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Abstract

We present a sequential factorization method for recovering
the three-dimensional shape of an object and the motion of
the camera from a sequence of images, using tracked features.
The factorization method originally proposed by Tomasi and
Kanade produces robust and accurate results incorporating
the singular value decomposition. However, it is still difficult
to apply the method to real-time applications since it is based
on a batch-type operation and the cost of the singular value
decomposition is large. We develop the factorization method
into a sequential method by regarding the feature positions as
a vector time series. The new method produces estimates of
shape and motion at each frame. The singular value decompo-
sition is replaced with an updating computation of only three
dominant eigenvectors, which can be performed in
time, while the complete singular value decomposition
requires operations for an matrix. Also, the
method is able to handle infinite sequences since it does not
store any increasingly large matrices. Experiments using syn-
thetic and real images illustrate that the method has nearly the
same accuracy and robustness as the original method.

1. Introduction

Recovering both the 3D shape of an object and the motion of
the camera simultaneously from a stream of images is an
important task and has wide applicability in many tasks such
as navigation and robot manipulation. Tomasi and Kanade[1]
first developed a factorization method to recover shape and
motion under an orthographic projection model, and obtained
robust and accurate results. Poelman and Kanade[2] have
extended the factorization method to scaled-orthographic pro-
jection and paraperspective projection. This method closely
approximates perspective projection in most practical situa-
tions so that it can deal with image sequences which contain
perspective distortions.
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Although the factorization method is a useful technique, its
applicability is so far limited to off-line computations for the
following reasons. First, the method is based on a batch-type
computation; that is, it recovers shape and motion after all the
input images are given. Second, the singular value decompo-
sition, which is the most important procedure in the method,
requires operations for features in frames.
Finally, it needs to store a large measurement matrix whose
size increases with the number of frames. These drawbacks
make it difficult to apply the factorization method to real-time
applications.

This report presents a sequential factorization method that
considers the input to the system as a vector time series of
feature positions. The method produces estimates of shape
and motion at each input frame. A covariance-like matrix is
stored instead of feature positions, and its size remains con-
stant as the number of frames increases. The singular value
decomposition is replaced with a computation, updating only
three dominant eigenvectors, which can be performed in

 time. Consequently, the method becomes recursive.

We first briefly review the factorization method by Tomasi
and Kanade. We then present our sequential factorization
method in Section 3. The algorithm’s performance is tested
using synthetic data and real images in Section 4.

2. Theory of the Factorization Method: Review

2.1 Formalization
The input to the factorization method is a measurement
matrix , representing image positions of tracked features
over multiple frames. Assuming that there are features over

frames, and letting be the image position of fea-

ture  at frame ,  is a  matrix such that
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. (1)

Each column of contains all the observations for a single
point, while each row contains all the observed x-coordinates
or y-coordinates for a single frame.

Suppose that the camera orientation at frame is represented
by orthonormal vectors , , and , where corresponds to

the x-axis of the image plane and to the y-axis. The vectors

and are collected over frames into a motion matrix

 such that

. (2)

Let be the location of feature in a fixed world coordinate
system, whose origin is set at the center-of-mass of all the
feature points. These vectors are then collected into a shape
matrix  such that

. (3)

Note that

. (4)

With this notation, the following equation holds by assuming
an orthographic projection.

(5)

Tomasi and Kanade[1] pointed out the simple fact that the
rank of is at most 3 since it is the product of the
motion matrix and the shape matrix . Based on
this rank theory, they developed a factorization method that
robustly recovers the matrices  and  from .

2.2 Subspace Computation
The actual procedure of the factorization method consists of
two steps. First, the measurement matrix is factorized into

two matrices of rank 3 using the singular value decomposi-
tion. Assume, without loss of generality, that . By
computing the singular value decomposition of ,
we can obtain orthogonal matrices and

 such that

, (6)

where = diag( ) and . In reality,
the rank of W is not exactly 3, but approximately 3. is
made from the first three columns of the left singular matrix
of . Likewise, consists of the first three singular values
and is made from the first three rows of the right singular
matrix. By setting

 and (7)

we can factorize  into

, (8)

where the product is the best possible rank three approxi-
mation to .

