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Abstract

There is a current need in the mobile robot community for a measurement system that will trans-
form mobile robot development into a measurable and controllable process. Experiences from 
previous developments are not being effectively recorded. Defects are sometimes quickly fixed 
and then forgotten. Certain defects recur repeatedly because new designers do not have the past 
experience or because a defect’s cause was not properly recorded. This loss of information has a 
high cost and the trend must be reversed.

The method for addressing this problem involves collecting information regarding defects and 
their causes in the process of designing, producing, and using a product such as a mobile robot. 
When extracted and analyzed through the use of a data visualization and interpretation system, 
this information can be used to improve a product and process. Ideally, in the future this informa-
tion will be provided to the development team during the development process (in-process) not 
just after the fact. 

However, there are shortcoming of common analysis techniques (both quantitative and qualita-
tive). Quantitative analysis does not consider origin, cause, or the effect of defects. Qualitative 
analysis does not abstract from details, so it is difficult to quantify process-related data. In order to 
improve a product, a methodology is needed that will draw on the advantages of these two sys-
tems while minimizing the disadvantages. The process measurement system developed in this 
thesis provides in-process feedback that takes advantage of the benefits of each method; that is, it 
extracts cause-effect relations and enables reliability predictions from quantifiable data. The 
method suggested here is Robot Orthogonal Defect Classification (RODC), which links quantita-
tive and qualitative analysis in a systematic methodology. The goal of RODC is to generate an in-
process measurement system that will extract information from classified defects with cause-
effect relationships. 

Supporting tools to enable data collection and feedback are developed based on the Internet 
World Wide Web technologies.

This research describes the RODC prototype developed at Carnegie Mellon University, Field 
Robotics Center and explores the future direction of this work.



“Being a scientist is like being a musician. You do need
some talent, but you have a great advantage over a musician.
You can get 99% of the notes wrong, then get one right and
be wildly applauded.” 

Dudley Hershbach
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Chapter

1

This chapter introduces the research developed to design and implement a measurement system 

called Robot Orthogonal Defect Classification (RODC). The goal of the RODC system is to trans-

form a mobile robot development process into a measurable and controllable process. The research 

addresses this problem by collecting information regarding defects1 and their causes in the process of 

designing, producing, and using mobile robots. Moreover, the method developed here is used to 

extract and analyze data collected through data visualization and interpretation. Ideally, this informa-

tion will be provided to a development team during the development process (in-process) not just 

after the fact. Supporting tools to enable data collection and feedback are developed based on the 

Internet - World Wide Web technologies.

The chapter is divided in five parts:

1.  Any change in a project artifact.

• Introduction

• Motivation

• Problem statement

• Measurement systems 
issues

• Background

Introduction
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1.1 Introduction

It is logical that for a development process, such as for the development of mobile robots, to be con-

trollable, process information has to be available. This information can be extracted from a process 

using a measurement system. Such a measurement system should provide enough information so 

decisions can be made based on quantitative and qualitative analysis. Information such as the most 

common problems (defects), the most common causes of defects, and the cost of the defects on the 

development process are examples of information that, after analysis, can improve the development 

process. If reliability is an issue in the development process, then the implication of these defects on 

reliability has to be captured as well.

Without the availability of process information, proposed solutions to process problems are based on 

guesses rather then management engineering [Chillarege, 1997]. That is, management and developers 

base their solutions to process problems on their guesses (i.e., on what they think might be the best 

solution to what they think the problem is). On the other hand, when process data is available (e.g., a 

graph containing a defect distribution and their causes), it can enable engineering decisions.

This research involves developing a measurement system that can be used to extract process informa-

tion from mobile robot developments. In the process of designing, producing, and using a product 

such as a mobile robot, information regarding defects and their causes can be acquired and analyzed 

through the use of data collection, data visualization, and data interpretation systems. This informa-

tion can be used to improve a product. That is, processes can be improved based on analyses of defect 

data. Thus, defects found during processes may be viewed as evidence of process deficiencies [Bhan-

dari, 1993]. A methodology for collecting and displaying defects can also be used to deduce changes 

in system reliability by tracking and analyzing the number of specific defects during the life of the 

system (e.g., system reliability is derived from the number of defects that fail the system during a 

specified period of time).

