Multi-agent Coordination through
Coalition Formation *

Onn M. Shehory, Katia Sycara and Somesh Jha
The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.

onn,katia,sjha@cs.cmu.edu

Abstract

Incorporating coalition formation algorithms into agent systems
shall be advantageous due to the consequent increase in the over-
all quality of task performance. Coalition formation was addressed
in game theory, however the game theoretic approach is centralized
and computationally intractable. Recent work in DAI has resulted
in distributed algorithms with computational tractability. This paper
addresses the implementation of distributed coalition formation algo-
rithms within a real-world multi-agent system. We present the prob-
lems that arise when attempting to utilize the theoretical coalition
formation algorithms for a real-world system, demonstrate how some
of their restrictive assumptions can be relaxed, and discuss the result-
ing benefits. In addition, we analyze the modifications, the complexity
and the quality of the cooperation mechanisms. The task domain of
our multi-agent system is information gathering, filtering and decision

support within the WWW.

1 Introduction

Theories of cooperation among computational intelligent agents have been
developed in the last decade, providing methods which enable, theoretically,

*This material is based upon work supported in part by ARPA Grant #F33615-93-1-
1330, by ONR Grant #N00014-96-1-1222, and by NSF Grant #IRI-9508191.

low complexity of the cooperation mechanisms as well as high performance
of the multi-agent systems. Although they seem promising, most of these
mechanisms were not tested in a real-world multi-agent environment.

Cooperating groups of agents, referred to as coalitions, were thoroughly
investigated within game theory (e.g., in [9]). There, issues of solution sta-
bility, fairness and payoff disbursements were discussed and analyzed. The
formal analysis provided there can be used to compute multi-agent coalitions,
however only in a centralized manner and with exponential complexity. DAI
researchers have adopted some of the game-theoretical concepts and upon
them developed coalition formation algorithms, to be used by agents within
a multi-agent system (e.g., [18, 5]). These algorithms concentrate on dis-
tribution of the computations, complexity reduction, efficient task allocation
and communication issues. Nevertheless, some of the underlying assumptions
of the coalition formation algorithms, which are essential for their implemen-
tation, do not hold in real-world multi-agent systems.

In this paper we report on coalition formation as a means for coordinating
agents. The coalition formation method we present is appropriate for dozens
of agents'. We begin with a brief overview of the multi-agent system into
which the algorithms are applied in section 2. We continue by presenting
the theoretical coalition formation method, in section 3. We then present
the implementation requirements (section 4) and relaxation of theoretical
assumptions (section 5). In section 6 we analyze the properties and modifi-
cations of the implemented method, both theoretically and via simulations.
Finally we conclude in section 7.

2 The information multi-agent system

The problem of locating information sources, accessing, filtering, and inte-
grating information, as well as interleaving information retrieval and problem
solving has become a very critical task, due to the increasing amount of dis-
tributed, dynamically changing information.

Most work in intelligent software agents that gather information from
Internet-based sources, e.g., [7, 8, 1] focussed on a single agent with simple

!For hundreds of agents, coalition formation methods are usually too complex. How-
ever, several cooperation methods were developed for such cases (e.g., market oriented
solutions [16]).

knowledge and problem solving capabilities whose main task is information
filtering to alleviate the user’s cognitive overload. Another type of agent is
the Softbot ([3]), a single agent with general knowledge that performs a wide
range of user-delegated information-finding tasks. A single general agent
would need an enormous amount of knowledge to effectively deal with user
information requests that cover a variety of tasks. In addition, a centralized
system constitutes a processing bottleneck and a “single point of failure”.
Finally, because of the complexity of the information finding and filtering
task, and the large amount of information, the required processing would
overwhelm a single agent. To resolve the above problems, a multi-agent
system is necessary.

We have developed a multi-agent system named RETSINA (REusable
Task-based System of Intelligent Networked Agents) [15, 13, 12] to integrate
information gathering from web-based sources and decision support tasks.
The agents in RETSINA compartmentalize specialized task knowledge, or-
ganize themselves to avoid processing bottlenecks, and can be constructed
specifically to deal with dynamic changes in information, tasks, number of
agents and their capabilities.

2.1 The system infrastructure

In RETSINA, the agents are distributed and run across different machines.
Based on models of users, agents and tasks, the agents decide how to decom-
pose tasks and whether to pass them to others, what information is needed
at each decision point, and when to cooperate with other agents. The agents
communicate with each other to delegate tasks, request or provide informa-
tion, find information sources, filter or integrate information, and negotiate
to resolve inconsistencies in information and task models. The system con-
sists of three classes of agents (see Figure 1): interface agents, task agents
and information agents.

