
Abstract
Instance-based learning methods explicitly remem-
ber all the data that they receive. They usually have
no training phase, and only at prediction time do
they perform computation. Then, they take a query,
search the database for similar datapoints and build
an on-line local model (such as a local average or
local regression) with which to predict an output
value. In this paper we review the advantages of
instance based methods for autonomous systems,
but we also note the ensuing cost: hopelessly slow
computation as the database grows large. We
present and evaluate a new way of structuring a
database and a new algorithm for accessing it that
maintains the advantages of instance-based learn-
ing. Earlier attempts to combat the cost of instance-
based learning have sacrificed the explicit retention
of all data, or been applicable only to instance-
based predictions based on a small number of near
neighbors or have had to re-introduce an explicit
training phase in the form of an interpolative data
structure. Our approach builds a multiresolution
data structure to summarize the database of experi-
ences at all resolutions of interest simultaneously.
This permits us to query the database with the same
flexibility as a conventional linear search, but at
greatly reduced computational cost.

1. Introduction
Instance-based learning methods [Stanfillet al., 1986;
Atkeson, 1989; Ahaet al., 1991; Moore, 1990] are highly
flexible, general purpose techniques for making predic-
tions from earlier data. Instance-based methods (also
known as “memory-based” methods or “lazy-learning”
methods, and closely related to “case-based” methods)
explicitly remember all the data they are shown. Only at
prediction time do they perform non-trivial amounts of
computation. This behavior differs from more conven-
tional machine learning algorithms, in which training
occurs between the reception of data and prediction.
Examples of instance-based methods are nearest neighbor,
kernel regression, and locally weighted linear regression.
Example of non-instance-based techniques (they have a
training phase) are neural networks and decision trees.
Instance based methods can sometimes be a preferable
form of function approximator. There are three main rea-
sons for this:

Flexible Inductive Bias
With very little data, a method such as nearest neighbor
gives sensible, conservative predictions: it does not wildly
extrapolate. But as the amount of data increases, so does
the complexity of the function that nearest neighbor can
approximate. This contrasts with, for example, multi-layer
neural networks that do not by default have this property
of representative power increasing locally according to the
amount of local data. In the limit, very local methods can
learn any piecewise continuous function to arbitrary preci-
sion (although with high dimensional, uniformly distrib-
uted input the amount of data to do this can be enormous).
For practical use in function approximation, much better
instance-based methods than nearest neighbor are avail-
able that form local linear models, and compute weighted
averages of data to remove the noise from predictions (e.g,
see [Atkeson, 1989; Grosse, 1989]).

Learning parameters need not be fixed in advance
There are many learning parameters in instance-based
algorithms. One of the most important concerns the extent
to which the smoothing of noise is traded against goodness
of fit. Others include (i) the parameters of a distance metric
for determining the similarity between an input point and
the query and (ii) the discrete decision of which attributes
are relevant. Instance-based methods do not need to decide
on these learning parameters in advance. They can use
whichever parameters they desire for one prediction and
then have the option of using an entirely different set for
another prediction. This is of immense use in an autono-
mous system that is both making new predictions online
and tuning its learning parameters online as new data is
arriving [Mooreet al., 1992]. In contrast, a non-instance-
based method must choose a parameter set and then train
with it. If a different parameter set is later needed then it is
necessary for a non-instance-based method to retrain itself
(and it is therefore also necessary for it to remember all
previous data).

Instance-based can cover the global-local spectrum
Instance-based methods do not necessarily have to be
local predictors, based on a small handful of local
datapoints. This is particularly important for large num-
bers of attributes, highly noisy data, and for small data-
bases. Many of our own applications involve very noisy
systems in which the underlying function is non-linear but
generally smooth. In these cases the best instance-based
function approximator might, for example, use the closest
30% of all datapoints to the query to form its prediction. In

Multiresolution Instance-Based Learning
Kan DengandAndrew W. Moore

The Robotics Institute, Smith Hall 221
Carnegie Mellon University,

phone: (412) 268-7599
kdeng@cs.cmu.edu awm@cs.cmu.edu

To appear in the proceedings of IJCAI-95

some extreme cases, for example if the underlying func-
tion were nearly linear and local linear regression was in
use, this figure might increase to 80% of the datapoints---
essentially a global, not local, function approximator.

