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Abstract. This paper presents a reinforcement learning algorithm de-
signed for solving optimal control problems for which the state space and
the time are continuous variables. Like Dynamic Programming methods,
reinforcement learning techniques generate an optimal feed-back policy
by the mean of the value function which estimates the best expectation of
cumulative reward as a function of initial state. The algorithm proposed
here uses finite-elements methods for approximating this function. It is
composed of two dynamics : the learning dynamics, called Finite- Element
Reinforcement Learning, which estimates the values at the vertices of a
triangulation defined upon the state space, and the structural dynamics,
which refines the triangulation inside regions where the value function is
irregular. This mesh refinement algorithm intends to solve the problem
of the combinatorial explosion of the number of values to be estimated. A
formalism for reinforcement learning in the continuous case is proposed,
the Hamilton-Jacobi-Bellman equation is stated, then the algorithm is
presented and applied to a simple two-dimensional target problem.

1 Introduction

In this paper, we are concerned with adaptive non-linear control problems, like
target or obstacle problems, viability problems or optimization problems, for
which the state space and the time are continuous variables. In order to define
an optimal control, reinforcement learning (RL) builds the value function which
estimates the best expectation of future reinforcement for all possible controls
as a function of initial state.

In the continuous case, the value function has to be represented by a gen-
eral approximation system using a finite set of parameters. Several techniques
have been proposed, for example by using neural networks (see [Bar90], [Gul92],
[Lin93] and many others), fuzzy controllers (see [Now95]) or other approxima-
tion systems (see the sparse-coarse-coded CMACs of [Sut96]). However, as it has



been pointed out in [Bai95] and [BM95], in general, the combination of reinforce-
ment learning algorithms with such function approximators does not converge.
The Residual-gradient advantage updating proposed in [HBK96] is a convergent
algorithm in the sense of the convergence of gradient descent methods. But the
problem with these methods is how to find a suitable architecture for the net-
work, i.e. which permits to approximate the value function. Besides, gradient
descent methods only insure local optimum.

Here, we present a direct reinforcement learning algorithm that uses finite-
element methods with a local mesh refinement process for approximating the
value function. The algorithm consists of the combination of these two dynamics :

— The learning dynamics: for a given triangulation of the state space, the
Finite-FElement Reinforcement Learning (FERL) modifies the values of the
vertices according to the reinforcement obtained during the running of trajec-
tories, so the value function is approximated with a piecewise linear function.
The FERL algorithm used here is a convergent RL algorithm (see [Mun96]).

— The structural dynamics that locally refines the mesh of the triangula-
tion in order to build an relevant triangulation whose precision depends on
the regularities of the value function. Its starts with a rough triangulation
composed of a small number of large simplexes (knowledge of a novice) and
builds an accurate triangulation (knowledge of an expert) according to the
learning dynamics. This structural dynamics can be seen as a categorization
process via reinforcement from the environment.

Section 2 introduces a formalism for the study of reinforcement learning
in the continuous case. Section 3 describes the FERL algorithm for a given
triangulation of the state space (i.e. the learning dynamics). Section 4 presents
the structural dynamics. Section § illustrates this algorithm with an example of
target problem in a two dimensional space.

2 Reinforcement Learning, the Continuous Case

In order to estimate the performances of a reinforcement learning algorithm, we
need to compare the function computed by the algorithm to the value function
of the continuous process.

In the following, we consider deterministic systems with infinite time horizon
and discounted reinforcement. Let x(t) € O be the state of the system with the
state space O bounded, open subset of IR%. The evolution of the system depends
on the current state z(t) and control u(t) ; it is defined by a differential equation :

9 w(t) = 1(x(t), u(t)

where the control u(¢) is a bounded, Lebesgue measurable function with values
in a compact U. From any initial state z, the choice of the control u(t) leads
to a unique trajectory x(¢). Let 7 be the exit time of z(t) from O (with the



convention that if z(¢) always stays in O, then T = o). Then, we define the
discounted reinforcement functional of state x, control u(.) :

S = [ "t ()t + 4" R (7))

where r(x,u) is the running reinforcement and R(x) the terminal reinforcement.
«v is the discount factor (0 < v < 1).
The objective of the control problem is to find the optimal feed-back
control u*(x) that optimizes the reinforcement functional for initial state x.
RL techniques belongs to the class of DP methods which compute the optimal
control by the means of the value function :

Viz) = it(u)a J(x;u(.)) (1)

which is the maximum value of the functional as a function of initial state .

In the RL approach, the system tries to approximate this function without
knowing the state dynamics f nor the reinforcement functions r, R. Thus, RL ap-
pears as a constructive and iterative process, based on experience, that estimates
the value function by successive approximations.

