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Abstract
We analyze the use of kinematic constraints for artic-

ulated object tracking. Conditions for the occurrence of
singularities in 3-D models are presented and their effects
on tracking are characterized. We describe a novel 2-D
Scaled Prismatic Model (SPM) for figure registration. In
contrast to 3-D kinematic models, the SPM has fewer sin-
gularity problems and does not require detailed knowledge
of the 3-D kinematics. We fully characterize the singular-
ities in the SPM and illustrate tracking through singular-
ities using synthetic and real examples with 3-D and 2-D
models. Our results demonstrate the significant benefits of
the SPM in tracking with a single source of video.

1 Introduction
The kinematics of an articulated object provide the most

fundamental constraint on its motion, and there has been a
significant amount of research into the use of 3-D kine-
matic models for visual tracking of humans [5, 3, 13, 18,
4]. Kinematic models play two roles in tracking. First, they
define the desired output—astate vector of joint angles that
encodes the 3-D configuration of the model. Second, they
specify the mapping between states and image features that
makes registration possible.

Nonlinear least-squares tracking techniques that mini-
mize a cost function over the state space have proven to
be highly effective [5, 10, 9]. These techniques use the
gradient of the residual error to obtain a locally linear
model. There are two primary requirements for their suc-
cess. First, to obtain a gradient the error function must be
differentiable. Discontinuities can occur during occlusions
and these have been addressed in [11, 5].

The second requirement is that the state space must be
fully observable, ensuring that the constraints imposed by
the kinematic model accurately reflect the motion of the
object. Loss of observability occurs when some states
have no instantaneous effect on the image features and
the kinematic Jacobian loses rank and becomes singular.
Kinematic singularities occur for particular configurations
of the object relative to the camera, and can be reduced
through the use of multiple camera viewpoints [13]. Un-

fortunately in certain tracking applications, such as motion
capture from movie footage, there is only a single video
source available.

An alternative to the direct 3-D tracking approach is to
decompose figure tracking into separateimage registration
and3-D reconstructionstages, as is currently done in struc-
ture from motion problems [17]. This decomposition has
two potential benefits. First, the registration stage can em-
ploy simple 2-D figure models which avoid most of the
singularity problems associated with 3-D tracking in the
case of a single video source. Second, the reconstruction
stage can simultaneously estimate both dynamic state pa-
rameters, such as joint angles, and static parameters, such
as link lengths. This would remove the need to specify an
accurate figure model for 3-D tracking.

In this paper we introduce a novel class of 2-D kine-
matic models for figure registration, which we callscaled
prismatic models(SPM). We show how to derive the SPM
associated with an arbitrary 3-D kinematic model and
demonstrate that SPM’s have far fewer singularity prob-
lems than conventional 3-D models. We present a de-
tailed discussion of the effect of singularities on tracking
branched, open kinematic chains, along with experimental
results for motion capture from movies. These results pro-
vide the first detailed analysis of singularities in articulated
object tracking.

2 Singularities in Visual Tracking with 3-D
Kinematic Models

We begin by analyzing the effect of singularities on
gradient-based tracking algorithms for 3-D kinematic mod-
els. The standard approach is based on the direct registra-
tion of 3-D models with image features.1 In this method,
feature attributes such as the image position of an edge or a
template are expressed as a function of the kinematic state
variables, e.g. joint angles. State estimates are chosen by
minimizing a residual error measure defined in the image.
For example, the residual error for an SSD template fea-

1We use the term “feature” to describe a wide variety of measure-
ments, including flow [18, 1], templates [11, 14], and edges [10, 5].
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Figure 1: Schema of the projection along the camera axisc

of the template attached to linkk . Here template velocity
is due to rotation around axismi of link i. Point Îj has
positionpj and velocity_pj in 3-D, and this is projected to
pixel Ij whose image gradient isrIj.

ture,

Rj(q) = Ij(q)� Îj ; Ij(q) = I(PF(q;pj)); (1)

measures the registration between template pixelÎj and the
corresponding pixelIj(q) in input imageI, given the state
vectorq. Orthographic camera projection is modeled byP

and the 3-D kinematics by the nonlinear functionF(q;pj),
wherepj is the 3-D point corresponding to pixelÎj . Fig-
ure (1) illustrates the geometric relationship between kine-
matic template model and image.