It is well known that the left singular vectors span the col-
umn space of while the right singular vectors span its
row space. The span of , namelymotion space, determines
the motion, and the span of , namelyshape space, deter-
mines the shape. The rank theory claims that the dimension of
each subspace is at most three, and the first step of the factor-
ization method finds those subspaces in the high dimensional
input spaces. Both spaces are said to be dual in the sense that
one of them can be computed from the other. This observation
helps us to further develop the sequential factorization
method.

2.3 Metric Transformation
The decomposition of equation (8) is not completely unique:
it is unique only up to an affine transformation. The second
step of the method is necessary to find a non-singular
matrix , which transforms and into the true solutions

 and  as follows.

(9)

(10)

Observing that rows and of must satisfy the normal-
ization constraints,

 and , (11)

we obtain the system of overdetermined equations such
that
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(12)

where  is a symmetric matrix

(13)

and, and are the rows of . By denoting
, , and

, (14)

the system (12) can be rewritten as

, (15)

where , , and  are defined by

, , , (16)

and

(17)

The simplest solution of the system is given by the pseudo-
inverse method such that

. (18)

The vector determines the symmetric matrix , whose
eigendecomposition gives . As a result, the motion and
the shape  are derived according to equations (9) and (10).

The matrix is an affine transform which transforms into
in the motion space, while the matrix transforms

into in theshape space. Obtaining this transform is the main
purpose of the second step of the factorization method, which
we callmetric transformation.

3. A Sequential Factorization Method

3.1 Overview
In the original factorization method, there was one measure-
ment matrix containing tracked feature positions through-
out the image sequence. After all the input images are given
and the feature positions are collected into the matrix , the
motion and shape are then computed. In real-time applica-
tions, however, it is not feasible to use this batch-type
scheme. It is more desirable to obtain an estimate at each
moment sequentially. The input to the system must be viewed
as a vector time series. At frame , two vectors containing
feature positions such that

 and (19)

are given. Immediately after receiving these vectors, the sys-
tem must compute the estimates of the camera coordinates ,

and the shape at that frame. At the next frame, new sam-
ples and arrive and new camera coordinates

and are to be computed as well as an updated
shape estimate .

The key to developing such a sequential method is to observe
that the shape does not change over time. Theshape spaceis
stationary, and thus, it should be possible to derive from

 without performing expensive computations.

More specifically, we store the feature vectors and in a
covariance-type matrix  defined recursively by

. (20)

As shown later, the rank of is at most three and its three
dominant eigenvectors span theshape space. Once is
obtained, the camera coordinates at frame can be computed
simply by multiplying the feature vectors and the eigenvec-
tors as follows.

, (21)

This framework makes it possible to estimate camera coordi-
nates immediately after receiving feature vectors at each
frame. All information obtained up to the frame is accumu-
lated in  and used to produce the estimates at that frame.

In equation (20), the size of is fixed to , which only
depends on the number of feature points. Therefore, the algo-
rithm does not need to store any matrices whose sizes
increase over time.

The computational effort in the original factorization method
is dominated by the cost of the singular value decomposition.
In the framework above, we need to compute eigenvectors of

. Note that, however, we only need the first three dominant
eigenvectors. Fortunately, several methods exist to compute
only the dominant eigenvectors with much less computation
necessary to compute all the eigenvectors. Before describing
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the details of our algorithm, we briefly review these tech-
niques in the following section.

3.2 Iterative Eigenvector Computation
Among the existing methods which can compute dominant
eigenvectors of a square matrix, we introduce two methods,
the power method and orthogonal iteration[3]. The power
method is the simplest, which computes the most dominant
eigenvector, i.e., an eigenvector associated with the largest
eigenvalue. It provides the starting point for most other tech-
niques, and is easy to understand. The method of orthogonal
iteration, which we adopt in our method, is able to compute
several dominant eigenvectors.