Following the dynamic programming principle, the value function satisfies
a first-order nonlinear partial differential equation called the Hamilton-Jacobi-
Bellman equation (see [FS93] for a survey).

Theorem 1 (Hamilton-Jacobi-Bellman). IfV is differentiable at x € O, let
DV (x) be the gradient of V' at x, then the following HJB equalion holds al x.

Viz)Invy+ igg[DV(x)f(x,u) +r(x,u)] =0

Besides, V' satisfies the following boundary condition :
V(z) > R(x) for x € 00

The challenge of learning the value function is motivated by the fact that
from V', we can deduce the following optimal feed-back control policy :

w*(x) = arg 7ilelg[DV(gc)f(gc,u) +r(z,u)]

In the following, we intend to approximate the value function with piecewise
linear functions defined by their values at the vertices of a triangulation of the
state space.



Fig. 1. Triangulation X of the state space O. A trajectory x(f) crosses the simplex
(517 52 ) 53)

3 The Learning Dynamics

Let us consider a triangulation X' such that the set of simplexes covers O (see fig-
ure 1). By using a finite-element convergent approximation scheme (derived from
[Kus90]), the continuous control problem may be approximated by a Markovian
Decision Process whose state space is the set of vertices {£}.

The value function V is approximated by a piecewise linear function V'~
defined by its values at the vertices {£}. The value of V¥ at any point z inside
some simplex (&, ...,&4) is a linear combination of V¥ at the vertices &, ..., &4

d
V¥(zx) = Z Ae; (x)V* (&) for all x € simplex (&, ..., &4)
i=0

with Ag, (z) the barycentric coordinates of x inside the simplex (&,...,&q) 2 2.
(We recall that the definition of the barycentric coordinates ¢, () is such that:

S0 Ae (2).(6 — ) =0 and: 7o Ag, (x) = 1).

We approximate the Hamilton-Jacobi-Bellman equation with the Finite-Element

scheme :

VE(€) = sup |7 SV (n(€,w) + 7(€,u)r (€, u) (2)

uwelU

where n(£,u) is the projection of £ in a direction parallel to f(§,u) onto the
opposite side of the simplex (see figure 2) and 7(£, u) is such that :

N, u) =&+ 7(5,u) f(§ u)
From the linearity of V¥ upon the simplexes, (2) is equivalent to:

VI(E) = sup [77EMD A ((€,w) VI () + 7€, w)r(€,w)

uwelU J=1



(S u)

y x(?)

& x

Fig. 2. A trajectory going through a simplex. (£, ) is the projection of £ in a direction
parallel to f(&,u) onto the opposite side of the simplex. 2= is a good approximation

Ag(z)
of n(¢,u) —¢&.

which is a Dynamic Pogramming equation for a finite Markov Decision Process
whose state space is the set of vertices {{}, and the probabilities of transition
from state § to the adjacent states {§;};j=1..4 with control u are the barycentric
coordinates ¢, (n(§,u)).

By introducing the Q-values Q* (£, u) such that V¥(£) = sup, .y Q¥ (&, v)
and thanks to a contraction property due to the discount factor v, Dynamic
Programming theory (see [Ber87]) insures that there is a unique solution, called
V¥ that satisfies equations :

Q7 (&,u) =W VI (n(g,w) + (5, w)r(§,u) for £ €O (3)
Q7(&u) =R() for £¢ O

Here, it is not possible to use directly a Real Time Dynamic Programming
algorithm (see [BBS91]) for solving iteratively equation (3) because the dynamics
f (thus n(&,u) and 7(£,w)) is unknown. The model-based approach should be
to build in a first time a model of the dynamics f and then to use DP methods
with this model. In this paper, we are interested in the model-free approach
which consists in an on-line and direct learning, that is which does not build any
model of the dynamics. The Finite-Element Reinforcement Learning (introduced
in [Mun96]) is a model-free RL algorithm that uses approximation of 7(&,«) and
7(&,u) thanks to the available on-line knowledge.

3.1 Presentation

Suppose that a trajectory z () enters inside simplex T at point x = z({1). At time
{1 suppose that a control u is chosen and kept until the trajectory leaves 1" at
y = x(t2) (see figure 2). Let 7, = ta —1;. Let T;p, 3 x be the (d— 1)-input-simplex
and Tyy: 3 y the (d — 1)-output-simplex.