Given a template model for each link in the object,
tracking proceeds by minimizing the squared residual er-
ror,E(q) = 1

2R
TR, where the vectorR holds a rasteriza-

tion of the residual from Equation 1 over all of the template
pixels. Algorithms such as Levenberg-Marquardt [2] use
the linearized residual at an operating pointq0 to compute
a step towards the local minima.2 The residual gradient for
pixel Ij can be expressed

_Rj = [
@Rj

@q
(q0)] _q � Jj _q (2)

Jji �
@Rj

@qi
= (rIj)

TP
@F

@q
(q0;pj) (3)

As Equation 3 demonstrates, the residual Jacobian is
made up of three terms: the standard 3-D kinematic Ja-
cobian,Jkj � @F=@q [16], the camera projection model
P, and the image feature gradient, which in this case is
rIj. By definition, we also have_pj = Jkj _q. We see that
the residual velocity is the result of projecting a 3-D point
velocity through the camera model and along the image
feature gradient, as illustrated in Figure (1).

2In a tracking application,q0 is given by the estimate from the previ-
ous frame.
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Figure 2: Examples of (a) 1, and (b) 2 degree of freedom
manipulators

From the figure it is clear that pixelIj will provide no
information aboutqi if _pj is directed along the optical axis
or if P _pj acts perpendicular to the gradient. Other possible
feature gradients in equation (3) include the curve normal
for a contour feature, or the identity matrix in the case of a
point feature.

The complete residual JacobianJ(q) is formed by
stacking upJj ’s from equation (2) for all pointsIj , re-
sulting in a linear map from state space to residual space.
The nullspaces of this mapping provide fundamental in-
sight into its properties. The left nullspace of the Jaco-
bian,N (JT ), defines the constraints inherent in the kine-
matic model. Residual velocities in the left nullspace,
_R � N (JT ), are excluded by equation (2). An empty

left nullspace indicates that the kinematics do not constrain
the motion. In tracking there will typically be more image
measurements than parameters,m > n, resulting in a non-
empty left nullspace and rank(J) = n.

The right nullspace of the residual Jacobian defines the
observability singularitiesof the articulated object. State
velocities in the right nullspace, _q � N (J), do not effect
the residual _R and so are termedsingular directions. The
right nullspace is non-zero only when the Jacobian has lost
rank, i.e. rank(J) < n.

2.1 Examples of 3-D Singularities
We illustrate these effects with two simple examples.

Figure (2a) shows a one-link revolute planar manipulator
with a single degree of freedom (DOF)�. The residual
Jacobian for the end-point feature is defined by:

�
_x
_y

�
=

�
cos(�)
� sin(�)

� �
_�
�
; (4)

assuming that the camera and joint axes are parallel. The
kinematic constraint is given by the left nullspace:_Rc =�
sin(�) cos(�)

�T
. The right nullspace is empty and

there are no observability singularities.
Next consider the manipulator in Figure (2b), formed by

adding an additional DOF,�, to Figure (a), which allows
the link plane to tilt out of the page. With the same point
feature and camera viewpoint we have
�

_x
_y

�
=

�
� sin(�) sin(�) cos(�) cos(�)

0 � sin(�)

� �
_�
_�

�
(5)



Singularities now occur whensin(�) = 0 and also when
sin(�) = 0. In both cases the singular direction is_q =
[1 0]T , implying that changes in� cannot be recovered in
these two configurations.

Singularities impact visual tracking through their effect
on error minimization. Consider tracking the model of Fig-
ure (2b) using the Levenberg-Marquardt update step:

qk = qk�1 + dqk = qk�1 � (JTJ+ �)�1JTR (6)

where� is a diagonal stabilizing matrix. At the singularity
sin(�) = 0, the update step for all trajectories has the form
dqk = [0 C], implying that no updates to� will occur
regardless of the measured feature motion. This singularity
arises physically when the link rotates through the plane
parallel to the image plane, resulting in point velocity along
the camera axis.