The properties described above make instance-based
methods particularly desirable for autonomous systems
that spend their lives in environments that are not known
in advance and in which the designers will not be able to
manually tweak the learning parameters during operation.

Unfortunately, instance-based methods have a serious
problem. As the database grows large it becomes increas-
ingly expensive to make predictions. Each prediction
involves searching the database to find similar earlier
datapoints. This can mean hopelessly slow performance
after merely tens of thousands of predictions. Various
researchers have attempted to deal with this problem [Aha
et al., 1991; Grosse, 1989; Moore, 1990; Skalak, 1994],
but, as we will see in Section 7, none in a manner that
avoids sacrificing at least one of the benefits of instance-
based methods described above. This paper describes a
new solution, based on a multiresolution hierarchical
structuring of data, which retains all the above properties
of instance-based learning while providing fast instance-
based performance. Asymptotically it reduces the cost of a
query from linear to logarithmic in the number of
datapoints.

2. Kernel Regression
The approach taken in this paper can be applied to a wide
variety of instance-based algorithms, but here we will con-
centrate on one of the most well known examples: Kernel
Regression (see, for example, [Franke, 1982]). Assume
that datapoints consist of {input, output} pairs such as
(x1,y1), (x2,y2),. . . (xN,yN) where the inputs ared-element
real-valued vectors and the outputs are scalars, and to date
we have observedN datapoints. The prediction problem is:
given an input vectorxq, which is called thequery, how to
predict the output yest(xq)?

The k-nearest neighbor solution to this problem would be
to find thek datapoints that have input vectors closest to
the query and to take the average of the corresponding out-
put values as yest(xq). Kernel regression uses a similar idea
except that aweighted average of all the points in the data-
base is used, and the points closest to the query are
assigned the largest weight. Thus:

where wi is the weight assigned to theith datapoint in our
memory, and is large for points close to the query and
almost zero for points far from the query. It is calculated as
a decreasing function of Euclidean distance, for example

yest xq()
wiyi∑
wi∑

-----------------=

by a gaussian:

The bigger the parameterK is, the flatter the weight func-
tion curve is, which means that many memory points con-
tribute quite evenly to the regression. AsK tends to infinity
the predictions approach the global average of all points in
the database. If theK is very small, only closely neighbor-
ing datapoints make a significant contribution.

K is an important smoothing parameter for kernel regres-
sion. If the data is relatively noisy, we expect to obtain
smaller prediction errors with a relatively largeK. If the
data is noise free then a smallK will avoid smearing away
fine details in the function. This is illustrated in Figure 1.

Figure 1: For the noiseless data in the top example, a
small K gives the best regression (in terms of future
predictive accuracy). For the noisy data in the bottom
example, a larger K is preferable.

The drawback of kernel regression is the expense of enu-
merating all the distances and weights from the memory
points to the query. Several methods have been proposed
to address this problem, reviewed in Section 7.

3. Multiresolution structuring of datapoints
The main idea of multiresolution instance-based regres-
sion is grouping. The following figure shows a 2-d input
space case. Given a query, based on the distance from each
point to the query, we could calculate a weight for every
point in the input space.

Figure 2: Grouping data according to distance from
query.

wi exp
Distance

2
xq xi,()

2K2
---–

 
 
 
 

=

K is small

K is big

K is big

K is small

Query

If we split space into several rings as illustrated, we will
see that for each group or ring, all the individual weights
inside are approximately equal. Assume we have a group
with n datapoints in which we know that all weights in the
group are close to the same valuew. Let theith member of
the group have weightwi = w + εi where allεis are small.
When performing kernel regression we need to accumulate
two sums over all datapoints in the database:

The former of these sums will then be divided by the latter.
Let us consider how we can compute the contribution to
these sums from all the points in our current group.
Restricting our attention to summations over then points
in the current group we have

Providing we known, w andΣyi for the current group we
can therefore compute an approximation toΣwiyi andΣwi
in constant time without needing to sum individual mem-
bers of the group. This approximation to the partial sums is
good to the extent thatΣεiyi is small with respect towΣyi
andΣεi is small with respect tonw.