If experiences from previous developments of mobile robots are effectively recorded, new develop-

ment efforts can save time and money because they can use previous experiences to adjust the devel-

opment process and prevent defects. For instance, if information such as the most common causes of 
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defects, the most effective triggers for identifying the defects, and the components that presented 

more defects are available, the development team can use it to better focus their efforts and decide 

where and when to spend resources.

If defect models are available, in-process feedback can be accomplished. This is done by comparing 

the defect data being collected during the development of a project with defect models. The compari-

son may provide evidence of process deficiencies. For instance, if the number of mechanical structure 

defects is noticed to be above an ideal threshold for a specific development phase, this would indicate 

a process deficiency. This, early identification can then enable the development team to address the 

problem (e.g., bringing in structural analysts to apply Finite Element Analysis techniques to the 

mechanical structural parts). Identifying and correcting defects in earlier development phases is 

important because generally there is a cost multiplier associated with each later development phase 

for which the defect is propagated [Chillarege, 1997].

To accomplish these goals, the following actions were followed:

• Development of the RODC pilot (pilot environment, taxonomy design, data collec-
tion)

• Analysis of data (validation and information extraction)

• Development of World Wide Web (WWW) based tools (RODC Hardware, RODC
Software, RODC on the WWW)

This research introduces the use of defect models and describes how they can enable in-process feed-

back.

To be effective the RODC methodology must provide a set of tools that enable data collection and 

feedback. This research describes how tools were developed based on the Internet-World Wide Web 

technologies addressing ease of use and distributed client-server issues.
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1.2 Motivation

There is a current need in the mobile robot community for a measurement system that transforms 

mobile robot development into a measurable and controllable process. Experiences from develop-

ment projects are not being effectively recorded. Defects are typically fixed and then forgotten. Cer-

tain defects recur repeatedly because new designers do not have past experience or because a defect 

was not reported because of the lack of a measurement system. For instance, a developer might fix a 

mistake after spending some time trying to fix it. If this defect is not recorded, then the experience is 

lost (i.e., other developers can not learn from this experience). Moreover, because defects are not 

being recorded, statistical inferences can not be made to identify parts that are presenting more 

defects.

By using RODC, developers can identify the most effective triggers to specific defects. Thus, these 

triggers can be used to trigger defects in earlier development phases. Therefore, defects that would 

normally appear in later development phases can be fixed earlier. For instance, once users discover a 

mobile robot defect and its triggers are identified, developers may be able to trigger and fix these 

defects before the mobile robot is sent to customers. Also, if parts that present more defects are iden-

tified, management and developers can better decide the need and where to apply resources to solve 

parts-related problems.

Designing for reliability should not be a new adventure for each new product. Ideally, information 

stored from previous projects can be used to minimize expense by allowing designers and developers 

to identify potential defect trends and take appropriate actions [Ireson, 1996].

Changes in mobile robot reliability can be analyzed by tracking the number of defects that failed the 

system during a specific period of time. If applied to the development of mobile robots, RODC can 

provide a measurement system with quantitative and qualitative characteristics because RODC col-

lects defects, their causes, and their effects. Thus, RODC can become a reliability tool accessible to 

all developers.
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Such a system should enable product maturity monitoring, in-process feedback, and data collection 

for reliability evaluation. For instance, the RODC system can identify the effectiveness of design 

reviews as triggers for detecting defects, the most effective defect triggers, growth in reliability, and 

parts of the project where problems have been observed (e.g., defect rates being different from a 

defect model).

Automated tools and the use of the Internet (e.g., WWW browsers) can enable quick response time, 

interactivity, and ease of use in gathering in-process feedback. The WWW can also enable the use of 

a system by a large number of users, therefore enabling a large amount of data to be collected.

1.3 Problem Statement

No procedures exist for in-process feedback for a mobile robot development process. While in-pro-

cess feedback techniques for monitoring defect rate goals, maturity, and reliability have been success-

fully used in other areas, they have not yet been used in mobile robot development.

Since no defect data collection techniques are being used and developed by the mobile robot commu-

nity, no data is being collected in the process of designing mobile robots. This is unfortunate, because 

information extracted from collected data can save time and money as well as prevent errors, since it 

can be used to adjust the design process and prevent new defects.
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1.4 Measurement Systems Issues

If a measurement system such as RODC can be successfully applied to the development of mobile 

robots, management and design teams will be able to change development course quickly, as neces-

sary, before it is too late in the process. Thus, resources that would otherwise be spent on late modifi-

cations and redesign can be saved. Using this methodology, defects should be identified earlier and 

the overall number of defects should be reduced.