Figure (3a) illustrates the practical implications of sin-
gularities for tracker performance. The stair-stepped curve
corresponds to discrete steps in� in a simulation of the
two DOF example model. In this example, the arm is pla-
nar with a randomly textured template model. The solid
curve shows the state estimates produced by Equation (6)
as a function of the number of iterations of the solver. The
loss of useful gradient information and resulting slow con-
vergence of the estimator as the trajectory approaches the
point � = 0 is symptomatic of tracking near singulari-
ties. In this example, the singular state was never reached
and the tracker continued in a direction opposite the true
motion, as a consequence of the usual reflective ambiguity
under orthographic projection (shown by the dashed line).
Perspective projection also suffers from this ambiguity for
small motions.

These examples illustrate the significant implications of
residual singularities for visual tracking. If the search for
feature measurements is driven by prediction from the state
estimates, singularities could result in losing track of the
target altogether. Even when feature correspondences are
always available, such as when markers are attached to the
object, the solver will slow down dramatically near sin-
gularities, sinceeach step has only a small effect on the
residual. This is analogous to the effect of classical kine-
matic singularities in robotic manipulators [6]: manipula-
tor control near singularities may require arbitrarily large
forces; here tracking near singularities may require arbi-
trarily large numbers of iterations!

2.2 Conditions for 3-D Singularities
It would be useful to obtain general conditions under

which singularities can arise in tracking with 3-D kine-
matic models. This is a challenging task due to the high
dimensionality and nonlinearity of kinematic models. At-
tempts have been made to classify the singularities in robot
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Figure 3: (a) Tracking the 3-D manipulator in example 2
through a singular point along the singular direction. While
the true angle� continues to increase, the tracker loses
track near the singularity and then picks up an ambiguous
path. (b) 2-D tracker from Section 3 is applied to the same
motion as in (a), but here extension length rather than an-
gle is recovered, and this correctly increases and decreases
without change in damping.

manipulators from the standpoint of both manipulator de-
sign [8] and visual-servoing control [15]. In this section
we derive some local conditions for 3-D singularities and
characterize some important special cases.

From the preceding discussion and Equation (3), it is
clear that singularities depend fundamentally on the inter-
action between projected 3-D point velocities and their as-
sociated image feature gradients. Jacobian analysis and
computation can be simplified by assuming that the shape
of each link is locally planar or cylindrical. This is agood
approximation when the depth variation along the link is
small relative the camera distance.

In this analysis we employ the planar link model intro-
duced in [13]. The image appearance of thekth link is
modeled by the projection of a view-dependent texture-
mapped plane which is attached to the link’s coordinate
frame. The normal vector,nk, of the plane is adjusted
as the link moves to satisfy the following two constraints:
nk ? ak andnk ? (ak � c) whereak defines the center-



line of the link andc is the camera axis (see Figure (1)).
These constraints keep the plane “facing” the camera. The
plane is considered to be rigidly attached to the link for the
purpose of Jacobian computation.

The planar link model can be initialized from a sin-
gle image and then applied across an image sequence if
the link appearance doesn’t change dramatically with the
viewing direction. When this assumption fails, the tem-
plate contents can be allowed to change with the viewing
direction.

In the point feature case we have the following condi-
tion for a 3-D pointp to contributeno informationabout
a revolute stateqi: c k _p ) c k _qimi � r wherer is
the vector from the joint center of linki to p, mi is the
joint axis, andc is the camera axis, all expressed in world
coordinates.

Now let p be located on the template plane for linkk.
Thenr = �rik+uak+v(ak�nk) whereak andnk define
the template plane as above,u; v give the position ofp
in template coordinates, and�rik is the vector connecting
joint i to the base of linkk. All vectors are unit vectors.

We can now derive conditions on the template plane
such that all of its point velocities project along the camera
axis. We find three conditions:

nk k c; rik ? c; mi ? c; (7)

which together are sufficient. We can make three observa-
tions about these conditions. First, use of the planar ap-
pearance model makes it possible to greatly simplify the
singularity analysis for a link. Furthermore, whenak is di-
rected along the line connecting the joint centers, the link
can be modeled as a 3-D line segment for analysis pur-
poses. Second, this analysis does not rely upon any partic-
ular parameterization of the model’s kinematic DOF’s and
should apply quite broadly to models of the figure. Third,
additional singular configurations can arise in cases, such
as along contours, where the feature model does not fully
constrain image motion.