The algorithm presented in the next section is the iterated version of equation
(3) which uses:

Vi) —V¥(z)

+ Vv (£) as an approximation of Vz(n(g,u))
Ag(x)

Ae(2)

These approximations come from the linearity of V¥ inside T and that from
Thales’ theorem, 7\7’&7(—;7) is an approximation of 7(&,u) — &.

as an approximation of 7(&,u).

3.2 The Finite-Element Reinforcement Learning

In the following, we assume that the action space U is finite. Let Q;’(£,u) and
V,Z(€) be the iterated values of Q¥ (£,u) and V¥ (€). Let us choose a constant
A € (0, 1] close to zero. Initial values Q' (£,u) are initialized to any value.

Consider a trajectory x(.) going through a simplex T" with a control «. When
the trajectory leaves T' at y, if the following conditions:

* A¢(x) > X (this relation eliminates cases for which A¢(zx) is too small)

V6 € T NTout, A, (Y) > A¢, (x) + A (these relations imply that y — « strictly
belongs to the cone of vertex £ and base T,,; and insure that for small
simplexes, (£, %) € Tpuz).

are satisfied, then update the Q-value of vertex £ opposite to the exit side
T, Tor control « with :

R = _vx z T
QFia(6m) = v 0 (Bl L V2 (6) )+, w) (1)

When the trajectory reaches the border of the state space, at time 7, the
closest vertex §; ¢ O from the exit point x(7) is updated with :

V(&) = R(x(r))

Remark. With some additional hypotheses on the dynamics f and the regu-
larities of 7, R and 90O, this algorithm converges to the value function of the
continuous problem as n tends to infinity and the size of the simplexes tends to
zero (see [Mun96]).

Meanwhile, for a given triangulation, the VnE—values do not converge as n
tends to infinity. In order to insure the convergence, we need to combine the
learning dynamics with a triangulation refinement process, called structural dy-
namics.



4 The Structural Dynamics

The structural dynamics intends to build a triangulation such that the simplexes
enclose states whose value function is almost linear. Here, we choose the ”gen-
eral towards specialized” approach : the initial triangulation is composed of a
small number of large simplexes ; then the structural dynamics refines the tri-
angulation at places where the value function is irregular (the simplexes of low
reinforcement discriminant skill).

4.1 The Delaunay Triangulation

In this paper, we chose the Delaunay triangulation, which is a very used trian-
gulation technique for finite-elements methods when the state space is of low
dimensionality. Delaunay triangulation is built from the basis of a set of vertices
and is close related to the Voronoi diagram (there is a dual relationship). The
study of Delaunay triangulations and their properties are beyond the scope of
this paper (see for example some recent work : [Mid93], [Rup94]). We will only
give a definition in the 2-dimensional case :

Given a finite set of points, 3 points contribute a triangle to the Delaunay
triangulation if the circumscribing circle through those points contains no other
points in its interior.

4.2 The Delaunay Refinement Process

The refinement process consist of adding new vertices and compute the Delau-
nay triangulation associated to the new set of vertices (we use the incremental
Watson’ algorithm [Wat81], see figure 3).

The choice of adding a new vertex inside a given simplex depends on a crite-
rion based on the expected reinforcement average variation : the Q-deviation. For
each vertex ¢ and control u, the Q-deviation £ (&,u) is incrementally updated
at the same time as the Q-value is by :

i) = —— (05760 + (@760 - (g, 0)])?)
and the Q-deviation E(T) of a simplex 7T is the sum of the Q-deviations of its
vertices & for controls w such that the dynamics f(£,u) ”goes inside” T

The refinement rule is the following :

If the Q-deviation of a simplex T is superior to some value, add to the set of
vertices the barycenter of T (for example, in figure 3, the barycenter of the gray
simplex is added to the list of vertices).

Remark. The refinement of boundary simplexes (those whose all vertices except
one are outside O) consists in adding the barycenter of the vertices that are
outside O (see an illustration in section 5).



Remark. During the triangulation refinement process, some initial averaged Q-
values (for the next learning dynamics) are attributed to the points added to the
list of vertices. This insures a continuous learning through successive structural
dynamics processes.

Fig. 3. Addition of a new point (the square dot) to the set of vertices and the resulting
Delaunay triangulation

For a given triangulation, we have to distinguish two phases during the learn-
ing dynamics :

— The transitional phase during which reinforcements are propagated upon the
whole state space according to the dynamics.

— The almost stationary phase during which the Q-values oscillate around an
average value.

Either a Q-value converges, so its Q-deviation tends to 0, or it does not and
the Q-deviation does not tend to 0. So the Q-deviations are a measure of the
irregularity of the expected reinforcement (thus indirectly of the value function).