Interface agents interact with users receiving their specifications and de-
livering results. They acquire, model and utilize user preferences. Task
agents formulate plans and carry them out. They have knowledge of the
task domain, and which other task agents or information agents are relevant
to performing various parts of the task. In addition, task agents have strate-
gies for resolving conflicts and fusing information retrieved by information
agents. They decompose plans and cooperate with appropriate task agents or

USER 1 USER 2 USER i

Goal:s _and_ Task Results
Specifications

Interface Agent 1 Interface Agent 2 Interface Agent j

Task‘ /‘ ‘SW ‘ Task

-wo TaskAgent ZJ

Resolution

TaskAgent 1 TaskAgent 3] e TaskAgent kJ

Information
Request

Information Integration

Figure 1: ITllustration of the infrastructure of the agent system

information agents for plan execution, monitoring and results composition.
Information agents provide intelligent access to a heterogeneous collection of
information sources. They have models of the information resources and
strategies for source selection, information access, conflict resolution and
information fusion. Information agents are active, in the sense that they
actively monitor information sources and proactively deliver the information.

2.2 Agent matchmaking

One of the basic design problems of cooperative, open, multi-agent systems
for the Internet is the connection problem [2]. That is, each agent must be
able to locate the other agents who might have capabilities which are nec-
essary for the execution of tasks, either locally or via coalition formation.
The fact that the system is open (participating agent may dynamically en-
ter and leave) and distributed over the entire Internet precludes broadcast
communication solutions.

The solution to this problem in our system relies, instead, on some well-
known agents and some basic interactions with them — matchmaking [6, 14].
In general, the process of matchmaking allows an agent with some tasks, the
requester, to learn the contact information and capabilities of another agent,
the server, who may be able to execute some of the requester’s tasks. This
process involves three different agent roles:

o Requester: an agent that holds a set of tasks and wants them to be performed
(at least partially) by other agents who possess relevant capabilities.

o Matchmaker: an agent that knows the contact information, capabilities,
and other service characteristics (e.g. cost, availability, reliability) of other
agents.

e Server: an agent that has committed to the execution of a task or at least
part of a task delegated to it by a requester.

During the operation of the multi-agent system, agents that join the system
advertise themselves and their capabilities to a matchmaker, and when they
leave the agent society, they un-advertise (for more details, see [12]). Re-
questers, in search of agents with which they may possibly form coalitions,
approach a matchmaker and ask for names of relevant servers. After hav-
ing acquired the information about other agents they can directly contact
these agent and initiate cooperation as needed. Note that there may be sev-
eral matchmaker agents to relax the problem of unavailable or overwhelmed
single matchmaker.

3 Cooperation via coalition formation

Coalition formation methods among multiple agents (e.g., in [18, 10, 5, 11])
refer to cases in which groups of agents work jointly in order to accomplish
their tasks. The RETSINA system can receive several tasks from several
users. Qur hypothesis is that incorporation of a coalition formation mecha-
nism shall increases the efficiency of groupwise task execution, resulting in
near-optimal task performance. We report such results in section 6. In addi-
tion, this mechanism will enable agents to decide upon the importance (and
thus — the order) of tasks to be performed. Such decision making is impor-
tant in real-world domains, where there may be situations in which a system
cannot fulfill all of its tasks.

We provide below a brief description of the coalition formation model
presented in [11], which we later modify to enable its implementation and
take into consideration additional requirements of an open and dynamic agent
environment. There is a set of n agents, {Ay, As,..., A, } . Each agent A; has
a vector of real non-negative capabilities B; = (bi,...,b.). Each capability?
is a property of an agent that quantifies its ability to perform a specific type
of action®. In order to enable the assessment of coalitions and task-execution,
an evaluation function shall be attached to each type of capability. There
is a set of |T'| independent tasks T = {{1,%3,...,1,}. For the satisfaction
of each task ¢;, a vector of capabilities B; = (b],...,bl) is necessary. The
benefits gained from performing the task depend on the capabilities that are
required for its performance. Benefits are measured from the whole system
viewpoint.

A coalition is defined as a group of agents who have decided to cooperate
in order to perform a common task. The model assumes that a coalition can
work on a single task at a time, and that agents may be members of more
than one coalition. A coalition €' has a vector of capabilities B, which is the
sum of the capabilities that the coalition members contribute to this specific
coalition. € has a value V which is the joint benefits of the members of C'
when cooperatively satisfying a specific task.

