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Abstract

This paper proposes a new scheme for multi-image pro-
jective reconstruction based on a projective grid space. The
projective grid space is defined by two basis views and the
fundamental matrix relating these views. Given fundamen-
tal matrices relating other views to each of the two basis
views, this projective grid space can be related to any view.
In the projective grid space as a general space that is related
to all images, a projective shape can be reconstructed from
all the images of weakly calibrated cameras. The projective
reconstruction is one way to reduce the effort of the calibra-
tion because it does not need Euclid metric information, but
rather only correspondences of several points between the
images. For demonstrating the effectiveness of the proposed
projective grid definition, we modify the voxel coloring al-
gorithm for the projective voxel scheme. The quality of the
virtual view images re-synthesized from the projective shape
demonstrates the effectiveness of our proposed scheme for
projective reconstruction from a large number of images.

1. Introduction

Vision systems using a large number of cameras have
recently been developed for a wide variety of applications.
Kanade et al. [5, 13] have developed the system using a num-
ber of cameras for digitizingwhole real world events includ-
ing 3D shape information of the dynamic scene. Davis et al.
[3] have developed a multi-camera system for human motion
capturing withoutany sensors on the human body. Jain et al.
[4] proposed Multiple Perspective Interactive (MPI) Video,
which attempts to give viewers control of what they see,
by computing 3D environments for view generation. This
is accomplished by combining a priori environment models
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and dynamic pre-determined motion models. Even in the
case at one camera, 3D structure recovery from a moving
camera involves a number of images around the object [11]
[8].

3D shape reconstruction from multi-view images has re-
cently become an intensively researched area because of
recent advances in computation power and capacity of data
handling. In such algorithms, registration between the im-
ages is the key issue so that the correspondence can provide
3D information about the scene. To achieveaccurate cor-
respondence, camera calibration plays an important role. If
we have only two cameras, the calibration is not so difficult,
but increasing the number of cameras (or views) increases
labor of the calibration because, as the number of DOFs of
the camera parameters is increased, it becomes increasingly
more difficult to get consistent calibration throughout every
camera.

Recently, projective reconstruction [2][15] has been in-
troduced as a means for reducing camera calibration efforts.
For projective reconstruction, no metric information is re-
quired. Only epipolar geometry between cameras, which is
represented in the fundamental matrix, is required.

In this paper, we propose a new scheme for taking advan-
tage of the projective reconstruction in the case of a large
number of images. In this scheme, we select two basis
views for defining a “projective grid space”, which can be
determined by a fundamental matrix relating the two basis
images. The projective grid points can be re-projected onto
an arbitrary image by fundamental matrices which relate that
image to the two basis images. Since this re-projection re-
lates every grid point to every view image, projective shape
reconstruction from number of images can be performed in
the projective grid space.

The proposed shape reconstruction scheme in the pro-
jective grid space requires only fundamental matrices that
relate every view image to two basis view images. Because
the fundamental matrix can be obtained only from the corre-
spondence of several calibrating points in the images, much
effort for camera calibration can be reduced in the projec-



tiveshape reconstruction as opposed to the case of Euclidean
shape reconstruction [12], which basically requires 3D posi-
tion in Euclidian space of several calibrating points. While
3D positioning accuracy of the calibrating points is a sig-
nificant factor for accurate Euclidian calibration, such 3D
positioning accuracy does not affect the projective recon-
struction. This advantage of the projective reconstruction
can be realized for shape reconstruction from a number of
images by applying the proposed projective grid space.

For demonstrating the effectiveness of the proposed pro-
jective grid space, we employ the voxel coloring algorithm
proposed by Seitz et al. [10, 6] under the proposed scheme.
We also obtain a correspondence point map from the projec-
tive reconstruction, and then synthesize virtual view images
by applying view interpolation [14] to the correspondence
map between images.