A development of a measurement system, such as RODC, needs to address the following issues:

• Taxonomy development

• Data gathering 

• Validation 

• Information extraction

Taxonomy Development

A taxonomy contains a set of attributes which guide how process information is captured. A taxon-

omy contains not just the types of defects, but many other necessary attributes in order that informa-

tion from a development process can be captured (e.g., defect type, trigger, source, impact, etc.). The 

challenge here is to design a taxonomy to collect enough process information so as to enable infer-

ences about the development process and parts. Moreover, the taxonomy should collect information 

that is considered useful by developers and management.

Data Gathering

Data gathering consists of collecting defects and related process information. The data gathering is 

based on the taxonomy design. That is, it is the process of collecting data using the taxonomy 

attributes. The challenge here is to get developers to commit to the data gathering process. Another 

challenge is the creation of a data gathering scheme and tools that support data collection during all 

development phases and that can be used at different locations (e.g., design offices, machine shop, 

etc.).
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Validation

The end product of the RODC system is information about the development process of mobile robots. 

But before one can extract useful information from the collected data, it is necessary to validate the 

data collection scheme. The challenge here is to create procedures that can show that the data collec-

tion scheme is valid, that is, to develop procedures that illustrate that the data collection scheme is 

capturing known characteristic of a mobile robot development.

Information Extraction

The process of information extraction on the collected data has to be able to extract relevant informa-

tion. Relevant information here means information that developers consider important to the develop-

ment of mobile robots. The challenge here is to create procedures that can extract relevant 

information from the collected data, for instance, identifying the taxonomy attributes that can be used 

together to allow the extraction of relevant information. For example, one could use a graph contain-

ing defects vs. triggers to identify the most effective trigger for a specific defect.
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1.5 Background

A quality management system (or a quality control program) establishes defect prevention actions 

and attitudes within a company or organization for the purpose of assuring conforming products or 

services on a permanent basis. It includes measurement activities such as inspections, tests, software 

evaluation, product qualification, and more [Crosby, 1986].

A quality control program is related to process observation. It identifies the variable characteristics of 

its content, and then tracks these variables using statistical methods. The monitoring of these vari-

ables, while they are being collected, permits control of the process to its specified efficacy limits. 

This prevents defects from occurring or at least ensures that they are identified at an earlier stage.

1.5.1 Improving Quality

Improving the quality1 of a product may require changes in the overall business strategy [Montogo-

mery, 1996]. That is, improving quality may require changes in activities within a company’s organi-

zation. The following are activities that a quality control program influences within an organization 

[Crosby, 1986]:

• Engineering and manufacturing

• Management

• Marketing and sales

• Purchasing

• Training

Engineering and manufacturing

A quality program provides data related to manufacturing and customer experience with product use. 

It also influences design reviews, product qualifications, performance measurements, manufacturing 

processes, and testing.

1.  Quality is one or more desirable characteristics that a product should have
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Management

A quality program indicates to management the areas where problems are occurring and their causes; 

it provides quality status information and status charts visible in work areas.

Marketing and sales

A quality program provides data to assist in product sales (e.g., reliability and performance data), pro-

vides quality seminars for customers, helps handle complaints about the product and identifies ways 

to prevent these complaints. 

Purchasing

A quality program enables source control and inspection and assists purchasing in vendor selection.

Training

A quality program provides employee orientation programs and conducts quality awareness activities 

within the company.

It is beyond the scope of this research to investigate all the organizational activities that are influ-

enced by a quality improvement program. The focus here is on engineering, manufacturing, and man-

agement activities. This choice of focus is both due to the necessity of narrowing the research topic 

and because of the structure of the laboratory in which this research is being conducted and so as to 

have a more manageable problem. As stated previously, improving quality may require changes in 

company organization. Therefore, improving quality may in fact make it difficult to convince man-

agement to adopt a methodology such as RODC to improve mobile robot development process. Thus, 

minimizing changes to organizational activities aids the deployment of the RODC.
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1.5.2 Quality Evaluation

Traditionally, the definition of quality is based on whether the product or service meets the require-

ments and expectations of those who use them. So the question is then how to evaluate (or measure) 

quality.

