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Abstract Although the factorization method is a useful technique, its
applicability is so far limited to off-line computations for the

We present a sequential factorization method for recoverinfollowing reasons. First, the method is based on a batch-type
the three-dimensional shape of an object and the motion ccomputation; that s, it recovers shape and motion after all the
the camera from a sequence of images, using tracked featurdnput images are given. Second, the singular value decompo-
The factorization method originally proposed by Tomasi ancsition, which is the most important procedure in the method,
Kanade produces robust and accurate results incorporatirrequires O(FP”) operations foP  features i frames.
the singular value decomposition. However, it is still difficult Finally, it needs to store a large measurement matrix whose
to apply the method to real-time applications since it is basesize increases with the number of frames. These drawbacks
on a batch-type operation and the cost of the singular valumake it difficult to apply the factorization method to real-time
decomposition is large. We develop the factorization metho@pplications.

into a sequential method by regarding the feature positions érhis report presents a sequential factorization method that
a vector time series. The new method produces estimates .,nsjders the input to the system as a vector time series of
shape and motion at each frame. The singular value decOmpyea¢re positions. The method produces estimates of shape
sition is replaced with an updating computation of only three; g motion at each input frame. A covariance-like matrix is

dominant eigenvectors, which can be performeda(P")  gigred instead of feature positions, and its size remains con-
time, while the complete singular value decompositiongant a5 the number of frames increases. The singular value
requires O(FP") ~ operations for aR P matrix. Also, the yecomposition is replaced with a computation, updating only

method is_able tq handle infinite_sequences_ since it d_oes Nthree dominant eigenvectors, which can be performed in
store any increasingly large matrices. Experiments using syr O(PZ) time. Consequently, the method becomes recursive.
thetic and real images illustrate that the method has nearly tr

same accuracy and robustness as the original method. We first briefly review the factorization method by Tomasi
and Kanade. We then present our sequential factorization

. method in Section 3. The algorithm’s performance is tested
1. Introduction using synthetic data and real images in Section 4.

Recovering both the 3D shape of an object and the motion ¢ L. .

the camera simultaneously from a stream of images is a2- 1heory of the Factorization Method: Review
important task and has wide applicability in many tasks suct

as navigation and robot manipulation. Tomasi and Kanade[12 1 Formalization

first developed a factorization method to recover shape an i o )

motion under an orthographic projection model, and obtaine(' "€ iNPUt to the factorization method is a measurement
robust and accurate results. Poelman and Kanade[2] haxmatrix W, representing image positions of tracked features
extended the factorization method to scaled-orthographic prcover multiple frames. Assuming that there &e  features over
jection and paraperspective projection. This method closelF frames, and Iettin@xfp, yfp) be the image position of fea-
approximates perspective projection in most practical Sit“aturep atframd W is@F xP  matrix such that

tions so that it can deal with image sequences which contai

perspective distortions.

This research is sponsored by the Department of the Army
Army Research Office under Grant No. DAAH04-94-G-0006.



two matrices of rank 3 using the singular value decomposi-

11 - Xap tion. Assume, without loss of generality, thaE =P . By
: : computing the singular value decompositionVéf] R2F *P
CXeq e Xep we can obtain orthogonal matricet) O R2F >3 and
W = : (1) v ORP*3such that
Y11 - Yip
: W = UzVT, (6)
YE1 -+ YFp| wherex =diag¢,, 0,, 05 ) and; 20,2>05>0 . Inreality,
the rank of W is not exactly 3, but approximately 3. is

Ea_ch colgmn oW contamg all the observations for a ‘?’mglemade from the first three columns of the left singular matrix
point, while each row contains all the observed x-coordinate

or v-coordinates for a sinale frame Bf W. Likewise,Z~ consists of the first three singular values
y 9 ' andV is made from the first three rows of the right singular

Suppose that the camera orientation at frdme  is represent&ggtrix. By setting

by orthonormal vectors j; ,arkd ,whege corresponds to - .
_ _ _ _ M = U andS = VT )
the x-axis of the image plane apd  to the y-axis. The vectors

i; andj; are collected ovef  frames into a motion matrix V€ ¢an factorizaV  into

M 0 R? *3 such that W = MS, (8)

where the produdi1S is the best possible rank three approxi-
mation toWw .