Kd-trees for grouping
We now understand that if we are given a query, and if
someone has structured the set of datapoints into groups
for which, relative to the current query, all weights in each
group are very similar, then we can compute approxima-
tions to the sums and in time proportional to

the number of groups instead of the number of individual
datapoints. But how can such a set of groupings be
obtained? And how can we ensure that all weights within
each grouping are very similar?

We can use akd-tree [Preparataet al., 1985], enhanced
with extra cached information, as an implementation of
this grouping idea. Akd-tree is a binary tree that recur-
sively splits the whole input space into partitions, in a
manner similar to a decision tree acting on real-valued
inputs. Each node in thekd-tree represents a certain parti-
tion of the input space; the children of this node denote
subsets of the partition. Hence, the root of thekd-tree is the
whole input space, while the leaves are the smallest possi-
ble partitions thiskd-tree offers. The tree is built in a man-
ner that adapts to the local density of input points and so
the sizes of partitions at the same level are not necessarily
equal to each other.

Instead of dividing the input space into rings, we use
hyper-rectangles within thekd-tree to implement the
grouping idea. The groups are internal nodes of thekd-

wiyi∑ and wi∑

wiyi∑ w εi+ 
  yi∑ w yi∑ εi yi∑+= = and

wi∑ w εi+ 
 ∑ nw εi∑+= =

wiyi∑ wi∑

tree. Which nodes are selected for a given query? They are
chosen to be nodes that represent hyper-rectangles in input
space over which the weight function (relative to the cur-
rent query) varies little. Hence, at parts of state space with
a highly varying weight function (often the part near the
query) we use leaves or lower-level internal nodes---small-
sized partitions. And at parts of state space with little vari-
ation in the weight function (often the parts far from the
query) we use the higher-level internal nodes. This is illus-
trated in figure 3.

When the query,Q, is at the top-right corner of the input
space in our diagram, the circled nodes in the tree are the
groups used for the prediction. The radii of the circles
depend on the distances from the hyper-rectangles to the
query. For a different query,Q*, we use different group-
ings, shown by nodes with a* mark.

Figure 3. To implement the grouping idea, we use hyper-
rectangles withkd-tree. Lower-level nodes or leaves are
chosen (circled) to present the partition of input space
closer to the query. For different query (with *), we can
use the same kd-tree but choose different nodes.

Kernel Regression Trees Defined
Each node of thekd-tree denotes a hyper-rectangle of input
space, and also is defined to contain all datapoints that
have input vectors inside this hyper-rectangle. The root
node covers the whole of input space and contains all the
datapoints. The leaf nodes explicitly record the datapoints

Q

Q*

**

*

*
*

*

*

that reside in the leaf.

Each node records the hyper-rectangle covered by it. This
is defined as the smallest bounding box that contains all
the datapoints owned by this node of the tree.

Each non-leaf node has two children representing two dis-
joint subregions of the parent node. The break between the
children is defined by two values.split_d is the split-
ting dimension, and determines which component of input
space (which “attribute”) the children will be split upon.
split_v determines the numerical value at which each
split occurs, The datapoints owned by the left child of a
node are those datapoints owned by the node which are
less than valuesplit_v in input componentsplit_d .
The right child contains the other datapoints.

Finally, each node contains two other pieces of informa-
tion: n_below , the number of datapoints below the cur-
rent node, andsum, the sumΣyi of all output values of
datapoints contained in this node. These are two of the
three values needed to compute the contribution of a group
to the partial sums in kernel regression. The third compo-
nent, w, depends upon the location of the query and is
determined dynamically in a manner described shortly.

Constructing the kernel regression tree
To construct a tree from a batch of training instances we
use a top-down recursive procedure. This is the most stan-
dard way of constructingkd-trees, described, for example,
in [Preparataet al., 1985; Omohundro, 1991]. In this work
we use the common variation of splitting a hypercube in
the center of the widest dimension instead of at the median
point. This method of splitting does not guarantee a bal-
anced tree, but leads to generally more cubic hyper-rectan-
gles, which has empirically proved better than other
schemes (pathological imbalances are conceivable, but
trivial modifications to the algorithm prevent that). The
cost of making a tree fromN datapoints isO(N log N).