2. Projective Grid Space

Two view images areselected as thebasis of theprojective
grid space. Figure 1 explains the scheme for defining one
point in the space by the two reference views. Each pixel
point (p; q) in the first image defines one grid line in the
space. On the grid line,gridnode points are defined by either
horizontal positionr or vertical positions in the second
image. Since the fundamental matrixF 21 limits the position
in the basis view 2 on the epipolar linel, either r or s
is sufficient for defining the grid point. In this way, the
projective grid space can be defined by the two basis view
images, of which node points are represented by(p; q; r). A
node of the grid(p; q; r) is projected onto(p; q) and(r; s)
in the first reference image and the second reference image,
respectively, wheres depends on(p; q; r) as

s = �(lxr + lz)=ly (1)

where the vector,l= (lx; ly; lz), represents the grid line
projected onto the second basis view, which is expressed as

l = F 21
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whereF 21 represents the fundamental matrix between the
first and second images.

The relationship between the projective grid and an arbi-
trary image is determined by the two fundamental matrices
of the image with the two basis images,F i1 andF i2 for
ith image. The projected point from a grid point(p; q; r) is
derived by the following procedure. Since(p; q; r) is pro-
jected onto(p; q) in the first reference image, the projected
grid point in theith image must be on the epipolar linel1 of

Figure 1. Definition of projective grid. Two basis
views define the grid point in the projective space,
where each grid position is represented by(p; q; r).

(p; q), which is derived by theF i1 as

l1 = F i1
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In the same way, the projected grid point in theith im-
age must be on the epipolar linel2 of (r; s) in the second
reference image, which is derived by theF i2 as

l2 = F i2

2
4
r
s
1

3
5 (4)

The intersection point between the epipolar linesl1 andl2
is the projected grid point(p; q; r) onto theith image. In
this way, every projective grid point is projected onto every
image, where the relationshipcan be represented by only the
fundamental matrices between the image and two reference
images. Figure 2 shows this scheme.

In the proposed scheme of the definition of the projective
grid, all the geometrical relationships are sufficiently repre-
sented by only fundamental matrices between two images,
because every grid line defined by the position in the first
image can be uniquely determined by the fundamental ma-
trix. In this way, every projective grid point can be projected
onto every image plane.

3. Voxel Coloring in Projective Grid Space

3.1. Sweeping of plane

In the previous section, we proposed the new scheme for
defining the projective grid space for a large number of im-
ages. For demonstrating the effectiveness of the proposed
scheme, we employ the voxel coloring method for recon-
struction of the shape from the input images. The voxel



Figure 2. Projection of point in the space onto an
image. The point(p; q; r) on the projective grid is
projected to(p; q) and (r; s) on the first basis view
and second basis view, respectively. In the image of
view i, the cross point of two epipolar lines is the
projected point of(p; q; r).

coloring algorithmbasically uses color consistency from ev-
ery viewpoint for determining each voxel’s occupancy and
color.

The original algorithm requires every camera be strongly
calibrated in the sense of Euclidean calibration for deter-
mining the geometrical relationship between each voxel and
each image. By applying the proposed projective grid defi-
nition, Euclidean calibration is not required. Rather projec-
tive calibration is sufficient for shape reconstruction because
every projective grid point is completely related to every
image location under the proposed projective grid space as
described in the previous section.

In the voxel coloring algorithm, occupancy of each voxel
must be checked by only visible cameras from the voxel. To
ensure that only visible cameras are selected for occupancy
checking, each voxel is visited in the order of sweeping
plane as shown in Figure 3(a),where only the cameras before
sweeping plane in the space are used for the voxel occupancy
checking. The sweeping strategy ensures that occupancy of
each voxel can be checked by only visible cameras [6].

To make the sweeping strategy possible in the projective
grid scheme as shown in Figure 3(b), the camera position
must be represented in the projective grid space. Although
we have only fundamental matrices relating every image to
basic view images, the position of every image’s camera can
be derived from the fundamental matrices as described in
the following section.

