a

less than valusplit_v in input componensplit. d . Ormax
The right child contains the other datapoints.

Finally, each node contains two other pieces of informaPute the minimum and maximum possible weighsy,
tion: n_below , the number of datapoints below the cur-andwpy,y of any datapoints owned by this node, since the
rent node, andum, the sumzZy, of all output values of weight of a point is a decreasing function of distance to the
datapoints contained in this node. These are two of thquery. We thus decide ¥, andwiyax are close enough
three values needed to compute the contribution of a groito warrant the cut-off option.

o the partial sums in kernel regression. The third COMPCrya search is thus a recursive procedure which returns two
nent, w, depends upon the location of the query and i

! : .) ‘values: sum-weightsand sum-wy If the cutoff option is
determined dynamically in a manner described shortly. taken, then estimate the weight of all datapoints as

Constructing the kernel regression tree W= (W Wo,) /2 and return:
To construct a tree from a batch of training instances w sum-weights: n_below xw
use a top-down recursive procedure. This is the most sta SUM-WY = SUM x W

dard way of constructinkd-trees, described, for example,

in [Preparatat al, 1985; Omohundro, 1991]. In this Work_ If the cutoff option is not taken, recursively compstan-

we use the common variation of splitting a hypercube Nyeights and sum-wyfor the left and right children, and
the center of the widest dimension instead of at the medi¢a return:

point. This method of splitting does not guarantee a bal

anced tree, but leads to generally more cubic hyper-recta sum-weights- sum-weights(lefty sum-weights(right)

gles, which has empirically proved better than othel sum-wy= sum-wy(lefti sum-wy(right)

schemes (pathological imbalances are conceivable, b

trivial modifications to the algorithm prevent that). The5. Search Cutoffs

cost of making a tree froid datapoints i©(N log N) Section 3 described how we can make our approximation
arbitrarily accurate by bounding the maximum deviation
we will permit from the true weight estimate with a value
€max> 0 and then making,,,, arbitrarily small. Thus the
simplest cutoff rule in thid-tree search would be to cutoff

if Winax - Wmin < €max It IS easy to show that this guaran-
To incrementally add a new datapoint to the tree, the ledees that the total sum of absolute deviatijaiag is less
node containing the point is determinegdi(lbg N) cost). thanNygn,, / 2 whereNy is the number of points in the
The datapoint is inserted there (and a new subtree is recitree. There are, however, other possible cutoff criteria
sively built if the number of nodes exceeéds;,). Then all which provide arbitrary accuracy in the limit, but which,
ancestors of the updated node are updated to maintain ccwhen used as an approximation, have more satisfactory
sistency in their hyper-rectanglesim andn_below val- properties.

ues.

The base case of the recursion occurs when a node is ¢
ated withN,, or fewer datapoints. Then those datapoints
are explicitly stored in the leaf node. In our experiments
Nmin =2.

The simple cutoff rule does not take into account that a
larger total error will occur if the node contains very many
points than if the node contains only a few points. It does
also not account for the fact that in a practical case we are
less concerned about the absolute value of the sum of devi-
ations|Zg;| but rather the size ¢X¢;| relative to the sum of

the weight2w;. Some simple analysis reveals a cutoff cri-

4. Computing the kernel regression sums

Given a query point, we are required to compufey; and
>w;y;, summed over all datapoints in the tree and the
divide the latter by the former. This is performed by a top:
down search over the tree. At each node we make a de
sion between:

terion to satisfy both of these intuitions. Cutoff only if 10,000 datapoints were generated. Experiments were run
for different values of kernel widtK. In all experiments,

the cutoff threshold was 0.005. Figure 4a shows the test-

whereNg is the number of datapoints below the curren(Set €rror on 1000 test points for both regular kernel regres-
node. Simple algebra reveals that this guarantees

(Wmax = Wimin) Ng <T Zw;

sion (“Regular KR”) and multiresolution kernel regression
(“Multires KR”) graphed for different values df. The
values are very close, indicating that multires KR is pro-
viding, for a wide range of kernel widths, a very close
where G is the number of groups finally used in the searcapproximation to regular KR. Figure 4b shows the compu-
(and thus G Ny, hopefully considerably less). Notice that tational cost (in terms of the summations that dominate the
this cutoff rule requires us to knaxw; in advance, which cost of KR) of the two methods. Regular KR sums all
of course we do not. Fortunately the sum of weightpoints, and so is a constant 10,000 in cost. Multires KR is

obtained so far in the search can be used as a valid lowsybstantially cheaper for all valueskgfbut particularly so
bound, and so the real algorithm makes a cutoff if: for very small and very large values.