The model assumes that the agents are group-rational. That is, they join
a coalition only if they (jointly) benefit as a coalition at least as much as
the sum of their personal benefits outside of it [4, 9]. Group rationality
is necessary to ensure that whenever agents form a coalition, they always
increase the system’s global benefits, which is the sum of the coalitional
values. It is also assumed that the agent-population does not change during
the coalition formation; all of the agents must know about all of the tasks and
the other agents?; the details of intra-coalitional activity are not necessary
for agents outside of the coalition; there is no clock synchronization among
the agents. The coalition formation algorithm consists of two main stages®:

1. A preliminary stage — all possible coalitions are distributively calculated.

?In the context of information agents, an example of a capability is the type and the
amount of information that an agent can provide.

3Action is the most fundamental task, virtually un-divisible.

*Since RETSINA operates in an open, dynamic environment, it does not satisfy these
two assumptions (see section 5).

>For additional details with respect to the algorithm see [11].

This distribution is achieved by having each agent A; compute only coalitions
in which it is a member (put these in a list L;).

2. A main stage — an iterative greedy procedure in which two sub-stages occur:

o The coalitional values are calculated® such that for each task, all of the
coalitions that can satisfy it are considered. The distribution of these
calculations is done by having each agent A; approach the agents which
are members of the coalitions in L; and commit to the calculation of
the values of coalitions in which they are both members. Consequently,
each coalition value calculation will be committed to only once (this
distribution depends on the communication order).

o The agents decide upon the preferred coalition (according to its max-
imal calculated value with respect to a specific task) and form it, and
perform the respective task.

Since the number of the possible coalitions is exponential (2"), such is the
complexity of the algorithm. We reduce it by limiting the permitted coali-
tions. Such heuristics were implemented in the algorithm by using an integer
k which denotes the highest coalitional size allowed. This restriction limits
the number of coalitions to O(n*) (polynomial in n). We later explain why
such a limitation is justified.

maz(|C5]) 1

The algorithm has a ratio bound p = 4t < 37—,

tot
the total cost” of all coalitions derived by the algorithm, ¢}, denotes the

optimal total cost, and max(|C;|) is the maximal coalition size. The ratio
bound p is the worst case bound, and the average case is significantly better
(shown in section 6). The two processes of calculating coalitional values

where ¢;,; denotes

7

and choosing coalitions may be repeated up to |7 times. Therefore, the
worst case complexity per agent is O(n*~! - |T'|) computations and O(n - |T|)
communication operations.

5Note that the value calculation must be repeated on every iteration, since the execution
of tasks may change these values.

"Note that the notion of cost (and not value) is used here, however the translation of
the first to the latter is rather simple. In our system costs, which are part of an agent’s
advertisement to a match maker, stem from the computation and communication efforts
associated with the agent activity.

4 The cooperation component

The architecture of each agent in the RETSINA framework includes a generic
cooperation component. We shall elaborate on the architecture, the func-
tionality and the advantages of this component. The role of the cooperation
component is to enable close cooperation among agents. An agent should
consider cooperation if one of the following holds:

e The agent cannot perform a specific task by itself.

o The agent can perform a specific task, but other agents are more efficient in
performing this task (e.g., they require less resources or perform faster).

o The agent can perform a specific task, but working on it collaboratively will
increase the benefits from the task (or reduce the costs).

The last two conditions are not necessarily easy for an agent to perceive, es-
pecially in cases of incomplete information with regard to the capabilities of
other agents and the expected benefits from task execution by them. Never-
theless, reasoning about the global utility of cooperation and the application
of cooperation strategies strongly relies on such expected benefits. Measur-
able expected benefits can be compared to decide upon the preferable ones
and the cooperation activities that may achieve them. Benefits are com-
monly assessed and expressed by utility functions®. We are interested only
in the payoff gained by the whole agent-system as the result of agent activity,
and not in the individual payoff of an agent. While the other parts of the
cooperation component of the agent are reusable®, the utility functions must
be determined and implemented specifically for each task domain.
Cooperation strategies mainly depend on two parameters: the environ-
ment type with respect to payoffs (super-additive vs. non-super-additive)
and the agent rationality (self-rationality vs. group-rationality). Each of the
four combination of these requires different cooperation strategies to increase
the payoffs, either of single agents in the self-rationality case or of the whole
system in the group-rationality case. However, since they do not depend
on the specific task domain, cooperation strategies can be formulated in a
generic manner, and instantiated by the agents for each specific task domain.