3.2. Camera position in projective grid space

The fundamental matrix provides sufficient information
about the relative camera position because the epipole,
which is the projected position of the camera center, can
be derived from that matrix.

(a) Sweeping in Euclidean
grid space.

(b) Sweeping in projective
grid space.

Figure 3. Sweeping plane strategy in voxel coloring.
Only the cameras before the sweeping plane (gray
colored cameras in the figures) are used for checking
the occupancy of the voxle on the plane.

Figure 4. Camera position in projective grid space.
Epipolar derived from fundamental matrix provides
the camera position in projective grid space.

We can obtain the position of camera in the coordinate
of (p; q; r) as shown in Figure 4. In this coordinate, camera
position of the first basis camera C1 is(pc; qc; e12r), where
(pc; qc) is camera center in the first basis view, ande12r isr
component of the epipole of first basis view in second basis
view, e12. In the same way, camera position of the second
basis camera C2 is(e21p; e21q; e12r), where(e21p; e21q)
is the epipole of the second basis view in the first basis view,
e21.

For ith camera, we can obtain epipolesei1 andei2 in
the first and second basis views, respectively. Therefore, the
position ofith camera is(ei1p; ei1q; ei2r), which is derived
from the epipoles. Since the epipoles can easily be derived
from fundamental matrices, every camera position in the
(p; q; r) coordinate can be obtained from only fundamental
matrices.



4. Experimental Results

We applied the projective voxel coloring to the basketball
images taken with the 3D Dome system [13]. There are 51
view color images, which are distributed on a hemisphere
of 5m in diameter. We chose two views for projective basis
from these 51 views.

4.1. Calibration

We collect calibration images for obtaining fundamen-
tal matrices between the images. The images are collected
while straight bar with LED point light sources as a calibra-
tion rig is swept in the reconstructed region. The collection
for every camera is simultaneously performed, so that the
same dot in the same position can be seen from every cam-
era.

From the calibration images, we have a number of lines
on which the dots of LED are aligned. Because of the radial
distortion of the lenses, those lines are curved in the images,
even though they are actually straight lines. We estimate
the radial distortion parameter by using those line segments.
The basic idea of this distortion correction method is based
on [9]. The radial distortion is corrected by the following
equation

x0 = x+ (x� xc)fk1R
2 + k2R

4g

y0 = y + (y � yc)fk1R
2 + k2R

4g (5)

where R =
p
(x� xc)2 + (y � yc)2

(x; y) distorted point
(x0; y0) distortion corrected point
k1 andk2 distortion coefficients
(cx, cy) optical center of the lens

We first define evaluation of linearity of the LED points,
then search the distortion parameters ofk1, k2, cx, andcy
which give the most linear evaluation.

The convergence is good because we have a sufficient
number of lines in the image. This correction does not
need any 3D information because the radial distortion has
an affect in a 2D image plane.

For estimating fundamental matrices, the LED dots are
labeled so that they are matched with the other LED dots in
the other images. We obtain approximately 500 correspon-
dence dots between the images. By using these correspon-
dence points, we estimate the fundamental matrix by using
Zhang’s method [15].

In this calibration process, we use only line segments for
radial distortion, and dot correspondences for fundamental
matrix estimation. We do not need any relationship of 3D
world coordinates to 2D image coordinates, which is gen-
erally required for Euclidean calibration as shown in Tsai’s

(a) Basis view 1 (b) Basis view 2

Figure 5. Basis view images for defining projective
grid space. On each image, some epipolar lines be-
tween the basis images are displayed. The intersection
points of the epipolar lines are some of the projective
grid.

method [12]. We do not need accurate positioning of the
calibration rig but rather sweeping of the calibration rig in
the reconstructed region. In this way, the calibration effort
can be reduced in the proposed projective reconstruction
scheme.