The structural dynamics consists in refining the triangulation at places where
the Q-deviation of the simplexes are high. Then the new triangulation becomes
more precise at the irregularities of the value function.

A succession of learning and structural dynamics is executed until the Q-
deviations of all simplexes are small enough.

Remark. The refinement criterion used here, based on the Q-deviations, is very
simple and may be improved by taking into account other factors like the ex-
istence of a change in the optimal control inside a simplex, or the coherence of
the values at the vertices of a simplex depending on the local optimal control.
The Q-deviation criterion is only an illustration of a possible local measure for
triangulation refinement process, and it is used in the following simulation.



5 Illustration with a Simple Target Problem

5.1 Description

Let us consider a mass moving on a bar (segment [—1,1]) which has to stop at
one of its extremities. The control consists in pushing the mass with a constant
strength either on the left or on the right (the control is w = £1). The state of
the system is: z = (y,v) with y (€ [—1, 1]) the position and v (€ [-2,2]) the
velocity of the mass. Thus, the dynamics of the system is :

Let the running reinforcement » = 0 and the terminal reinforcement R depends
on the side from which the mass leaves the bar (see figure 4) : if the bar reaches
the left extremity with a null velocity (left target) then it receives R = +1, if it
reaches the right extremity with a null velocity (right target), it receives R = +2.
If it reaches an extremity with a positive velocity, the terminal reinforcement will

decrease with the velocity (until R = —1 for the maximal velocity).
sR(1,v)

_ +

R(-1,v) v 7\

-1

+ < -1

| y
-1 -1

Fig. 4. The terminal reinforcement R(y,v). R = +1 (resp. R = +2) at the left (resp.
right) extremity of the bar for a null velocity. R decreases until —1 for the maximal
velocity.

Thus, the objective of the learning is twice: first, the system has to learn to
reach, as fast as possible, each extremity of the bar with a low velocity, as much
as possible. Then, it has to learn to choose which extremity (the right one with
a possible reinforcement of +2 or the left one with +1) is the best depending on
its position and velocity (thus on the time required for reaching the target).



Fig. 5. The (exact) value function V' (x).

5.2 The Optimal Solution

In this example, it is easy to compute exactly the value function (see figure
5) and the optimal control. Thus we can estimate the difference between the
computed V,-values and the optimal value function. A measure of this approxi-
mation error is the error sup:

Error sup =sup |Vn2 (%) — V(x)|
zeO

5.3 Numerical Results

0 200 400 600 800

Fig. 6. The error sup as a function of the number of running trajectories.



The results of the simulation are depicted in figure 6. This approximation
error is given as a function of the number n of running trajectories for successive
triangulations Xy, X5, X5, Xy (see figure 7).

Triangulation Xy 2 23 X
Figure 7: Successive triangulations during the simulation.

Initial triangulation (X7) corresponds to 1 < n < 100. For n = 100, the
simplexes whose Q-deviation is higher than 0.001 are refined, which leads to
triangulation 2. In a same way, triangulation 2’5 occurs at n = 200, and trian-
gulation X, occurs at m = 400 and is kept until the end of the simulation.

5.4 Analyze of the Results

Globally, the error sup tends to 0 as successive learning and structural dynamics
are executed. At the end of the simulation, the error sup is lower than 0.1 and
continues to oscillate around 0.05.

By comparison to the (exact) value function of figure 5, we observe that the
refinement process occurs at places where V' is the most irregular.

Comparison with a constant and uniform triangulation: We have run a simu-
lation with a constant triangulation composed of 160 (number lightly superior
to the 153 simplexes of triangulation X4) uniformly distributed simplexes and
obtained with 800 trajectories an error sup of 0.22. This result indicates the
benefit of using the local refinement structural dynamics.

6 Conclusion

The combination of the learning and structural dynamics provides an interesting
reinforcement learning algorithm for the continuous and deterministic case. A
first improvement should be to study the stochastic case (when the evolution of
the system is governed by a stochastic differential equation) for which we could
use the ()-learning (see [Wat89]) version of FERL rule:



AQ¥ () = a, |7 (BBl ) - Q2 + 5

with some decreasing learning rate .

The local refinement criterion based on the Q-deviations generates a trian-
gulation that adapts to the regularities of the value function. Meanwhile, the
refinement process used here is very simple and sometimes generates more sim-
plexes than necessary. A possible improvement should be to consider a structural
dynamics including both ”bottom-up” and ”top-down” processes, for example by
suppressing some points at places where locally, the computed Q-values are reg-
ular, or by moving some vertices according to the dynamics f. Another approach
should consist on a triangulation initialized around terminal reinforcements and
progressively increasing inside the state space during the running of trajectories.
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