The base case of the recursion occurs when a node is cre-
ated withNmin or fewer datapoints. Then those datapoints
are explicitly stored in the leaf node. In our experiments
Nmin = 2.

To incrementally add a new datapoint to the tree, the leaf
node containing the point is determined (O(log N) cost).
The datapoint is inserted there (and a new subtree is recur-
sively built if the number of nodes exceedsNmin). Then all
ancestors of the updated node are updated to maintain con-
sistency in their hyper-rectangles,sum andn_below val-
ues.

4. Computing the kernel regression sums
Given a query pointxq we are required to computeΣwi and
Σwiyi, summed over all datapoints in the tree and then
divide the latter by the former. This is performed by a top-
down search over the tree. At each node we make a deci-
sion between:

1. (Cutoff) Treat all the points in this node as one
group (a cheap operation) or

2. (Recurse) search the children.

We will use the cutoff option if we are confident that all
weights inside the node are similar. Given the current
queryxq and the hyper-rectangle of the current node it is
an easy matter to computeDmin andDmax: the minimum
and maximum possible distances of any datapoint in this
node to the query (computational cost is linear in the num-
ber of dimensions). From these values one can then com-

pute the minimum and maximum possible weightswmin
andwmax of any datapoints owned by this node, since the
weight of a point is a decreasing function of distance to the
query. We thus decide ifwmin andwmax are close enough
to warrant the cut-off option.

The search is thus a recursive procedure which returns two
values:sum-weights and sum-wy. If the cutoff option is
taken, then estimate the weight of all datapoints as

 and return:

If the cutoff option is not taken, recursively computesum-
weights and sum-wy for the left and right children, and
then return:

sum-weights = sum-weights(left) + sum-weights(right)

sum-wy = sum-wy(left) + sum-wy(right)

5. Search Cutoffs
Section 3 described how we can make our approximation
arbitrarily accurate by bounding the maximum deviation
we will permit from the true weight estimate with a value
εmax > 0 and then makingεmax arbitrarily small. Thus the
simplest cutoff rule in thekd-tree search would be to cutoff
if wmax - wmin < εmax. It is easy to show that this guaran-
tees that the total sum of absolute deviations|Σεi| is less
thanNTεmax / 2 whereNT is the number of points in the
tree. There are, however, other possible cutoff criteria
which provide arbitrary accuracy in the limit, but which,
when used as an approximation, have more satisfactory
properties.

The simple cutoff rule does not take into account that a
larger total error will occur if the node contains very many
points than if the node contains only a few points. It does
also not account for the fact that in a practical case we are
less concerned about the absolute value of the sum of devi-
ations|Σεi| but rather the size of|Σεi| relative to the sum of
the weightsΣwi. Some simple analysis reveals a cutoff cri-

Dmax

xq
Dmin

w wmin wmax+() 2⁄=

sum-weights n_below w×=

sum-wy sum w×=

terion to satisfy both of these intuitions. Cutoff only if

(wmax - wmin) NB < τ Σwi

whereNB is the number of datapoints below the current
node. Simple algebra reveals that this guarantees

| Σεi | < 0.5 Gτ Σwi

where G is the number of groups finally used in the search
(and thus G <NT, hopefully considerably less). Notice that
this cutoff rule requires us to knowΣwi in advance, which
of course we do not. Fortunately the sum of weights
obtained so far in the search can be used as a valid lower
bound, and so the real algorithm makes a cutoff if:

whereτ is a system constant.