Fo

It is well known that the left singular vectots3  span the col-

umn space ofV  while the right singular vectovs  span its
(2)  row space. The span & , namehption space determines

the motion, and the span & , namelgape spacedeter-

mines the shape. The rank theory claims that the dimension of

each subspace is at most three, and the first step of the factor-
j,I ization method finds those subspaces in the high dimensional

B input spaces. Both spaces are said to be dual in the sense that

Lets, be the location of featune  in a fixed world coordinate one of them can be computed from the other. This observation
system, whose origin is set at the center-of-mass of all théelps us to further develop the sequential factorization
feature points. These vectors are then collected into a shapeethod.
matrix SO R <" such that

<
]
CoST T e

2.3 Metric Transformation

S= [51 SFJ : (3) " The decomposition of equation (8) is not completely unique:
it is unique only up to an affine transformation. The second

Note that step of the method is necessary to fin@ a 3 non-singular
P matrix A, which transform$v  an8 into the true solutions
Z Sp = 0. (4) M andS as follows.
p=1 N
. . . . . . M = MA 9)
With this notation, the following equation holds by assuming
an orthographic projection. s = ALS (10)
W = MS (5)  Observing that rows; ang ol must satisfy the normal-
Tomasi and Kanade[1] pointed out the simple fact that thdZation constraints,
rank of W is at most 3 since it is the product of tAE x 3 T 1. . T
motion matrixM and the8 x P shape matr . Based on fly = Jflg = fandgjg = C, (11)

this rank theory, they developed a factorization method tha\;ve obtain the system 8F

5 overdetermined equations such
robustly recovers the matricé4 aBd fréh . that

2.2 Subspace Computation

The actual procedure of the factorization method consists of
two steps. First, the measurement matrix is factorized into



3. A Sequential Factorization Method

TLis =1
TLjs = (12) 3.1 Overview
TL s = ¢ In the original factorization method, there was one measure-

ment matrixW containing tracked feature positions through-
out the image sequence. After all the input images are given
and the feature positions are collected into the mawix , the
L=ATA motion and shape are then computed. In real-time applica-

= (13) . g . .

A . R tions, however, it is not feasible to use this batch-type
z%nd, i+ and j; _are the rows oM . By denoting scheme. It is more desirable to obtain an estimate at each
i = lfpifoigalis = [fplsmisg and moment sequentially. The input to the system must be viewed

as a vector time series. At franfe , two vectors containing
11515 feature positions such that

(14)

whereL OR*™® isa symmetric matrix

L=1l,1,I1, T T
2'4'5 K¢ = [Xp Xgon oo Xgpl @NAY: = [Viq, Yior - Yipl (19)

[
3's56 . . .
are given. Immediately after receiving these vectors, the sys-

the system (12) can be rewritten as tem must compute the estimates of the camera coordinates ,
jand the shap®; at that frame. At the next frame, new sam-
Gl=c, (15 ples X;4+q1 andy;,, arrive and new camera coordinates
J0OR® , ane ORF  are defined by it,andj;,, are to be computed as well as an updated
shape estimat$; | ;

whereG [ R3F x6

T, .

g9 (ip1y) The key to developing such a sequential method is to observe
: that the shape does not change over time. Siape spacds

stationary, and thus, it should be possible to deiye  from

T,. .
g (ipig) S; _, without performing expensive computations.

T

T 1 1 e .
g (jp iy More specifically, we store tgg Leature vectegs  gpd  ina
. ., (16) covariance-type matri; [J R defined recursively by

o'(ip ip)| Lo L = Zgoa XX Yy (20)
gT(il, i) As shown later, the rank &; is at most three and its three
) dominant eigenvectorQ;  span thieape spaceOnceQ; is
obtained, the camera coordinates at frfme can be computed
qT(iE. i) simply by multiplying the feature vectors and the eigenvec-
tors as follows.

Ogpo  DP000gRoooc

and
T T ~T _ 7T
gT(af,bf) f = X:Qs It = ¥:Q (21)
ai This framework makes it possible to estimate camera coordi-
(A7) nates immediately after receiving feature vectors at each

The simplest solution of the system is given by the pseudoframe. All information obtained up to the frame is accumu-
inverse method such that lated inQ; and used to produce the estimates at that frame.