Finally, it is worth pointing out that in spite of the po-
tential problems in using 3-D kinematic models for track-
ing, they can be extremely reliable in practice if a sufficient
number of camera views are available. This observation is
the basis for the optical motion capture industry, for exam-
ple.

3 A 2-D Scaled Prismatic Model for Regis-
tration

The previous section outlined the conditions under
which singularities can occur in 3-D kinematic models.
Singularities have two implications for 3-D tracking with a
single video source. First, some additional source of infor-
mation will have to be used to estimate the unobservable
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Figure 4: 2-D SPM chain showing residual velocities due
to state velocities: (a)_qi = _�, and (b) _qi = _d.

parts of the state space for singular configurations. For ex-
ample, assumptions about object dynamics could be used
in a Kalman filter framework to extrapolate an estimated
state trajectory across a singular point. Second, the utility
of the kinematic model for image registration is reduced,
since it will not always supply a useful constraint on pixel
motion.

It is important here to distinguish two separate goals: a
registration objective in which the model projections are
aligned with image pixels, and a reconstruction goal in
which the state trajectory for a 3-D kinematic model is esti-
mated. For some applications, such as gesture recognition,
registration may be all that is required. In other applica-
tions such as motion capture it is desirable to reconstruct
the 3-D motion along with the kinematic model parame-
ters. Once the images have been registered, 3-D recon-
struction can be cast as a batch estimation problem, since
the registration step gives the complete correspondence be-
tween model points and image coordinates in each frame.
The batch nature of the formulation is well-suited to our
application of motion capture from movies, and makes it
possible to enforce smoothness constraints in both time di-
rections, improving the quality of the estimates.

The remainder of this section focuses on the registra-
tion step. Although we do not want to employ the full 3-
D model, we would like to employ the strongest possible
kinematic constraints so as to improve robustness to image
noise. We will see that a novel 2-D Scaled Prismatic Model
(SPM) formed by “projecting” the 3-D model into the im-
age plane provides a useful constraint for registration.

3.1 Kinematics of the 2-D SPM Class
The 2-D SPM acts in a plane parallel to the plane of the

camera and simulates the image motion of the 3-D model.
Links have the same connectivity as in the 3-D model, ro-
tate around their base joint on an axis perpendicular to the
plane, and scale uniformly along their length. Each link is
thus represented as a line segment having two parameters;
its angle of rotation�i and lengthdi along its directionni.
As in the 3-D case a template is attached to each link which
rotates and scales with the link. Figure (4) shows both of
these parameters for a link in the 2-D SPM. In this sec-
tion we briefly derive the kinematics of this model class,



show that it can capture the projected motion of a 3-D fig-
ure, and then show that it is precisely in the cases where
the 3-D model suffers from singularities that the 2-D SPM
behaves well. More details can be found in [12].

The residual velocity can be expressed as the sum of
the Jacobian columns times their corresponding state pa-
rameter velocity: _R =

P
i Ji _qi. Hence we can calculate

individual Jacobian columns for each state variable,qi in-
dependently and then combine them. Since a column of the
Jacobian,Ji, maps the state velocity_qi to a residual veloc-
ity, by finding the residual velocity in terms of this state we
can obtain an expression forJi. If qi = � is the angle of
a revolute joint shown in Figure (4a), it will contribute an
angular velocity component to links further along the chain
given by! = _qa. Herea is the axis of rotation which for
the 2-D model is just the z axis. The image velocity,vp,
of a point at locationr on the manipulator chain resulting
from this rotation is given by:

vp = P! � r = Pa� r _q = r2d _q (8)

where the orthographic projectionP selects thex andy
components. This equation expresses the desired mapping
from state velocities of axisi to image velocities of point
j on link k giving the components of the column Jacobian,
Ji:

Jji =

�
0 linksk, wherek < i
r2d linksk, wherek � i

(9)

If qi = d refers to the extension of the scaled prismatic
link shown in Figure (4b), its derivative will contribute a
velocity component to points on linki proportional to their
position on the link:bqi, whereb is the fractional position
of the point over the total extensionqi. The velocity com-
ponent for a point,p, on the link is thusvp = bqi _qini. Sub-
sequent links,k > i, will be affected only by the end-point
extension of the link, and so have a velocity component
from this joint given by:vp = qi _qini. Hence the Jacobian
element at pointj on link k for an extension parameter,qi,
is given by:

Jji =

8<
:

0 linksk, wherek < i
bqini link i
qini linksk, wherek > i

(10)

We show that given certain modeling assumptions, the
2-D SPM with the above specifications is flexible enough
to represent the projected image of any 3-D model in any
legal configuration. We assume that a model consists of
a branched chain of links connected at their end-points by
revolute joints. We use the template plane model from Sec-
tion (2.2) to describe link appearance. We identify thelink
segmentfor each link as the 3-D line segment connecting
the link’s joint centers and oriented in the direction ofak.