6. Experiments and results
Let us review the performance of the multiresolution
method in comparison to kernel regression. In the first
experiment we use a trigonometric function of two inputs
with added noise:xi = uniformly generated random vector
with all components between 0 and 100 andyi = a function
of xi (which ranges between 0 and 100 in height), with
gaussian noise of standard deviation 10.

wmax wmin–() NB

weight so far in search
-- τ<

10,000 datapoints were generated. Experiments were run
for different values of kernel widthK. In all experiments,
the cutoff thresholdτ was 0.005. Figure 4a shows the test-
set error on 1000 test points for both regular kernel regres-
sion (“Regular KR”) and multiresolution kernel regression
(“Multires KR”) graphed for different values ofK. The
values are very close, indicating that multires KR is pro-
viding, for a wide range of kernel widths, a very close
approximation to regular KR. Figure 4b shows the compu-
tational cost (in terms of the summations that dominate the
cost of KR) of the two methods. Regular KR sums all
points, and so is a constant 10,000 in cost. Multires KR is
substantially cheaper for all values ofK, but particularly so
for very small and very large values.

Figures 5a and 5b show corresponding figures for a similar
trigonometric function of five inputs. This still shows sim-
ilar prediction performance as regular KR. The cost is still
always less than regular KR, but in the worst case the com-
putational saving is only a factor of three (whenK = 40,
multires KR cost = 3,200). This is not an especially
impressive result. However, for any fixed dimensionality
and kernel width, costs rise sub-linearly (in principle loga-
rithmically) with the number of datapoints. To check this,
we ran the same set of experiments for a dataset of ten
times the size: 100,000 points. The results, in Figure 6,
show that with this large increase in data, the effectiveness

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

K

E
rr

o
r

Comparison of Kdtree and Kernel Errors

______x______ Multires KR

......o...... Regular KR

(a)

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

K

C
o
s
t

Comparison of The Two KRs Costs

____x____ Multires KR

----+---- Regular KR

(b)

0 10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

9

10

11

K

E
rr

o
r

Comparison of Kdtree and Kernel Errors, 5D

___x___ Multires KR

........o........ Regular KR

(a)

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

K

C
o
s
t

Comparison of The Two KRs Costs, 5D

----+---- Regular KR

____x____ Multires KR

(b)

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

K

E
rr

o
r

Comparison bet/ Two KRs Errors

___x___ Multires KR

.......o....... Regular KR

(a)

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12
x 10

4

K

C
o
s
t

Comp. Of The Costs Of The Two KRs, 5-d, Huge Mem
(b)

Figure 4.. Comparison between (a)
error and (b) cost of regular KR
versus multires KR for 2-d inputs,
for a dataset of size 10,000.

Figure 5: Comparison between
error and cost of regular KR
versus multires KR for 5-d
inputs, for a dataset of size
10,000.

Figure 6: The same experiment
as Figure 5, except with ten
times the amount of data:
100,000 datapoints

of multires KR becomes more apparent. For example, con-
sider theK = 40 case. With 100,000 datapoints instead of
10,000, the cost is only increased from 3,200 to 5,700
while the cost of regular KR (of course) increased from
10,000 to 100,000.

Investigating the t threshold parameter
Next, we will examine the effect of theτ parameter on the
behavior of the algorithm. As τ is increased we expect the
computational cost to be reduced, but at the expense of the
accuracy of the predictions in comparison to the regular
KR. The results in Figure 7 agree with this expectation: the
left hand graph shows that for 2-d, 3-d, 4-d and 5-d
datasets (each with 10,000 points) the proportional error
between multires and regular regression increases withτ.
The right hand graph shows a corresponding decrease in
computational cost.

Figure 7. (Upper) the relative accuracy and (lower) the
computational cost of multires KR againstτ--the cutoff
threshold.

Real datasets
In another experiment, we ran multires KR on data from
several real-world and robot-learning datasets. Further
details of the datasets can be found in [Maron and Moore,
1994]. They include an industrial packaging process for
which the slowness of prediction had been a reasonable
cause for concern. Encouragingly, multires KR speeds up
prediction by a factor of 100 with no discernible difference
in prediction quality between multires and regular KR.
This and other results are tabulated below. The costs and
RMS values given are averages taken over an independent
test set. Notably, the datasets with the least savings were
pool, which had few datapoints, androbot, which was
high dimensional.