:[aflbfl 2ag1bg,  2apibpz Appbg,  2ag5beg

] In equation (20), the size &; is fixed ®x P, which only
T T f (
l=(GG) GcC . (18)  depends on the number of feature points. Therefore, the algo-

The vector| determines the symmetric mattix Whoserlthm does not need to store any matrices whose sizes

eigendecomposition give& . As a result, the mothdn andncrease over tme.

the shap& are derived according to equations (9) and (10)The computational effort in the original factorization method
is dominated by the cost of the singular value decomposition.
In the framework above, we need to compute eigenvectors of
Z;. Note that, however, we only need the first three dominant
ﬁigenvectors. Fortunately, several methods exist to compute
only the dominant eigenvectors with much less computation
necessary to compute all the eigenvectors. Before describing

The matrixA is an affine transform which transforids  into
M in the motion space while the matrixA™  transform&
into S in theshape spaceObtaining this transform is the main
purpose of the second step of the factorization method, whic
we callmetric transformation



the details of our algorithm, we briefly review these tech-1< p<n. Starting with annx p matrixQ, with orthonor-

nigues in the following section. mal columns, the method of orthogonal iteration generates a
sequence of matriceg, 0 R"P

3.2 Iterative Eigenvector Computation fork =12 ...

Among the existing methods which can compute dominant Y, = BQ

eigenvectors of a square matrix, we introduce two methods, K k-1 L

the power method and orthogonal iteration[3]. The power QiR = Yy (QR factorization)

method is the simplest, which computes the most dominant end

eigenvector, i.e., an eigenvector associated with the largeste second step of the above iteration is the QR factorization

eigenvalue. It provides the starting point for most other techyf Y,, whereQ, is an orthogonal matrix ai®},  is an upper

niques, and is easy to understand. The method of orthogong{angular matrix. The QR factorization can be achieved by

iteration, which we adopt in our method, is able to computehe Gram-Schmidt process. This step is viewed as a normal-

several dominant eigenvectors. ization process that is similar to the normalization used in the
power method.

3.2.1 Power Method . . ,
) ~ Suppose thak  BX = diag(A, ..., A,) is the eigendecom-
Assume that we want to compute the most dominant eigemyosition of B with an orthogonal matriX = [x,, ..., o

vegtors of annxn matrixB . Given a unit 2-norm ang |A,|>(A, 2 ... 2|\, . It has been shown in [3] that the

n . .
q UR", the power method iteratively computes agsypspacerang€Q,) generated by the iteration converges

sequence of vectorg : to spar{xy, ..., X,} at a rate proportional téh, 1/\ |
fork = 1,2 ... e,
K k-1
B dist(rang€Q,), rangeX ))<c)\_.___lO+1k (24)
k K| (k , <
q() - y( )/Hy( )HZ g&y 9& Xy )\p
end

Th d step of the iteration is simpl lization th where X, =[xy, ..., X,] andc is a constant. The function
N secon(k)s €p otthe teration IS Simply a hormalization a&ist represents the subspace distance defined by
prevents from becoming very large or very small. The

i i : T T
vectorsq generated by the iteration converge to the most dist(rangéQ,), rangeX)) = HQka —prsz (25)
dominant eigenvector oB . To examine the convergence
property of the power method, suppose tBat  is diagonalizThe method offers an attractive alternative to the singular
able. Thatis, X "BX = diag(A4, ..., A,)) with an orthogonal value decomposition in situations wheBe  is a large matrix

matrix X = [Xy, ..., Xp] ;andAq[ >[Aj[ = .2 A . If and a few of its largest eigenvalues are needed. In our case,
0) these conditions clearly hold. In addition, the rank theory of
a7 = byxg+byxy+ ... +bpx, (22)  the factorization method[1] guarantees that the ratjp/ A

is very small, and as a result, we should achieve fast conver-

andb, # 0 , then it follows that gence for computing the first three eigenvectors.

ol 0 . o :
a9 = e84 = cOy bjA‘j‘ij 3.3 Sequential Factorization Algorithm
E] =1 As in the original method, the sequential factorization method
O " b O consists of two steps, sequentiabpe spaceomputation and
-chkD<+Z_JEﬁd<X.D (23) _ steps, sequentiabpe sp p
A le\lm 0 sequential metric transformation.

wherec is a constant. Sing@,| > Ay = ... =|A , equation 3.3.1 A Sequential Shape Space Computation