(Wmax_wmin) NB T
weight so far in search

|Z&i| < 0.5 Gt 2w;

Figures 5a and 5b show corresponding figures for a similar
trigonometric function of five inputs. This still shows sim-
ilar prediction performance as regular KR. The cost is still
always less than regular KR, but in the worst case the com-
6. Experiments and results putational saving is only a factor of three (whér 40,

Let us review the performance of the multiresolutionmultires KR cost = 3,200). This is not an especially
method in comparison to kernel regression. In the firsmPressive result. However, for any fixed dimensionality
experiment we use a trigonometric function of two inputs2nd kermnel width, costs rise sub-linearly (in principle loga-
with added noisex; = uniformly generated random vector rithmically) with the number qf datapoints. To check this,
with all components between 0 and 100 grda function we ran the same set of experiments for a dataset of ten

of x; (which ranges between 0 and 100 in height), witrimes the size: 100,000 points. The results, in Figure 6,
gaussian noise of standard deviation 10. show that with this large increase in data, the effectiveness

wheret is a system constant.

‘Comparison of Kdiree and Kemel Errors, 50 (a)

Comparison of Kdtree and Kerel Ertors i Comparison bet/ Two KRs Erfors

X Mutires KR __X_ Mulires KR

__X__ Mulres KR

0..... Regular KR

0...... Regular KR
0......Regular KR

0 10 20 3 4 5 6 70 8 % 10 -
K

(b) Comparison of The Two KRs Costs (b)

1

0 10 20 3 4 5 6 70 8 9% 10
K

Comparison of The Two KR Costs, 5D (b)

oo Comp. Of The Costs Of The Two KR, 54, Huge Mem

10000 — =4 == A m kb — o -k — 4 10000 — =4 == A m bt - o -k — 4

8000 8000
__X__ MulireskR __x__ MlireskR

. PP I — Regular KR _
g 6000F b Regular KR g 6000}

4000 4000)

2000f 2000f

0 20 30 4 5 6 70 80 % 10
K

Figure 4.. Comparison between (a)
error and (b) cost of regular KR
versus multires KR for 2-d inputs,
for a dataset of size 10,000.

0 20 30 4 5 6 70 80 % 10
K

Figure 5: Comparison between
error and cost of regular KR
versus multires KR for 5-d
inputs, for a dataset of size
10,000.

0 20 3 4 5 6 70 8 9% 10
K

Figure 6: The same experiment
as Figure 5, except with ten
times the amount of data:
100,000 datapoints

of multires KR becomes more apparent. For example, coithe method performs if the number of input variables is rel-
sider theK = 40 case. With 100,000 datapoints instead oatively large, but if the attributes are not independent. For
10,000, the cost is only increased from 3,200 to 5,70example, a common scenario in robot learning is for the
while the cost of regular KR (of course) increased fronminput vectors to be embedded on a lower-dimensional
10,000 to 100,000. manifold. We performed two experiments, each with 9
inputs and 10,000 datapoints. In the first experiment, the
components of the input vectors were distributed uni-
formly randomly. In the second experiment the input vec-
tors were distributed on a non-linear 2-d manifold of the 9-
d input space. The results were:

Investigating the t threshold parameter

Next, we will examine the effect of theparameter on the
behavior of the algorithm. Asis increased we expect the
computational cost to be reduced, but at the expense of t
accuracy of the predictions in comparison to the regule

KR. The results in Figure 7 agree with this expectation: th 9-d uniform 9-d inputs o
left hand graph shows that for 2-d, 3-d, 4-d and 5- 2d manifold
datasets (each with 10,000 points) the proportional errResiEr KR cost 10,000 10,000
between multires and regular regression increasestwith - e—rm o 3.100 230
Igr?l;:?'trz;iigr?gldcgg?ph shows a corresponding decrease Regular KR mean testset erfor 13.07 1.06

N Multires KR mean testset erfor 13.08 1.15

Crit--> Error ratio

The results indicate that, as would be expected, the cost
advantage of multires KR is not large (a factor of 3) for 9-d
uniform inputs, but is far better if the inputs are distributed
within a lower-dimensional space.