3.2.1 Power Method

Assume that we want to compute the most dominant eigen-
vectors of an matrix . Given a unit 2-norm

, the power method iteratively computes a
sequence of vectors :

for

end

The second step of the iteration is simply a normalization that
prevents from becoming very large or very small. The
vectors generated by the iteration converge to the most
dominant eigenvector of . To examine the convergence
property of the power method, suppose that is diagonaliz-
able. That is, with an orthogonal
matrix , and . If

(22)

and , then it follows that

(23)

where is a constant. Since , equation

(23) shows that the vectors point more and more accu-
rately toward the direction of the dominant eigenvector ,

and the convergence factor is the ratio .

3.2.2 Orthogonal Iteration

A straightforward generalization of the power method can be
used to compute several dominant eigenvectors of a symmet-
ric matrix. Assume that we want to compute dominant
eigenvectors of a symmetric matrix , where

. Starting with an matrix with orthonor-
mal columns, the method of orthogonal iteration generates a
sequence of matrices :

for

(QR factorization)

end

The second step of the above iteration is the QR factorization
of , where is an orthogonal matrix and is an upper
triangular matrix. The QR factorization can be achieved by
the Gram-Schmidt process. This step is viewed as a normal-
ization process that is similar to the normalization used in the
power method.

Suppose that is the eigendecom-
position of with an orthogonal matrix ,
and . It has been shown in [3] that the
subspace generated by the iteration converges
to at a rate proportional to ,
i.e.,

, (24)

where and is a constant. The function
dist represents the subspace distance defined by

(25)

The method offers an attractive alternative to the singular
value decomposition in situations where is a large matrix
and a few of its largest eigenvalues are needed. In our case,
these conditions clearly hold. In addition, the rank theory of
the factorization method[1] guarantees that the ratio
is very small, and as a result, we should achieve fast conver-
gence for computing the first three eigenvectors.

3.3 Sequential Factorization Algorithm
As in the original method, the sequential factorization method
consists of two steps, sequentialshape spacecomputation and
sequential metric transformation.

3.3.1 A Sequential Shape Space Computation

In the sequential factorization method, we consider the fea-
ture vectors, and , as a vector time series. Let us denote
the measurement matrix in the original factorization method
at frame  by . Then, it grows in the following manner:
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, , ....., , ..... (26)

Now let us define a matrix time series  by

. (27)

From the definition, it follows that

. (28)

Since the rank of is at most three, the rank of is also at
most three. If

(29)

is the singular value decomposition of , where

and are orthogonal matrices, and

, then

. (30)

This means the eigenvectors of are equivalent to the right
singular vectors of . Hence, it is possible to obtain the
shape space by computing the eigenvectors of .

To compute , we combine orthogonal iteration with updat-

ing by equation (27). Given a matrix with orthonor-

mal columns and a null matrix , the following

algorithm generates a sequence of matrices :

[Algorithm (1)]  for f = 1, 2, ....

(1)

(2)

(3) (QR factorization)

end

The index corresponds to the frame number and each itera-
tion is performed frame by frame. The matrix generated
by the algorithm is expected to converge to the eigenvectors

of . While the original orthogonal iteration works with a
fixed matrix, the above algorithm works with the matrix ,
which varies from iteration to iteration incorporating new fea-
tures. In other words, the sequential factorization method
folds the update of into the orthogonal iteration. If the

randomly changes over time, no convergence is
expected to appear. However, it can be shown that

, for all . (31)

Therefore, is stationary and con-
verges to as in the orthogonal iteration. Even
when noise exists, if the noise is uncorrelated or the noise
space is orthogonal to the signal space , then

is still equal to and the convergence
can be shown. The following convergence rate of the algo-
rithm is deduced from the convergence rate of the orthogonal
iteration.

(32)

3.3.2 Stationary Basis for the Shape Space

Algorithm (1) presented in the previous section produces the
matrix , which converges to the matrix that spans the
shape space. The true shape and motion are determined from
the shape spaceby a metric transformation. It is not straight-
forward at this point, however, to apply the metric transfor-
mation sequentially. The problem is that, even though

is stationary, the matrix itself changes as the
number of frames increases. This is due to the nature of sin-
gular vectors. They are the basis for the row and column sub-
spaces of a matrix, and the singular value decomposition
chooses them in a special way. They are more than just
orthonormal. As a result, they rotate in the 3D subspace

. Recall that the matrix obtained in metric
transformation (9) is a transform from (or ) to in
the subspace . Since changes at each frame,

also changes. Consequently, the matrix also changes
frame by frame.