High dimensional, non-uniform data
Our final experiment concerned the question of how well

Domain
Number
Points

Dimen-
sion

KR
Cost

MRes
Cost

KR
rms err

MRes
rms err

Energy 2144 5-d 2144 232.9 1.687 1.690

Package 32000 3-d 32000 289.0 6.07 6.09

Pool 213 3-d 213 50.7 2.125 2.123

Protein 4664 3-d 4664 383.8 1.036 1.106

Robot 871 14-d 871 225 6.354 6.976

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20

0

20

40

60

80

100

120

140

160

180

Crit

(K
d

tr
e

e
 e

rr
o

r
 K

e
rn

e
l
e

rr
o

r)
/K

e
rn

e
l
e

rr
o

r
x
 1

0
0

%

Crit --> Error ratio

2d

3d

4d

5d

(a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

1000
Crit --> cost

Crit

C
o

s
t

2d
3d

4d
5d

τ τ

the method performs if the number of input variables is rel-
atively large, but if the attributes are not independent. For
example, a common scenario in robot learning is for the
input vectors to be embedded on a lower-dimensional
manifold. We performed two experiments, each with 9
inputs and 10,000 datapoints. In the first experiment, the
components of the input vectors were distributed uni-
formly randomly. In the second experiment the input vec-
tors were distributed on a non-linear 2-d manifold of the 9-
d input space. The results were:

The results indicate that, as would be expected, the cost
advantage of multires KR is not large (a factor of 3) for 9-d
uniform inputs, but is far better if the inputs are distributed
within a lower-dimensional space.

7. Related Work and Discussion
There has not been room in this paper to discuss a number
of additional flexibilities that multires KR provides. Once
thekd-tree structure is built, it is possible to make different
queries with not only different kernel widthsK, but also
different Euclidean distance metrics, with subsets of
attributes ignored, or with some other distance metrics
such as Manhattan. It is also possible to apply the same
technique with different weight functions and for classifi-
cation instead of regression.

It should be remembered that although we have succeeded
in reducing the cost of instance-based learning, there are
other methods (outlined below) in the literature for doing
so. Why might Multires be preferable? This depends upon
the extent to which the application needs the following
advantages of instance based learning described in Section
1:

• Flexibility to work throughout the local/global spec-
trum.

• The ability to make predictions with different
parameters without needing a retraining phase.

Multires provides for both. No other software method, to
our knowledge, does. There is, however, the simple hard-
ware alternative of using a fast enough computer. The stan-
dard kernel regression method can be parallelized with full
efficiency.

Kd-trees have frequently been used in instance-based
learning methods for nearest neighbor searching or for
range searching [Preparataet al., 1985]. The range-search
solution to kernel regression is to find all points in thekd-
tree that have a significant weight, and then only sum

9-d uniform
9-d inputs on
2d manifold

Regular KR cost 10,000 10,000

Multires KR cost 3,100 430

Regular KR mean testset error 13.07 1.06

Multires KR mean testset error 13.08 1.15

together the weighted components of those points. This is
only practical if the kernel widthK is small. If it is large,
all the datapoints may have a significant weight, but only a
small local variation in weight. Range searching would
sum all the points individually. Multires would visit only
relatively large intermediate nodes (because the weight
variation is locally low) and so would still be cheap. Even
in cases of small kernel widths and large amounts of data
the multiresolution method can be preferable to the range
search method because it may not need to search all the
way down to the leaf nodes.

Another solution to the cost of instance-based learning is
editing (or prototypes): most datapoints are forgotten and
only particularly representative ones are used (e.g. [Kibler
and Aha, 1988; Skalak, 1994]). Kibler and Aha extended
this idea further by allowing datapoints to represent local
averages of sets of previously-observed datapoints. This
can be effective, and unlike range-searching can be appli-
cable even for wide kernel widths. However, the degree of
local averaging must be decided in advance: unlike Mul-
tires, queries cannot occur with different kernel widths
without rebuilding the prototypes. A second occasional
problem is that if we require very local predictions, the
prototypes must either lose local detail by averaging, or
else all the datapoints are stored as prototypes.

There are interesting parallels between prototypes and
Multires. The intermediate nodes of thekd-tree can be
thought of as fabricated prototypes, summarizing all the
data below them.