The quality of a product can be evaluated in several ways [Montgomery, 1996]:

• Aesthetics

• Durability

• Features

• Perceived quality

• Performance

• Reliability

• Serviceability

Aesthetics

Aesthetics are related to product appearance. Customers often consider the visual appeal of the prod-

uct when evaluating quality.

Durability

Durability is basically related to effective service life. Customers want products that perform satisfac-

torily over a long period of time.

Features

Customers usually associate quality with added features (beyond the basics offered by the competi-
tion).

Perceived quality

Customers rely on past company reputation to evaluate quality. This reputation is negatively influ-

enced by large publicly visible product failures and the way in which the company respond to failure- 

related problems.
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Performance

A product usually is evaluated to determine if it will perform certain specific functions (is the product 

able to do the intended job?). Also evaluation is performed to determine how effectively the product 

performs its functions (e.g., how fast the product executes the function).

Reliability

A complex product such as a mobile robot will usually require some maintenance over its service life. 

But, if the mobile robot requires frequent repairs and thus the number of hours it can operate without 

intervention is low, then this indicates unreliability.

Serviceability

Serviceability is basically related to how easy is to repair the product. Customers view quality by how 

quickly and economically a repair or maintenance can be accomplished.

In this research the evaluation of quality is determined by reliability. That is, evaluating the quality of 

a mobile robot means evaluating the robot’s reliability.

1.5.3 Evaluating Reliability

Currently, a standard method for recording reliability data does not exist [Ireson, 1996]. Most compa-

nies apply the same principles, but each company designs its own recording, analyzing, and retrieving 

systems. This section will introduce and summarily discuss the most common methods for qualitative 

and quantitative reliability analysis. It will highlight the gap existing between these analytical 

approaches and show a methodology that can be used to fill this gap.

Two types of analysis are typically used to enable reliability estimates or evaluation: qualitative 

(causal analyses) and quantitative (statistical). These two types of analysis offer different benefits and 

potential problems. Qualitative analysis identifies the root or origin of defects and their severity. This 

analysis isolates defect origins, so action can be taken to prevent each defect’s occurrence or propaga-

tion. Defects are analyzed on an individual basis by investigation teams. Therefore, the resources nec-

essary to conduct this type of analysis on a large project are significant. 
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Statistical analysis is used to predict product reliability as measured in terms of number of defects, 

failure rate, time between failures, etc. The data generated in this method provides information about 

the reliability of the product, but does not significantly contribute to the current product development 

cycle. This is because data is collected during product development and analyzed later, that is, after 

the process is complete. Ideally, however, developers would be provided with feedback during the 

development process (In-Process Feedback).

While both of these methods are useful, there are problems with both statistical and qualitative analy-

sis. For example, statistical analysis does not consider origin, cause, or the effect of defects. On the 

other hand, qualitative analysis does not abstract from details, so it is difficult to quantify process- 

related data. In order to improve a product, a methodology is needed that will draw on the advantages 

of these two systems while minimizing the disadvantages. Ideally, a process measurement should 

give developers fast feedback that takes advantage of the benefits of each method; that is, it should 

extract cause-effect relations and enable reliability predictions from quantifiable data. 

Orthogonal Defect Classification (ODC), a methodology developed at IBM T.J. Watson, links statis-

tical defect models and qualitative analysis in a systematic methodology [Chillarege, 1994]. The goal 

of ODC is to generate an in-process measurement system that will extract information from classified 

defects with cause-effect relationships. ODC extracts information from defects using a well-defined 

set of attributes that form a classification scheme. Measurements are extracted from classified defect 

data; data analysis can show how the product is progressing when compared with a process model. 

ODC is applied to all stages of a development project. Because ODC categorizes defects into classes 

that can collectively highlight project deficiencies, project resources can be expended where they are 

most needed.

The ODC method is divided in two parts. In the first, process information is captured (classification). 

In this classification not only defect data, but also other attributes such as triggers (what caused the 

defect to be discovered), are captured. The second part is the analysis, during which relevant informa-

tion can be extracted (information extraction). This analysis is performed on data classified by differ-

ent attributes. The results of the analysis are provided to developers for process improvement 
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[Bhandari, 1993]. 