For clarity, let us denote an matrix at frame as . The
fact that changes at each frame makes it difficult to esti-
mate iteratively and efficiently. Thus we need to add an
additional process to obtain stationary basis for theshape
space to update matrix .

Let us define a projection matrix onto the
 by

, (33)

where is the output from Algorithm (1). Needless to say,
the rank of is at most three. Since
(= ) is stationary, the projection matrix must
be stationary. It is thus possible to obtain the stationary basis
for the shape spaceby replacing with the eigenvectors of

.

An iterative method similar to Algorithm (1) can be used to
reduce the amount of computation. Given a matrix
with orthonormal columns, the iterative method below gener-
ates a matrix , which provides the stationary basis
for theshape space.
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[Algorithm (2)] for f = 1, 2, ....

(QR factorization)

end

3.3.3 Sequential Metric Transformation

In the previous section, we derived theshape spacein terms of
. Once is obtained, it is possible to compute camera

coordinates  and  as

, (34)

These coordinates are used to solve the overdetermined equa-
tions (12) and the true camera coordinates are recovered in
the same way as in the original method. Doing so, however,
requires storing all the coordinates and , the number of
which may be very large. Instead, we use the following
sequential algorithm.

[Algorithm (3)] for f = 1, 2, ....

,

end

Let and be the matrices and at frame , where
and are defined in Section 2.3 From the definition, it fol-
lows that

(35)

. (36)

Assigning equations (35) and (36) to equation (18), we have

(37)

which gives the symmetric matrix . The eigendecomposi-
tion of yields the affine transform and, as a result, the
camera coordinates and the shape are obtained as follows:

(38)

(39)

Algorithm (3) followed by equations (37), (38), and (39)
completes the sequential method. The size of matrices and

are fixed to and , and the method does not
store any matrices that grow, even in the sequential metric
transformation.

4. Experiments

4.1 Synthetic Data
In this section we compare the accuracy of our sequential fac-
torization method with that of the original factorization
method. Since both methods are essentially based on the rank
theory, we do not expect any difference in the results. Our
purpose here is to confirm that the sequential method has the
same accuracy of shape and motion recovery as the original
method.

4.1.1 Data Generation

The object in this experiment consists of 100 random feature
points. The sequences are created using a perspective projec-
tion of those points. The image coordinates of each point are
perturbed by adding Gaussian noise, which we assume to
simulate tracking error and image noise. The standard devia-
tion of the Gaussian noise is set to two pixels of a
pixel image. The distance of the object center from the cam-
era is fixed to ten times the object size. The focal length is
chosen so that the projection of the object covers the whole

image. The camera is rotated as shown in Figure 1,
while the object is translated to keep its image at the image
center. Quantization errors are not added since we assume
that we are able to track features with a subpixel resolution.

When discussing the accuracy of the sequential method, one
needs to consider its dynamic property regarding the 3D
recovery. The accuracy of the recovery at a particular frame
by the sequential method depends on the total amount of
motion up to that time, since the recovery is made only from
the information obtained up to that time. At the beginning of
an image sequence, for example, the motion is generally
small, so high accuracy can not be expected. The accuracy
generally improves as the motion becomes larger. The origi-
nal method does not have this dynamic property, since it is
based on a batch-type scheme and uses all the information
throughout the sequence.

In order to compare both methods under the same conditions,
we perform the following computations beforehand. First, we
form a submatrix , which only contains the feature posi-
tions up to frame . The original factorization is applied to the
submatrix, then the results are kept as solutions at frame .
They are the best estimates given by the original method.
Repeating this process for each frame, we derive the best esti-
mates, with which our results are compared.