The 3-D model specifies the link lengths and the orienta-
tion of each revolute joint axis, while in the SPM the link
lengths vary and the axis of each revolute joint is perpen-
dicular to the image plane. The state of a 3-D model is thus
a vector of joint angles,qm = [ �1 �2 : : : ]T , and the
state of a 2-D SPM is a vector of angles and joint lengths,
qn = [ �1 d1 �2 d2 : : : ]T . Then more formally:

Proposition 1 The linear projection of the link segments
of a 3-D kinematic model onto a plane and the assignment
of revolute joints with axes perpendicular to the plane be-
tween each pair of connected links defines a many to one
mappingFM :M3 !M2 from the space of all 3-D mod-
elsM3 to 2-D modelsM2. Furthermore for each pair of
models,m 2 M3 and n = FM(m), it defines another
mappingFS : Q3

m ! Q2
n that maps every state of the 3-D

modelqm 2 Q3
m to a state of the 2-D SPMqn 2 Q2

n.

Proof: Consider the graph,G, of a 3-D model with each
joint represented by a vertex and each link by an edge.
There may be many 3-D models with the same graphG
since 3-D joints may have multiple revolute axes. When
a 3-D model in any state is projected onto a plane under
a linear projection, the new graphG0 will have the same
topology of vertices and edges, and the projected edges
will remain linear. Now interpret the graph,G0, drawn in
the plane as each straight edge representing an extensible
link, and the intersection point of each connected pair of
edges as a revolute joint. This defines a unique 2-D model,
and thus the mappingFM . The state of a 2-D SPM is spec-
ified by the distances in the plane between connected joints
(i.e. the link lengthsdi’s), and the angles between links that
share joints (i.e.�i’s) as illustrated in Figure (4). Now the
state of the 3-D model determines, through the projection,
the relative positions of the vertices in 2-D and thus the 2-
D state. For any distribution of vertices in the plane here
must exist a 2-D stateqn that captures it since line seg-
ments can join any two connected vertices, and any relative
orientation between two line segments can be described by
a single angle. There thus must exist a mappingFS for all
3-D states.

We conclude that the 2-D SPM class can capture any
projected 3-D model in any configuration.

3.2 Singularity Analysis of the 2-D SPM
An important advantage of the SPM is the location of

its singularities. In the 3-D model the singularities occur
in the frequently traversed region of configuration space in
which links pass through the image plane. The 2-D SPM
has all of its rotation axes parallel to the camera axis and
so never fulfils the 3-D singularity condition:mi ? c from
Equation (7). Here we show that the SPM only has singu-
larities whendi = 0, corresponding to a 3-D link pointing
towards the camera, and that the singular direction is per-



pendicular to the entering velocity and so usually does not
affect tracking.

Proposition 2 Given x and y measurements of endpoints
of each joint in a linear chain scaled-prismatic manipula-
tor, observability singularities occur if and only if at least
one of the joint lengths is zero.

Proof: We define a state vector made of pairs of compo-
nents for each link:q =

�
�1 d1 : : : �n dn

�T
, and

the residual vector to be the error inx andy end-point po-
sitions of each link. We assume the proposition holds for
an � 1 link manipulator with JacobianJ(n�1) whose ele-
ments are defined as in Equations (9) and (10). The Jaco-
bian for then length manipulator is given by:

J(n) =

�
J(n�1) A
B C

�
(11)

whereJ(n�1) is a square matrix of size2n � 2. Matrix
A is of size2n � 2 � 2 and expresses the dependence of
then’th link’s parameters on the position of the other links
positions and so is zero. MatrixC and its square are given
as:

C =

�
cos(�T ) �dn sin(�T )
sin(�T ) dn cos(�T )

�
; (12)

CTC =

�
1 0
0 d2n

�
(13)

where�T =
Pn

i=1 �i. From this we see thatC has rank
two if and only ifdn 6= 0. If C has rank two, then the bot-
tom two rows ofJ(n) are linearly independent of all other
rows and ifJ(n�1) is full rank thenJ(n) must have rank
2n. If C or if J(n�1) do not have full rank thenJ(n) will
not have rank2n, and there will be an observability sin-
gularity. To complete the proof we need only demonstrate
that the proposition applies to the base case,n = 1. Here
the whole Jacobian is given byC which has full rank only
whend1 6= 0. Thus the proposition is proven.

A further mitigating property of the 2-D singularities is
that unlike in the 3-D observability singularities where the
singular direction is along the motion trajectory, the singu-
lar direction in the 2-D case is always perpendicular to the
direction in which the singularity was entered. We can see
this for the single arm manipulator described by a Jacobian
equal toC in equation (12). Whend = 0 the velocity direc-
tion is: _R =

�
cos(�) sin(�)

�T
, but the left nullspace

is orthogonal to this by definition. Hence a manipulator
will typically pass through a 2-D singularity without the
increased damping caused by moving along a singular di-
rection. Only if the link enters in one direction and leaves
orthogonally does the singularity obstruct tracking.

The assumption that we have information on endpoints
is equivalent to assuming there is sufficient texture or edge

information on the link to obtain length and direction es-
timates. When this assumption fails there may be more
singularities for both the 3-D and 2-D models.

While both 2-D and 3-D model classes can represent
articulated motion, the 2-D SPM provides weaker con-
straints. It has the two advantages of avoiding the singu-
larities of the 3-D model and relaxing the need foraccurate
knowledge of link lengths and joint axes which is required
by the 3-D model. Moreover, the 2-D and 3-D models are
complementary in that their singularities occur in different
parts of the state space.

4 Previous Work
There have been numerous papers on 3-D and 2-D

tracking of articulated objects in the past five years. How-
ever, none of them have addressed the question of singular-
ities or their implications for tracking with a single video
source. Since space constraints prohibit an exhaustive sur-
vey, a sampling is provided and a more detailed compari-
son is in [12].

The first works on articulated 3-D tracking were [7, 4].
Yamamoto and Koshikawa [18] were the first to apply
modern kinematic models and gradient-based optimization
techniques, but their results were limited to 2-D motion.
The analysis in this paper is based primarily on the work of
Rehg and Kanade [10, 11], but we believe it applies quite
broadly.

A number of systems have used explicit shape models
for the limbs, usually some form of superquadric or gen-
eralized cylinder. The system of Kakadiaris and Metaxas
is a more complete example, and addresses model acqui-
sition and self-occlusion handling (see [5] and its refer-
ences.) The system by Gavrila and Davis [3] is one of the
few that does not use an error gradient for search. However
it does use multiple views of the object.

The work of Ju and et. al. [14] is perhaps the closest to
our 2-D SPM. They model links as affine flow patches with
imposed kinematic constraints. In contrast, our model has
fewer parameters and a more direct connection to the un-
derlying 3-D motion, which is crucial for our application.

5 Experimental Results
We present two sets of experimental results that demon-

strate the differences between 3-D and 2-D tracking for real
image sequences and give some preliminary results for our
motion capture from movies application.

Figure (5a) and (5b) show the starting and ending
frames of a 30 frame sequence of an arm moving through a
singularity. In this example the arm remains rigid, approx-
imating the model of Figure (2b), but with the addition of
a base link capable of translation in the image plane. The
trajectory of the arm was similar to the simulation in Fig-
ure (3), but with the addition of a nonzero� component.



Figure 5: Frames 15 (a) and 36 (b) from the test sequence
for singularity comparison, showing the 2-D SPM esti-
mates.

Overlaid on the images are the positions of the 2-D SPM
resulting from the state estimates. The longer part of the
“T” shape on the arm is the prismatic joint axis. The sec-
ond link superimposed on the torso has X and Y translation
DOF’s, which were negligible.