(23) shows that the vectorq(k)

rately toward the direction of the dominant eigenvectgr

i

point more and more acculn the sequer%nal fa(%torlzatlon method, we consider the fea-
ture vectorsx; ang; , as avector time series. Let us denote

'the measurement matrix in the original factorization method

and the convergence factor is the ratie A,/A, . at framef byV, . Then, it grows in the following manner:

3.2.2 Orthogonal Iteration

A straightforward generalization of the power method can be
used to compute several dominant eigenvectors of a symmet-
ric matrix. Assume that we want to compuge  dominant

. . . nxn
eigenvectors of a symmetric matriB 0 R , Where



XI ranggV;) = range(WI) = range(ST) ,forallf. (31)
T
X1 : Therefore, ranggVy) is stationary andang€Q;y) con-
T T T verges toranggV;) as in the orthogonal iteration. Even
W, = X1 , W, = X2 R , W = X R (26) When noise exists, if the noise is uncorrelated or the noise
yT yT yT space is orthogonal to the signal spa@ng€V) , then
L . L rang€gV ) is still equal torangg€S’) and the convergence
y; : can be shown. The following convergence rate of the algo-
yT rithm is deduced from the convergence rate of the orthogonal
f iteration.
Now let us define a matrix time sergsO RP*P by .
. g
T k, 4
(= Zi_ XX +YY. (27) dis(rangeQy). rangqv sc [ k4 (32
From the definition, it follows that
3.3.2 Stationary Basis for the Shape Space
[ T
T = WiW. (28) Algorithm (1) presented in the previous section produces the

is also afatrix Q¢ , which converges to the matri4  that spans the
shape spaceThe true shape and motion are determined from
the shape spacdy a metric transformation. It is not straight-

Since the rank oV, is at most three, the raniZof
most three. If

Vi = U,s fVi (29) forward at this point, however, to apply the metric transfor-
mation sequentially. The problem is that, even though
is the singular value decomposition ofV; , where rang€gV ) is stationary, the matri¥ ; itself changes as the

of x = Px3 ) number of frames increases. This is due to the nature of sin-
J;OR™ “"and V¢ OR are orthogonal matrices, and gjar vectors. They are the basis for the row and column sub-

5 = diag(o; 1,04 5 0 3), then spaces of a matrix, and the singular value decomposition
' ' ' chooses them in a special way. They are more than just
T,! T 2 orthonormal. As a result, they rotate in the 3D subspace

£ = (UgZeVy) UgZ Vg =V Sh (30) y b

ranggV;). Recall that the matrixA obtained in metric

This means the eigenvectorsdf  are equivalent to the righfansformation (9) is a transform froM¢ ~ (bry )&, in
singular vectors/; oV, . Hence, it is possible to obtain theth® subspaceanggMy) . Sinc&; ~ changes at each frame,

shape spacéy computing the eigenvectorsayf . ?Jf alsg cfhanges. Consequently, the ma#ix  also changes
rame by frame.

To computeV ; , we combine orthogonal iteration with updat- ) .
For clarity, let us denote aA  matrix at frarthe As . The

ing by equation (27). GivenBx3  matrgy,  with orthonor- gact thatA, changes at each frame makes it difficult to esti-
mal columns and a null matrig,, 0 RP*P | the following MateA; iteratively and efficiently. Thus we need to add an
additional process to obtain stationary basis for thepe

algorithm generates a sequence of matzesl RP*3 I spaceto update matrif; .
[Algorithm (1)] forf=1, 2, ... Let us define a projection matriki, JR°*P  onto the
() = Z 1+ X¢Xg +Yiy rang€Qy) by
(Y = Z,Q;_, 1 = QQy, (33)

@)QR =Y (QR factorization) whereQ; is the output from Algorithm (1). Needless to say,
end the rank of H; is at most three. Sinceang€Q;)

The indexf corresponds to the frame number and each iter&=rang€M )) is stationary, the projection matrbt;  must
tion is performed frame by frame. The matfd generatedo€ stationary. It is thus pos§ible to qbtain thg stationary basis
by the algorithm is expected to converge to the eigenvector®r the shape spacdy replacingQ; with the eigenvectors of
V; of Z;. While the original orthogonal iteration works with a Hy.