8Utility functions are frequently referred to as cost functions or payoff functions.
°That is, they can be used for various domains with no modifications.

5 Coalition re-design

In RETSINA we implement coalition formation mechanisms for group-rationality
cases. We rely on the theoretical methods presented in [11] as a basis for the
algorithms implemented, however modity them due to fundamental differ-
ences between the agent-systems discussed there (see section 3) and those
discussed here:

e The number of goals and agents in [11] is fixed, while RETSINA is a dynamic
system where agents appear and disappear and tasks vary constantly.

e The size of coalitions in [11] is bounded by a pre-defined constant &, inde-
pendent of the n and |T'|. k has a significant effect on the complexity of the
solution. Such an artificial constraint may prohibit solutions even in cases
where these not only exist but are also feasible and beneficial.

e The algorithm in [11] does not discuss the effect of two cases which are
typical in our system: how to choose from among two agents (or more) that
can provide the same service with the same expected payoff; how to deal
with the case of reusable or non-depleting capabilities.

o Tasks with complex time dependencies, such as partial overlapping use of

a resource, which are typical in our dynamic system, are not referred to in
[11].

¢ The method in which the information with regards to the existence of tasks
and their details is distributed in not discussed in the original algorithm.

To resolve the above restrictions, we made various modifications to the algo-
rithm.

Since the communication- and computation-time for value calculation and
coalition design (section 3) are significantly small as compared to the task
execution time, and tasks can dynamically appear, the modified algorithm
includes a re-design process. When a new task is received by the system, we
require:

o When an agent receives a new task, it finds through matchmaking relevant
agents that can execute the task.

o If tasks that were assigned to coalitions have not been performed yet within
the current iteration of the coalition formation algorithm, the agents will
re-calculate the coalitional values to take into consideration the arrival of
the new task.

— If inclusion of the newly arrived task in coalition recalculations in
the current iteration raises the value of a coalition, then the agents
shall re-design coalitions, selecting again the best among the actual,

re-designed, coalitions!?.

— Otherwise, the agents shall avoid coalition re-design, and consider the
new task for inclusion in coalitions at the next iteration.

o If all previous tasks are in process, the new task will be added to the group
of tasks T and be dealt with in the next coalition formation iteration.

o In case of a rapid high-frequency stream of new tasks, the re-design process
may be dis-enabled. If such a rate of new tasks is expected in advance, or
the agents statistically infer such a rate by sampling the task stream and
interpolating the statistical data, the re-design process shall be avoided.

The dynamic addition of tasks to the agent system does not change the
overall order of complexity of the algorithm, it however adds a factor to it.
This is since the complexity is linear in |T'|, and the maximal number of
re-design processes is bounded by the number of the dynamically received
tasks Ty, and |Ty| < |T'|. Hence, the worst case complexity will be less than
twice the non-dynamic complexity.

The communication requirements of the original algorithm are in the
worst case O(n) per agent per task (however the average is O(1)). In the
new algorithm, however, there is an additional complexity due to the dy-
namic task advertisement. Hence, while the worst case remains unchanged,
the average case becomes O(|Ty| - k). Yet this is a low linear complexity.
Nevertheless, in WWW information gathering (in which our agent system
operates), the high network latency causes the computation time for coali-
tion formation to be dwarfed by comparison. This was observed in the course
of our experiments.

10Note re-design may not be allowed if the expected task flow is rapid, lest the system
will constantly re-design and not perform its tasks.

10

6 Algorithm modification and analysis

6.1 Computational complexity

In section 3, the number of agents n was assumed to be constant. However,
in our agent system, n may dynamically change. Given this difference, the
analysis of the complexity must be modified. We introduce'* N = max(n).
Using N, the complexity can be expressed by a similar expression as in
section 3, where n is substituted by N, resulting in O(N*~! . |T|). Since
N = const-n, the complexity will remain of the same order. The & limitation,
that enable polynomial complexity is disturbing. The limitation it represents
with respect to the size of coalitions must either be justified and adjusted to
our system or omitted. We show that some restrictions can be applied in our
system, without reduction in its functionality, as described below.

An important property of a RETSINA agent is its ability to perform task
reductions [17]. In practice, the internal complexity of a sub-task is deter-
mined within the plan library. The plan library is domain-specific, hence the
designers of the domain-specific components have control over the complexity
of sub-tasks. In the information domain of RETSINA sub-tasks, each sub-
task can typically be performed by a small number of agents. This implies
that the coalition formation procedure will concentrate on the formation of
small coalitions of agents with particular expertise to perform a task.