We conducted three experiments in which the sequence
in Figure (5) was tracked with an SPM and two 3-D kine-
matic models with different damping factors�. In each
case, the tracker was given a budget of twenty iterations
with which to follow the motion in a given frame. By anal-
ogy to the simulation example, we would expect the 3-D
models to lose ground in the vicinity of a singularity. Fig-
ure (6a–c) compares the relative performance of the 2-D
and 3-D models. Plot (a) shows the length of the arm link
projected into the image plane for the three trackers. As
expected, the 2-D SPM tracker is unaffected by the singu-
larity and exhibits uniform convergence rates throughout
the trajectory. The extension of the arm corresponds to the
prismatic stated1 in the SPM model, which is plotted with
dots in Figure (a).

The under-damped 3-D tracker drawn with dashed lines
in Figure (a) performs well until it approaches the singu-
larity, upon which it begins oscillating wildly. These oscil-
lations in projected arm length are the result of fluctuations
in the out-of-plane rotation angle, which is plotted in Fig-
ure (b). Once the arm leaves the singular configuration the
under-damped tracker recovers and tracks the remainder of
the sequence. In contrast, the well-damped tracker plot-
ted with a solid line in Figure (a) does not oscillate at the
singularity. It does, however, have more difficulty escap-
ing from it and lags the SPM tracker by several pixels over
several frames of measurements.

In a real application, an algorithm such as Levenberg-
Marquardt would be used to automatically adapt the

amount of damping. It is clear, however, that any 3-D
tracker will be forced to do a significant amount of work in
the vicinity of the singularity to avoid poor performance.
Unfortunately, in spite of this effort the 3-D tracker will be
quite sensitive to both image noise and errors in the kine-
matic model parameters, such as link lengths, during this
part of the trajectory.

Plot (6b) shows the out-of-plane rotation angle,�, for
the two 3-D models. The divergence of the two curves
following the singularity is a consequence of the usual or-
thographic ambiguity. Plot (c) shows the in-plane rotation
angle,�, which is essentially the same for all of the mod-
els. In summary, the 2-D SPM exhibits more consistent
and uniform registration performance, as expected. Perfor-
mance of the 3-D model depends critically on determining
the correct amount of damping.

For the second experiment, we developed a 2-D SPM
for the human figure and applied it to a short dance se-
quence by Fred Astaire. Figure (7) shows stills from the
movie “Shall We Dance”, overlaid with their associated
state estimates. The overall quality of the registration is
fairly good, especially considering the low contrast be-
tween figure and background. The tracker slipped off the
right leg around the third frame, due probably to low con-
trast, but managed to get back on over the next frame.
Finally, the tracker fails in the last frame due to self-
occlusion. We used standard image stabilization to com-
pensate for camera motion before tracking. The SSD tem-
plate model for Fred was initialized by hand on the first
frame.

6 Conclusions
While kinematic models provide powerful constraints

for gradient-based tracking algorithms, we have shown that
trackers utilizing 3-D kinematic models suffer from singu-
larities when motion is along the viewing axis of a single
camera. This results in greater sensitivity to noise and pos-
sible loss of registration.

We have introduced a 2-D Scaled Prismatic Model
which captures the image plane motion of a large class of
3-D kinematic models. The SPM has the following three
advantages. First, it has fewer singularity problems than
3-D kinematic models. In addition, unlike the general 3-
D model, its singularities can be fully characterized en-
abling it to be used only in appropriate situations. Second,
the SPM does not require the specification of link lengths
and joint axes, which can sometimes be difficult. In cases
where 3-D information is unnecessary the SPM alone may
provide sufficient motion estimation. Third, when 3-D mo-
tion estimates are desired, they can be obtained from SPM
motion estimates using a batch estimation approach.

In future work we plan to address occlusion issues and
compensate for photometric variations in the templates.
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Figure 6: Tracking results for 2-D SPM and 3-D kinematic models using the motion sequence in Figure (5). 2-D SPM data
is shown by large dots, while 3-D model data is shown by a solid curve in the well-damped case and a dashed line in the
under-damped case. (a) (left) Displacement in pixels corresponding to the length of the arm link after projection into image
plane using the estimated state. (b) angle� of 3-D trackers, and (c) in-plane rotation� of each model.

Figure 7: Fred Astaire tracked in an image sequence using the SPM-based tracker.
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