fixed matrix, the above algorithm works with the matfix . Ap jterative method similar to Algorithm (1) can be used to
which varies from iteration to iteration incorporating new fea- g4y ce the amount of computation. GiveR 3 ma@@‘
tures. In other words, the sequential factorization methodyith orthonormal columns, the iterative method below gener-

folds the update oZ; into the orthogonal iteration. If the 4iaq 4 matriijf OR™*S , which provides the stationary basis
ranggV;) randomly changes over time, no convergence isq, theshape space

expected to appear. However, it can be shown that



[Algorithm (2)] for f=1, 2, .... 4. Experiments

1 = QQf
Y = HQf_; 4.1 Synthetic Data
QiR=Y (QR factorization) In this section we compare the accuracy of our sequential fac-

torization method with that of the original factorization
method. Since both methods are essentially based on the rank
theory, we do not expect any difference in the results. Our
purpose here is to confirm that the sequential method has the

In the previous section, we derived tsteape spacén terms of  same accuracy of shape and motion recovery as the original
Q. OnceQ; is obtained, it is possible to compute cameranethod.

coordinatess anpk as

end

3.3.3 Sequential Metric Transformation

T 4.1.1 Data Generation

HER He I HERe) (34)
f pef 0t et The object in this experiment consists of 100 random feature

These coordinates are used to solve the overdetermined equ@ints. The sequences are created using a perspective projec-
tions (12) and the true camera coordinates are recovered fion of those points. The image coordinates of each point are
the same way as in the original rpethoq_ Doing so, howeverpel’turbed by adding Gaussian noise, which we assume to
requires storing all the coordinates apnd , the number ofimulate tracking error and image noise. The standard devia-

which may be very large. Instead, we use the followingtion of the Gaussian noise is set to two pixels & x 512
sequential algorithm. pixel image. The distance of the object center from the cam-

era is fixed to ten times the object size. The focal length is
chosen so that the projection of the object covers the whole
T _ XTQ T _ Ta 512x 512image. The camera is rotated as shown in Figure 1,
f 106 16 = Yl while the object is translated to keep its image at the image
center. Quantization errors are not added since we assume
that we are able to track features with a subpixel resolution.

A2 T,7 = S T, =
+90it. J0)9 (r J1) +9(it. J)9 (it | \when discussing the accuracy of the sequential method, one
- E + (T : )+ (A. ~ needs to consider its dynamic property regarding the 3D
f f-1 T OUR )T OUL I recovery. The accuracy of the recovery at a particular frame
end by the sequential method depends on the total amount of

LetG; andc, bethe matriced and at frafe , where motion up to that time, since the recovery is made only from

andc are defined in Section 2.3 From the definition, it fol-th€ information obtained up to that time. At the beginning of
an image sequence, for example, the motion is generally

[Algorithm (3)] for f=1, 2, ....

~ o2 T, =
)i = Ds_q+9(if,if)g (i, it

lows that .
small, so high accuracy can not be expected. The accuracy
3. =Glg (35)  9generally improves as the motion becomes larger. The origi-
f 21 : : . L
nal method does not have this dynamic property, since it is
- —al based on a batch-type scheme and uses all the information
¢ = Gscy (36)

throughout the sequence.

Assigning equations (35) and (36) to equation (18), we havem order to compare both methods under the same conditions,

- plE 37) we perform the following computations beforehand. First, we

f bt form a submatriV, , which only contains the feature posi-

which gives the symmetric matrix; . The eigendecomposi-tions up to frame . The original factorization is applied to the
tion of L; yields the affine transforid; and, as a result, thesubmatrix, then the results are kept as solutions at frame

camera coordinates and the shape are obtained as follows: They are the best estimates given by the original method.
Repeating this process for each frame, we derive the best esti-

rr = ﬂAf JI = ]IA (38)  mates, with which our results are compared.
5 = A;l(jf (39)  4.1.2 Accuracy of the Sequential Shape Space
Computation

Algorithm (3) followed by equations (37), (38), and (39) \éle first discuss the convergence property of the sequential

Eomrr)letﬁexs tgei sg iUGe nt'i'(gitg()d' Tnh de tsr:zen(q)f Ea?%es na?s ape spaceomputation. The sequential factorization method
f are fixed to a » & € method coes N0 rts with Algorithm (1) in Section 3.3.1, iteratively generat-

store any matrlces that grow, even in the sequential metnlcn the matrixQ, which is an estimate for the trstepe space
transformation.