7. Related Work and Discussion

There has not been room in this paper to discuss a number

of additional flexibilities that multires KR provides. Once

I T R I thekd-tree structure is built, it is possible to make different
gueries with not only different kernel width§ but also

Figure 7. (Upper) the relative accuracy and (lower) the different Euclidean distance metrics, with subsets of

“o 01 02 03 04 05 06 07 08 09‘[1
crit

computational cost of multires KR againsthe cutoff attributes ignored, or with some other distance metrics
threshold. such as Manhattan. It is also possible to apply the same
technique with different weight functions and for classifi-
Real datasets cation instead of regression.

In another experiment, we ran multires KR on data fron

several real-world and robot-learning datasets. Furthet Should be remembered that although we have succeeded
details of the datasets can be found in [Maron and Moordn reducing the cost of instance-based learning, there are
1994]. They include an industrial packaging process foother methpds (out!med below) in the Ilterature for doing
which the slowness of prediction had been a reasonabSe- Why might Multires be preferable? This depends upon
cause for concern. Encouragingly, multires KR speeds uthe extent to which the application needs the following
prediction by a factor of 100 with no discernible difference@dvantages of instance based learning described in Section
in prediction quality between multires and regular KR.L:

This and other results are tabulated below. The costs al Flexibility to work throughout the local/global spec-
RMS values given are averages taken over an independt
test set. Notably, the datasets with the least savings we

pool, which had few datapoints, andbot, which was The ability to make predictions with different
high dimensional. parameters without needing a retraining phase.

trum.

Soman NumbelDimen] KR IMRes KR | MRes Multires provides for both. NQ other software method, to
Points | sion | cost| Cost |rms erlrms er our knowledge, does._ There is, however, the simple hard-
ware alternative of using a fast enough computer. The stan-

Energy | 2144 | 5d 2144 2329 1'68_ 1.69 dard kernel regression method can be parallelized with full
Package 32000| 3-d 320D0 289.0 6.0f 6.0 efficiency

0
¢]
Pool 213 3-d 213 | 50.7] 2.12% 2.12B
6
6

Kd-trees have frequently been used in instance-based
learning methods for nearest neighbor searching or for
range searching [Preparahal, 1985]. The range-search
High dimensional, non-uniform data solution to kernel regression is to find all points inktie

Our final experiment concerned the question of how weltree that have a significant weight, and then only sum

Protein | 4664 | 3-d 4664 383(8 1.036 1.1(
Robot | 871 14-d | 871 | 225| 6.354 6.97

together the weighted components of those points. Thices of all points below it in the tree. This permits fast pre-
only practical if the kernel widtK is small. If it is large, diction and also fast computation of confidence intervals
all the datapoints may have a significant weight, but onland analysis of variance information.

small local variation in weight. Range searching wot
sum all the points individually. Multires would visit only
relatively large intermediate nodes (because the wei
variation is locally low) and so would still be cheap. Ewve
in cases of small kernel widths and large amounts of ¢
the multiresolution method can be preferable to the rai
search method because it may not need to search al
way down to the leaf nodes.

Multires as described here is only applicable to humeric
features. An interesting avenue for future work would be
ways to extend the method to binary or symbolic features.

8. Conclusion

Instance based methods make use of a database of multidi-
mensional data. Multiresolution instance-based methods
provide a means for performing queries quickly, even
Another solution to the cost of instance-based learningwhen the amount of data is enormous. An important mes-
editing (or prototype$: most datapoints are forgotten ansage of this paper is that for efficient accessing of large
only particularly representative ones are used (e.g. [Kitinstance bases (or case bases, or memory-bases) it is not
and Aha, 1988; Skalak, 1994]). Kibler and Aha extendnecessary to resort to throwing data away. Intelligent
this idea further by allowing datapoints to represent lostructuring is an alternative.