For example, one of the domains in which RETSINA was implemented
is satellite tracking. One of the tasks that the agents can cooperatively
perform is finding if and when a specific satellite will be observable in a
specific location. For this, up to 4 information agents are involved in the
information gathering, and up to 4 other agents are involved in other related
tasks. This means that the maximal coalition size for this task type is 8.
Since other tasks of the system are of same order of complexity, the sizes of
coalitions are limited as well. The system may include other active agents,
however these will be involved in other tasks or be idle.

Each agent in our system is specialized in a specific type of task-performance.
We do not incorporate complex, multi-purpose agents, since most of the ca-
pabilities of such agents may remain unused most of the time, while their size

1Since maz(n) may be unknown, N shall be decided upon according to the expectations
of the designers with regards to their agent system.

11

and complexity consume computational resources, reducing the system’s per-
formance. This specialization results in the incorporation of agents into coali-
tions according to their specialty/capability (necessarily, when more than one
agent with the same specialty are present, their utility functions enables com-
parison which results in the choice of the one with the highest payoff). Thus,
a coalition size is limited to the number of different specialties which are nec-
essary for the execution of the task that this coalition performs. The number
of specialties which are necessary for a given task execution is small and hence
such is also the size of coalitions. Denoting the maximal number of special-
ties necessary for sub-task execution by k, we obtain the required restriction
on the size of coalitions!?. However, since different decompositions of tasks
along different specialty dimensions are possible, a specific agent system may
have several k’s. Among them, the maximal will determine the worst case
complexity. There is a trade-off between the complexity of sub-tasks and the
complexity of task reduction: a more complex task reduction will result in
simpler sub-tasks thus reducing their complexity, and vice versa.

6.2 Quality analysis

Recall the theoretical ratio bound p = <% < Z;(r:lx('c]')% in [11]. This

Cot
is a logarithmically increasing expression with respect to max(|C}|), i.e.,

p ~ logk. A logarithmically increasing cost (ct:) entails a logarithmically
decreasing value. This means that according to the ratio bound analysis
the overall payoff from task execution may be less than half of the optimal
payoft of the system. This is far from being satisfactory. We have shown via
simulations that the average case is close to the optimal case (see figure 2)*°.

The figure shows that the average performance (in terms of task allocation
and execution) reached via simulation, depicted by the solid line, is around
0.9 of the optimal performance'®, while the worst case (the ratio bound),
depicted by the broken line, declines fast to less than 0.5 of the optimal

performance. Since the ratio bound depends on k, and in our system & does

12The k restriction can be further relaxed e.g., by designing task decomposition that
avoids k ~ n/2.

13In order to get statistically significant results, we performed controlled experiments
through simulation.

1“We calculated the optimal performance explicitly, off line, when a small number of
agents are involved in coalition formation. Small here means up to 20.

12

not depend on n or N, the logarithmic expression holds, and its magnitude
can be determined by the designers. Thus the worst case performance can be
traded-off with the computational complexity of task reduction. For instance,
by simplifying the task reduction process, the reduced tasks remain rather
complicated and will probably require more agents to perform each (since
each involves more capabilities). Coalitions will therefore have to be larger.
Hence, while the computational complexity for task reduction was reduced,
the coalition formation complexity increased. The analysis of this trade-off
may allow to further improve the performance of the system.

Rati o of perfor nance

0. 61

Rel ative [CTreaL
quality | T T e

0. 4

Figure 2: The average performance with respect to the worst case

The simulations performed for checking the performance of the imple-
mented algorithm were done as follows. A dynamic set of agents which
included up to 20 agents (N = 20), where each provided with a vector of
capabilities B; = (b],...,bl). The agents received an initial set of tasks T
and additional tasks were provided dynamically in a random manner (i.e.,
the frequency of tasks, their type and the required capabilities were randomly
chosen). Each task was associated with a vector of capabilities necessary for
its execution'® and a payoff function for calculating the value of the task.
During the simulation, coalitions of agents were formed, where a task was

5Note that in the simulation we avoided the planning phase of task reduction. This
simplification does not affect the properties of the coalition formation mechanism.