S . Let us represent the estimation error with respect to the



trueshape spacby small and both errors are relatively large. The ratio of the 4th
T to 3rd singular values, shown in Figure 3, also indicates that it

Es = dist(spariQy), spar(S’)) (40) s difficult to achieve good accuracy at the beginning. Both
errors, however, quickly become smaller as the camera

Recall that the functionlist provides a notion of _dl_fference motion becomes larger. After about the 20th frame, constant
between two spaces. On the other hand, the original metho(glrrors of3x 102 are observed in this experiment

produces the best estimate for titeape spacéy computing
the right singular vector¥;  of the submatt; , and its The solutions given by the two methods are so close that the
error with respect to the trushape spacés also represented by graphs are completely overlapped. Thus, we also plot their
T difference defined by
E, = dist(sparfV;), spanS’)) (41)

Comparing both errors, Figure 2 shows that they are almost AE = dist(spaiQy). spar(Vy)) (42)

identical. That is, the errors given by the sequential methodh Figure 4. AlthoughAE s relatively large at the beginning,
are almost equal to those given by the original method. it quickly becomes very sma7ll. In fact, after about the 30th
frame,AE is less thail x 10~ , whilgg arn;, are both

At the beginning of the sequence, the amount of motion iSS " 10_2
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Q L
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Figure 1: True camera motion Figure 3: Singular value ratio

The camera roll, pitch, and yaw are varied as shown ir The ratio of the 4th to 3rd singular values, that jgo,
this figure. The sequence consists of 150 frames.
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Original factorization 10°
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Figure 2: Shape space errors Figure 4: Difference of shape space errors

Shape space estimation errors by the sequential methi The difference of the estimates by the sequential and origi-
(solid line) and the original method (dashed line) with nal methods, versus the frame number. The difference is
respect to the true shape space. The errors are defined plotted logarithmically.

subspace distance and plotted logarithmically.



4.1.3 Accuracy of the Motion and Shape Recovery

The three plots of Figure 5 show errors in roll, pitch, and ya
in the recovered motion: the solid lines correspond to tt
sequential method, the dotted lines to the original methc
The difference in motion errors between the original ar
sequential methods is quite small.

Both results are unstable for a short period at the beginning
the sequence. After that, they show two kinds of errors: ra
dom and structural. Random errors are due to Gaussian nc
added to the feature positions. Structural errors are due to
spective distortion, and relate to the motion patterns. T
structural errors show a negative peak at about the 60th fra
and are almost constant between the 90th and 120th fran
Note the pattern corresponds to the motion pattern shown
Figure 1.

Of course, these intrinsic errors cannot be eliminated in t
sequential method. The point to observe is that the differenc
between the two solutions are sufficiently smaller than tt
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Figure 5: Motion errors

Errors of recovered camera roll (top), pitch (middle), and
yaw (bottom). The errors given by the sequential method
are plotted with solid lines, while the errors given by the
original method are plotted with dotted lines.

10 —— Sequential a

Original

Shape error

I SO R
0 20 40 60 80 100 120 140
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Figure 6: Shape error

This figure compares the shape errors given by the two
method. The errors given by the sequential method are
plotted with solid lines, while the errors given by the origi-
nal method are plotted with dotted lines. The errors are
computed as the root-mean-square errors of the recovered
shape with respect to the true shape, at each frame.

intrinsic errors.

Shape errors which are compared in Figure 6 also indicate the
same results. Again, the differences between the two methods
are quite small compared to the intrinsic errors which the
original method possesses. Note that no Gaussian noise
appears in the shape errors since they are averaged over all
the feature points.

We conclude from these results that the sequential method is
nearly as accurate as the original method except that some
extra frames are required to converge.

4.2 Real Images

Experiments were performed on two sets of real images. The
first set is an image sequence of a satellite rotating in space.
Another experiment uses a long video recording (764 images)
of a house taken with a hand-held camera. These experiments
demonstrate the applicability of the sequential factorization
method in real situations. In both experiments, features are
selected and tracked using the method presented by Tomasi
and Kanade[1].