averages of sets of previously-observed datapoints. 1

can be effective, and unlike range-searching can be a;ACknomedgement

cable even for wide kernel widths. However, the degree"Ve wish to thank the IJCAI reviewers for insightful and

local averaging must be decided in advance: unlike Museful comments. This work was support by a research gift
tires, queries cannot occur with different kernel widtffom 3M corporation and an NSF Reserach Initiation

without rebuilding the prototypes. A second occasiorAward.
problem is that if we require very local predictions, “References

prototypes must either lose local detalil by aVeragmg'[Kibler and Aha, 1988] D. Kibler and D. W. Aha, Comparing Instance

else all the datapoints are stored as prototypes. Averaging and Instance Filtering Learning AlgorithrRspceedings of

Th int fi llels bet tot 3rd European Working Session on LearniRgman, 1988
ere are Interesting parallels between prototypes [Atkeson, 1989] C. G. Atkeson, Using Local Models to Control Move-

Multires. The intermediate nodes of tkd-tree can be ment, Proceedings of Neural Information Processing Systems Confer-

thought of as fabricated prototypes, summarizing all tence 1989

data below them. [Franke, 1982] R. Franke, Scattered Data Interpolation: Tests of Some
Methods Mathematics of Computatiokpl 38, No 157, January 1982.

Decision trees ankd-trees have been previously used [Grosse, 1989] E. Grosse, LOESS: Multivariate Smoothing by Moving

cache local mappings in the tree leaves [Grosse, 1¢-east Squaresipproximation Theory VIEdited by C. K. Chul, L. L.

. . . Schumaker and J. D. Ward, Academic Press, 1989
Moore, 1990; Omohundro, 1991; Qumlan’ 1993]' The[Maron and Moore, 1994] O. Maron and A. W. Moore, Hoeffding Races:

algorithms provide fast access once the'tree is built, biaccelerating Model Selection Searohgvances in Neural Information
new structure needs to be built each time new learnprocessing Systems 594

parameters are required. Furthermore, unlike the multiffMoore, 1990] A. W. Moore, Acquisition of Dynamic Control Knowl-
olution method. the resulting predictions from the tnedge for a Robotic ManipulatoBroceedings of the 7th International

. . R . Conference on Machine Learninglorgan Kaufmann, 1990
have substantial discontinuities between boundaries. C[Moore et al, 1992] A. W. Moore and D. J. Hill and M. P. Johnson, An

in [Grosse, 1989] is continuity enforced, but at the costgmpirical Investigation of Brute Force to choose Features, Smoothers

tree-size, tree-building-cost and prediction-cost all beiand Function Approximator§omputational Learning Theory and Natu-

exponential in the number of input variables. ral Learning System$/olume 3, Edited by S. Hanson and S. Judd and T.
Petsche, MIT Press, 1992

Dimensionality is a weakness of Multires. DiminishinfOmohundro, 1991] S. M. Omohundro, Bumptrees for Efficient Function,

returns set in above approximately 10 dimensions if WConstrai_nt, and Classification Learnigvances in Neural Information

data is distributed uniformly. This is an inherent proble” 0cessing Systems H91

. . . . _[Preparateet al, 1985] F. P. Preparata and M. Shanm@emputational
for which no solution seems likely because uniform datheometrySpringer_Verlag’ 1985

high dimensions will have almost all datapoints almqquinlan, 1993] J. R. Quinlan, Combining Instance-Based and Model-
exactly the same distance apart, and a useful notiorBased LearningMachine Learning: Proceedings of the Tenth Interna-

locality breaks down. tional Conferencel1993
[Skalak, 1994] D. B. Skalak, Prototype and Feature Selection by Sam-

This paper discussed an efficient implementation of kerpling and Random Mutation Hill Climbing Algorithmsjachine Learn-

regression. We are applying exactly the same aIgorithnmg: Proceedings of the Eleventh International Confere884
- J[Stanfill et al, 1986] C. Stanfill and D. Waltz, Towards Memory-Based
locally weighted polynomial regression, in which a pred|ReasoningCOmmunications of the AGNI9(12), 1986

tion fits a local polynomial to minimize the locally
weighted sum squared error. The only difference is t
each node of thkd-tree stores the regression design mal