13

allocated to each, and the value of its execution by this coalition was calcu-
lated. The sum of these values was calculated to find the total payoff. When
new tasks arrived, the re-design procedure was followed. We have performed
this simulation several hundreds of times, and compared the total payofts to
the optimal payoffs (calculated off-line) and to the theoretical ratio bound,
as depicted above.

7 Discussion

In this research we have utilized coalition formation methods to improve
multi-agent coordination (in terms of the joint payoff) of a real-world, in-
formation multi-agent system. The coalition formation algorithm takes into
consideration requirements and constraints arising from the dynamic nature
of the environment in which the system operates. We have shown through
simulation that the obtained efficiency and quality of the allocation of groups
of agents for task execution is close to the optimal. In addition, the incor-
poration of coalition formation algorithms into an open, multi-agent system
creates a decision mechanism for cases in which a subset of the tasks cannot
be performed, allowing the choice of the more beneficial ones for execution.
To enable the implementation of the coalition formation methods within a
working, real-world agent system, we had to relax several binding assump-
tions and limitations which are common in the theoretical coalition formation
theory, and provide solution to problems arising from these relaxations and
from the dynamics and uncertainty to which our system is subject. We have
analyzed the complexity and the quality, and shown that the incorporation of
the coalition formation method induces a near-optimal task allocation while
not significantly increasing the execution time. The algorithm implementa-
tion described in the paper is most appropriate for group-rationality cases.
We currently work on the implementation of coalition formation methods for
self-rationality cases.

References

[1] Robert Armstrong, Dayne Freitag, Thorsten Joachims, and Tom Mitchell.
Webwatcher: A learning apprentice for the world wide web. In Proceedings

14

[12]

[13]

of AAAI Spring Symposium on Information Gathering from Helerogenous
Distributed Environments, 1995.

R. Davis and R. G. Smith. Negotiation as a metaphor for distributed problem
solving. Artificial Intelligence, 20(1):63-109, January 1983.

Oren Etzioni and Daniel Weld. A softbot-based interface to the internet.
Communications of the ACM, 37(7), July 1994.

J. C. Harsanyi. Rational Behavior and Bargaining Equilibrium in Games and
Social Situations. Cambridge University Press, 1977.

S. P. Ketchpel. Forming coalitions in the face of uncertain rewards. In Proc.
of AAAI94, pages 414-419, Seattle, Washington, 1994.

D. Kuokka and L. Harada. On using KQML for matchmaking. In Proceedings
of the First International Conference on Multi-Agent Systems, pages 239-245,
San Francisco, June 1995. AAAT Press.

K. Lang. Learning to filter netnews. In Proceedings of the Machine Learning
Conference 1995, 1995.

P. Maes. Agents that reduce work and information overload. Communications

of the ACM, 37(7):31-40, 1994.
A. Rapoport. N-Person Game Theory. University of Michigan, 1970.

T. W. Sandholm and V. R. Lesser. Coalition formation among bounded
rational agents. In Proc. of LJCAI-95, pages 662-669, Montreal, 1995.

O. Shehory and S. Kraus. Formation of overlapping coalitions for precedence-
ordered task-execution among autonomous agents. In Proc. of ICMAS-96,
pages 330-337, Kyoto, Japan, 1996.

K. Sycara, K. Decker, A. Pannu, and M. Williamson. Designing behaviors for
information agents. In Proceeding of Agents-97, pages 404-412, Los Angeles,
1997.

K. Sycara, K. Decker, A. Pannu, M. Williamson, and D. Zeng. Distributed
intelligent agents. IFEFE Fxpert — Inteligent Systems and Their Applications,
11(6):36-45, 1996.

K. Sycara, K. Decker, and M. Williamson. Middle-agents for the internet. In
Proceeding of ILJCAI-97, Nagoya, Japan, 1997. To appear.

15

[15]

[16]

[17]

[18]

K. Sycara and D. Zeng. Coordination of multiple intelligent software agents.

International Journal of Intelligent and Cooperative Information Systems,
1996.

M. P. Wellman. A market-oriented programming environment and its ap-
plication to distributed multicommodity flow problems. Journal of Artificial
Intelligence Research, 1:1-23, 1993.

M. Williamson, K. Decker, and K. Sycara. Unified information and control
flow in hierarchical task networks. In Proceedings of the AAAI-96 workshop
on Theories of Planning, Action, and Control, 1996.

G. Zlotkin and J. S. Rosenschein. Coalition, cryptography, and stability:
Mechanisms for coalition formation in task oriented domains. In Proc. of
AAAIYY, pages 432-437, Seattle, Washington, 1994.

16