Decision trees andkd-trees have been previously used to
cache local mappings in the tree leaves [Grosse, 1989;
Moore, 1990; Omohundro, 1991; Quinlan, 1993]. These
algorithms provide fast access once the tree is built, but a
new structure needs to be built each time new learning
parameters are required. Furthermore, unlike the multires-
olution method, the resulting predictions from the tree
have substantial discontinuities between boundaries. Only
in [Grosse, 1989] is continuity enforced, but at the cost of
tree-size, tree-building-cost and prediction-cost all being
exponential in the number of input variables.

Dimensionality is a weakness of Multires. Diminishing
returns set in above approximately 10 dimensions if the
data is distributed uniformly. This is an inherent problem
for which no solution seems likely because uniform data in
high dimensions will have almost all datapoints almost
exactly the same distance apart, and a useful notion of
locality breaks down.

This paper discussed an efficient implementation of kernel
regression. We are applying exactly the same algorithm to
locally weighted polynomial regression, in which a predic-
tion fits a local polynomial to minimize the locally
weighted sum squared error. The only difference is that
each node of thekd-tree stores the regression design matri-

ces of all points below it in the tree. This permits fast pre-
diction and also fast computation of confidence intervals
and analysis of variance information.

Multires as described here is only applicable to numeric
features. An interesting avenue for future work would be
ways to extend the method to binary or symbolic features.

8. Conclusion
Instance based methods make use of a database of multidi-
mensional data. Multiresolution instance-based methods
provide a means for performing queries quickly, even
when the amount of data is enormous. An important mes-
sage of this paper is that for efficient accessing of large
instance bases (or case bases, or memory-bases) it is not
necessary to resort to throwing data away. Intelligent
structuring is an alternative.

Acknowledgement
We wish to thank the IJCAI reviewers for insightful and
useful comments. This work was support by a research gift
from 3M corporation and an NSF Reserach Initiation
Award.

References
[Kibler and Aha, 1988] D. Kibler and D. W. Aha, Comparing Instance
Averaging and Instance Filtering Learning Algorithms,Proceedings of
3rd European Working Session on Learning, Pitman, 1988
[Atkeson, 1989] C. G. Atkeson, Using Local Models to Control Move-
ment, Proceedings of Neural Information Processing Systems Confer-
ence, 1989
[Franke, 1982] R. Franke, Scattered Data Interpolation: Tests of Some
Methods,Mathematics of Computation,Vol 38, No 157, January 1982.
[Grosse, 1989] E. Grosse, LOESS: Multivariate Smoothing by Moving
Least Squares,Approximation Theory VI, Edited by C. K. Chul, L. L.
Schumaker and J. D. Ward, Academic Press, 1989
[Maron and Moore, 1994] O. Maron and A. W. Moore, Hoeffding Races:
Accelerating Model Selection Search,Advances in Neural Information
Processing Systems 6, 1994
[Moore, 1990] A. W. Moore, Acquisition of Dynamic Control Knowl-
edge for a Robotic Manipulator,Proceedings of the 7th International
Conference on Machine Learning, Morgan Kaufmann, 1990
[Moore et al., 1992] A. W. Moore and D. J. Hill and M. P. Johnson, An
Empirical Investigation of Brute Force to choose Features, Smoothers
and Function Approximators,Computational Learning Theory and Natu-
ral Learning Systems, Volume 3, Edited by S. Hanson and S. Judd and T.
Petsche, MIT Press, 1992
[Omohundro, 1991] S. M. Omohundro, Bumptrees for Efficient Function,
Constraint, and Classification Learning,Advances in Neural Information
Processing Systems 3, 1991
[Preparataet al., 1985] F. P. Preparata and M. Shamos,Computational
Geometry, Springer-Verlag, 1985
[Quinlan, 1993] J. R. Quinlan, Combining Instance-Based and Model-
Based Learning,Machine Learning: Proceedings of the Tenth Interna-
tional Conference, 1993
[Skalak, 1994] D. B. Skalak, Prototype and Feature Selection by Sam-
pling and Random Mutation Hill Climbing Algorithms,Machine Learn-
ing: Proceedings of the Eleventh International Conference, 1994
[Stanfill et al., 1986] C. Stanfill and D. Waltz, Towards Memory-Based
Reasoning,Communications of the ACM, 29(12), 1986