4.2.1 Satellite Images

Figure 7 shows an image of the satellite with selected features
indicated by small squares. The image sequence was digitized
from a video recording[4] actually taken by a space shuttle

astronaut. The feature tracker automatically selected and
tracked 32 features throughout the sequence of 101 images.
Of these, five features on the astronaut maneuvering around
the satellite were manually eliminated because they had a dif-
ferent motion. Thus, the remaining 27 features were pro-



cessed. Figure 8 shows the recovered motion in terms of rolplexity of the original method is dominated by the cost of the
pitch, and yaw. The side view of the recovered shape is dissingular value decomposition, which neet#=P~ + 11P"/3
played in Figure 9, where the features on the solar panel aicomputations for 2F x P measurement matrix wah > P
marked with opaque squares and others with filled square[5]. Note thatF corresponds to the number of frames Bnd
No ground-truth is available for the shape or the motion into the number of features. On the other hand, the complexity
this experiment. Yet, it appears that the solutions are satisfaf the sequential method 2P + 54P . Computing the solu-

tory, since the features on the solar panel almost lie in a singltion for frame F, therefore, takes onlD(P”) using the
line in the side view. sequential method, while the original method would require

O(FP2) operations.
4.2.2 House Images Figure 13 shows the actual processing time of the sequential

Figure 10 shows the first image of the sequence used in t~

second experiment. Using a hand-held camera, one of 1

14 - A
authors took this sequence while walking. It consists of 7€ Roll T
images which correspond to about 25 seconds. The featt 1> — _ _ Pitch .
tracker detected and tracked 62 features. The recover . Yaw Y

motion and shape are shown in Figures 11 and 12. Itisclea _ 10 e .
seen that the shape is qualitatively correct. It is also reasc
able to observe that only the camera yaw is increasin
because the camera is moving parallel to the ground. In ad
tion, note that the computed roll motion reveals the pace
the recorder’s steps, which is about 1 step per second.

[ee]
T
\
\
|

Rotation (deg.)

Further evaluation of accuracy in these experiments is difl L
cult. However, this qualitative analysis of the results with re: 2 L
images, and quantitative analysis of the results with synthe

data essentially shows that the sequential method works 0
well with real images as the original batch method.

0 10 20 30 40 50 60 70 80 90 10
Frame

Figure 8: Recovered motion of satellite

4.3 Computational Time

. . ) . Recovered camera roll (solid line), pitch (dashed line), and
Finally, we compare the processing time of the sequenti yaw (dotted line) for the satellite image sequence.
method with the original method. The computational comr

Figure 7: An image of a satellite
The first frame of the satellite image sequence. The A side view of the recovered shape of the satellite. The fea-

Figure 9: Side view of the recovered shape

superimposed squares indicate the selected features. tures on the solar panel are shown with opaque squares and
others with filled squares. Notice that the features on the

solar panel correctly lie in a single plane.



Figure 10: An image of a house

The first frame of the house image sequence. The super
imposed squares indicate the selected features.
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Figure 11: Recovered motion of house

lime (ms)

Recovered camera roll (solid line), pitch (dashed line), anc

yaw (dotted line) for the house image sequence.
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Figure 12: Top view of the recovered shape

A view of the recovered shape of the house from above.
The features on the two side walls are correctly recovered.
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fixed at 120.



method on a Sun4/10 compared together with that of the origk3]
inal method. The number of features varied from 10 to 500,
while the number of frames was fixed at 120. The processing
time for selecting and tracking features was not included. The
singular value decomposition of the original method is based]
on a routine found in [6]. The results sufficiently agree with
our analysis above. In addition, when the number of features
is less than 40, the sequential method can be run in less than
1/30 of a second, which enables video-rate processing on [a]
Sun4/10.

5. Conclusions [6]
We have presented the sequential factorization method, which
provides estimates of shape and motion at each frame from a
sequence of images. The method produces as accurate and
robust results as the original method, while significantly
reducing the computational complexity. The reduction in
complexity is important for applying the factorization method

to real-time applications. Furthermore, the method does not
require storing any growing matrices so that its implementa-
tion in VLSI or DSP is feasible.

Faster convergence in tlshape spaceeomputation could be
achieved using more sophisticated algorithms such as the
orthogonal iteration with Ritz acceleration[3] instead of the
basic orthogonal iteration. Also, it is possible to use scaled
orthographic projection or paraperspective projection[2] to
improve the accuracy of the sequential factorization method.
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