4.2. Projective grid space

Figure 5 shows the basis view images on which some
epipolar lines between the images are displayed. The in-
tersection point of two epipolar lines in each image is a
projective grid. In the actual implementation, 320� 240
epipolar lines for all pixels in the basis view 1 are projected
onto the basis view 2 for generating a projective grid space.
Then 320 grid points are defined on every epipolar line by
the horizontal pixel position in the basis view 2. In this way,
320� 240� 320 grid points are totally defined.

Even though we only consider the projective grid without
any metric, it is better to make each projective grid closer
to cubic shape in Euclidean space. In this sense, we choose
the two basis view images because their optical axes are
almost perpendicular. Choice of the basis view affects the
reconstruction quality, but this issue will be studied in our
future research.

4.3. Projective shape reconstruction

Although the projective axes,p; q, andr are not orthogo-
nal to each other, we show the projective shape in the space
of orthogonalp; q, andr space by in Figure 6. Even though
the actual voxel is an arbitrarily shaped hexahedron, each
voxel is assumed to be a cube in this representation. The
top two images show the occupied voxels that are detected
by the voxel coloring algorithm. Note that the displayed
voxel size in those two images are 4 times larger in length
than the voxel size actually used for projective shape recon-
struction. The other images are rendered images from the
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Figure 6. Reconstructed projective shape in the rep-
resentation of orthographic grid space.

colored voxel representation of the reconstructed projective
shape. Since the center of the basis view 1 is located behind
person B, the real size of the voxel around the person A is
larger than that around the person B. This is because that
the real size of the voxel is increased in proportional to the
distance from the center of the basis view 1. This fact affects
the size of the object in this representation, i.e, person A is
reduced in size.

4.4. Synthesizing virtual view images

We synthesized the virtual viewpoint images from the
projective reconstruction. The reconstructed projective
shape provides dense correspondence maps between arbi-
trary pairs of images, so that they can be used for view-
interpolation [14] to synthesize intermediate images. Since
the shape is reconstructed by using all 51 images, the cor-
respondence map does not suffer by the occlusion, while

typical stereo matching algorithms between a few images
give wrong correspondences in the occluded region. Fig-
ure 7 shows the example of synthesized intermediate view
images between two images.

The occluded region on the person in the background is
completely recovered in the intermediate view images be-
cause projective shape is successfully recovered from all
view images via projective voxel coloring as demonstrated
in Figure 6. Since the proposed scheme of projective grid
space is related to all view images by the set of fundamen-
tal matrices, projective shape structure of the scene can be
successfully reconstructed by the use of all view images.

5. Conclusion

We proposed a new scheme for reconstructing shape in
projective grid space for a large number of input images. The
projective grid space can be defined with two basis views,
whose relationship is represented by a fundamental matrix.
The grid points in the space are related to an arbitrary image
by fundamental matrices between the image and the two
basis views.

For demonstrating the effectiveness of the proposed pro-
jective grid voxel space scheme, we apply the voxel coloring
algorithm. The quality of the re-synthesized virtual view
images from the projective shape demonstrates the effec-
tiveness of our proposed scheme for projective reconstruc-
tion from large number of images. The view interpolated
images are also generated by using the reconstructed pro-
jective shape. In the generated images, the occlusion region
is reasonably interpolated because the 3D structure can be
recovered.

Such regions of occlusion can not be interpolated by using
the image-based method without recovery of 3D structure
of the scene [1, 7], because those methods implicitly assume
the consistent correspondence among all input images. The
occlusion region can not be correctly interpolated without
3D structure information of the scene. Such 3D structure
information must be recovered by integrating multiple view
image information in the space that can represent the 3D
structure by any means. The proposed projective grid space
provides the 3D space in the framework of the projective
geometry.

For demonstrating this feature of the proposed scheme,
the voxel coloring method is applied to reconstruct projec-
tive shape from a number of images. Since the reconstructed
projective shape provides the occlusion structure, the inter-
polated new view images can take account into the existing
occlusion.
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Figure 7. Synthesized intermediate view images between two images from correspondence map obtained by the
projective reconstructed shape.
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