4.1.2 Accuracy of the Sequential Shape Space
Computation

We first discuss the convergence property of the sequential
shape spacecomputation. The sequential factorization method
starts with Algorithm (1) in Section 3.3.1, iteratively generat-
ing the matrix which is an estimate for the trueshape space

. Let us represent the estimation error with respect to the
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trueshape space by

(40)

Recall that the functiondist provides a notion of difference
between two spaces. On the other hand, the original method
produces the best estimate for theshape spaceby computing
the right singular vectors of the submatrix , and its
error with respect to the trueshape spaceis also represented by

(41)

Comparing both errors, Figure 2 shows that they are almost
identical. That is, the errors given by the sequential method
are almost equal to those given by the original method.

At the beginning of the sequence, the amount of motion is

small and both errors are relatively large. The ratio of the 4th
to 3rd singular values, shown in Figure 3, also indicates that it
is difficult to achieve good accuracy at the beginning. Both
errors, however, quickly become smaller as the camera
motion becomes larger. After about the 20th frame, constant
errors of  are observed in this experiment.

The solutions given by the two methods are so close that the
graphs are completely overlapped. Thus, we also plot their
difference defined by

(42)

in Figure 4. Although is relatively large at the beginning,
it quickly becomes very small. In fact, after about the 30th
frame, is less than , while and are both

.
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Figure 1: True camera motion
The camera roll, pitch, and yaw are varied as shown in
this figure. The sequence consists of 150 frames.
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Figure 2: Shape space errors
Shape space estimation errors by the sequential method
(solid line) and the original method (dashed line) with
respect to the true shape space. The errors are defined by
subspace distance and plotted logarithmically.
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Figure 3: Singular value ratio
The ratio of the 4th to 3rd singular values, that is .σ4 σ3⁄
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Figure 4: Difference of shape space errors
The difference of the estimates by the sequential and origi-
nal methods, versus the frame number. The difference is
plotted logarithmically.
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4.1.3 Accuracy of the Motion and Shape Recovery

The three plots of Figure 5 show errors in roll, pitch, and yaw
in the recovered motion: the solid lines correspond to the
sequential method, the dotted lines to the original method.
The difference in motion errors between the original and
sequential methods is quite small.

Both results are unstable for a short period at the beginning of
the sequence. After that, they show two kinds of errors: ran-
dom and structural. Random errors are due to Gaussian noise
added to the feature positions. Structural errors are due to per-
spective distortion, and relate to the motion patterns. The
structural errors show a negative peak at about the 60th frame
and are almost constant between the 90th and 120th frames.
Note the pattern corresponds to the motion pattern shown in
Figure 1.

Of course, these intrinsic errors cannot be eliminated in the
sequential method. The point to observe is that the differences
between the two solutions are sufficiently smaller than the

intrinsic errors.

Shape errors which are compared in Figure 6 also indicate the
same results. Again, the differences between the two methods
are quite small compared to the intrinsic errors which the
original method possesses. Note that no Gaussian noise
appears in the shape errors since they are averaged over all
the feature points.

We conclude from these results that the sequential method is
nearly as accurate as the original method except that some
extra frames are required to converge.

4.2 Real Images
Experiments were performed on two sets of real images. The
first set is an image sequence of a satellite rotating in space.
Another experiment uses a long video recording (764 images)
of a house taken with a hand-held camera. These experiments
demonstrate the applicability of the sequential factorization
method in real situations. In both experiments, features are
selected and tracked using the method presented by Tomasi
and Kanade[1].

4.2.1 Satellite Images

Figure 7 shows an image of the satellite with selected features
indicated by small squares. The image sequence was digitized
from a video recording[4] actually taken by a space shuttle
astronaut. The feature tracker automatically selected and
tracked 32 features throughout the sequence of 101 images.
Of these, five features on the astronaut maneuvering around
the satellite were manually eliminated because they had a dif-
ferent motion. Thus, the remaining 27 features were pro-
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Figure 5: Motion errors
Errors of recovered camera roll (top), pitch (middle), and
yaw (bottom). The errors given by the sequential method
are plotted with solid lines, while the errors given by the
original method are plotted with dotted lines.
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Figure 6: Shape error
This figure compares the shape errors given by the two
method. The errors given by the sequential method are
plotted with solid lines, while the errors given by the origi-
nal method are plotted with dotted lines. The errors are
computed as the root-mean-square errors of the recovered
shape with respect to the true shape, at each frame.
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cessed. Figure 8 shows the recovered motion in terms of roll,
pitch, and yaw. The side view of the recovered shape is dis-
played in Figure 9, where the features on the solar panel are
marked with opaque squares and others with filled squares.
No ground-truth is available for the shape or the motion in
this experiment. Yet, it appears that the solutions are satisfac-
tory, since the features on the solar panel almost lie in a single
line in the side view.

4.2.2 House Images

Figure 10 shows the first image of the sequence used in the
second experiment. Using a hand-held camera, one of the
authors took this sequence while walking. It consists of 764
images which correspond to about 25 seconds. The feature
tracker detected and tracked 62 features. The recovered
motion and shape are shown in Figures 11 and 12. It is clearly
seen that the shape is qualitatively correct. It is also reason-
able to observe that only the camera yaw is increasing,
because the camera is moving parallel to the ground. In addi-
tion, note that the computed roll motion reveals the pace of
the recorder’s steps, which is about 1 step per second.

Further evaluation of accuracy in these experiments is diffi-
cult. However, this qualitative analysis of the results with real
images, and quantitative analysis of the results with synthetic
data essentially shows that the sequential method works as
well with real images as the original batch method.

4.3 Computational Time
Finally, we compare the processing time of the sequential
method with the original method. The computational com-

plexity of the original method is dominated by the cost of the
singular value decomposition, which needs
computations for a measurement matrix with
[5]. Note that corresponds to the number of frames and
to the number of features. On the other hand, the complexity
of the sequential method is . Computing the solu-
tion for frame F, therefore, takes only using the
sequential method, while the original method would require

 operations.

Figure 13 shows the actual processing time of the sequential
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Figure 7: An image of a satellite
The first frame of the satellite image sequence. The
superimposed squares indicate the selected features.
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Figure 8: Recovered motion of satellite
Recovered camera roll (solid line), pitch (dashed line), and
yaw (dotted line) for the satellite image sequence.

Figure 9: Side view of the recovered shape
A side view of the recovered shape of the satellite. The fea-
tures on the solar panel are shown with opaque squares and
others with filled squares. Notice that the features on the
solar panel correctly lie in a single plane.
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Figure 10: An image of a house
The first frame of the house image sequence. The super-
imposed squares indicate the selected features.
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Figure 11: Recovered motion of house
Recovered camera roll (solid line), pitch (dashed line), and
yaw (dotted line) for the house image sequence.

Figure 12: Top view of the recovered shape
A view of the recovered shape of the house from above.
The features on the two side walls are correctly recovered.

Figure 13: Processing time
The processing time of the sequential method on a Sun4/
10 (solid line) compared with that of the original method
(dotted line), as a function of the number of features
which is varied from 10 to 500. The number of frames is
fixed at 120.
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method on a Sun4/10 compared together with that of the orig-
inal method. The number of features varied from 10 to 500,
while the number of frames was fixed at 120. The processing
time for selecting and tracking features was not included. The
singular value decomposition of the original method is based
on a routine found in [6]. The results sufficiently agree with
our analysis above. In addition, when the number of features
is less than 40, the sequential method can be run in less than
1/30 of a second, which enables video-rate processing on a
Sun4/10.

5. Conclusions

We have presented the sequential factorization method, which
provides estimates of shape and motion at each frame from a
sequence of images. The method produces as accurate and
robust results as the original method, while significantly
reducing the computational complexity. The reduction in
complexity is important for applying the factorization method
to real-time applications. Furthermore, the method does not
require storing any growing matrices so that its implementa-
tion in VLSI or DSP is feasible.

Faster convergence in theshape spacecomputation could be
achieved using more sophisticated algorithms such as the
orthogonal iteration with Ritz acceleration[3] instead of the
basic orthogonal iteration. Also, it is possible to use scaled
orthographic projection or paraperspective projection[2] to
improve the accuracy of the sequential factorization method.
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