This research extends the ODC concept to the development of mobile robots including the necessary 

tools for interactive use. The method created here is called Robot Orthogonal Defect Classification 

(RODC).

1.5.4 Qualitative Analysis

Qualitative analysis uses a systematic process which anticipates and prioritizes failure modes and 

causes associated with the development process of a product [Moss II, 1996]. Failure Mode and 

Effects Analysis (FMEA) and Fault Tree Analysis (FTA) are the most commonly used tools in quali-

tative analysis [Lazor, 1996].

FMEA and FTA are used to identify potential failures modes and related causes. They can be applied 

in early phases of the development process and then progressively refined through subsequent phases.

Failure Mode and Effects Analysis (FMEA)

The failure modes and effects analysis is a reliability evaluation and design review tool that analyzes 

potential failure modes from a system or its parts to determine the effects of failures on the system 

performance [MacDiarmid, 1997].

A typical FMEA analysis follows this sequence of steps [Lazor, 1996]: (Note: These steps are shown in 

Figure 1.1.)

1. Start at lowest level feasible for analysis (part level)

2. Determine functional specification for the part

3. Determine failure modes for each function

4. Determine causes for each failure mode

5. Determine effects for each failure mode on the next higher level, up to the overall system

6. Analyze potential system failure modes

7. Recommend actions that could eliminate or reduce chances of failure
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FIGURE  1.1 FMEA Steps [Lazor, 1996].

The most common way of building FMEA is using custom designed tables. Figure 1.2 shows a typi-

cal FMEA table with general instructions in each cell. It is beyond the scope of this research to detail 

the FMEA and FTA building and analysis processes. The idea here is to illustrate the techniques and 

comment on qualitative analysis.
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FIGURE  1.2 FMEA table with instructions [Lazor, 1996].

The process of implementing FMEA has a high cost since the work is very labor intensive requiring 

that developers have high participation in the FMEA implementation. That is, not only developers 

work on the engineering aspect of the system development, but they are required to spend time partic-

ipating in the FMEA implementation. 

To illustrate this point, consider the following block diagram from a security system and the electrical 

schematic from a 5-Volt regulator. (See Figure 1.3).
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FIGURE  1.3 Security System block diagram and electrical schematic for the 5-volts Regulator [Borgovini, 1993].

Figure 1.4 illustrate the implementation of a FMEA for the simple 5-Volt Regulator electronic circuit. 

Note: Figure 1.4 shows only one of tables of the FMEA. The complete set of tables can be found in 

Appendix A.
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FIGURE  1.4 FMEA table 1-4 [Borgovini, 1993].

As can be noticed from this figure (and from the ones found in Appendix A), for the relatively small 

number of components present on the circuit the work of implementing the FMEA is very labor inten-

sive. In addition, the maximum benefits of applying FMEA results are found in its early application in 

the development cycle rather than after the design is finalized [MacDiarmid, 1997]. That is, after the 

product is completed and is being used using FMEA provides no significant gain.

Fault Tree Analysis (FTA)

Fault tree analysis is a systematic methodology to determine all possible reasons (failures) that could 

cause a top event in a fault tree diagram. An FTA is an easier and faster method of analysis compared 

to FMEA [MacDiarmid, 1997]. An FTA can be a useful evaluation tool for aiding preliminary design 

modifications. For instance, developers can identify points of single failure mode.

FTA is derived from a logical schematic diagram used to represent faults and combinations of faults 
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that can cause specific subsystem symptoms or higher level failures. The basic logic gates and event 

symbols used in an FTA are: 

A typical FTA analysis follows this sequence of steps [Lazor, 1996]:

1. Identify and list top-level fault events to be analyzed

2. Do FTA for each identified fault

3. Use fault-tree symbols to present earlier and logic tree format; identify all contributing causes for the
top-level event

4. Develop fault tree to lowest level of detail needed for analysis

5. Analyze corrective actions

6. Recommend necessary design changes

Figure 1.5 shows a FTA structure.

And - Provides an output event only if all input events occur

Or - Provides an output event if one or more of the input events are present

Circle - A basic event or fault that does not need to be developed any further

Rectangle - An event or a fault resulting from a combination of faults;
also an event that still can be developed further 



 Chapter 1 Introduction - Background 19

FIGURE  1.5 A FTA structure [Lazor, 1996].

Figure 1.6 shows a component diagram for an automatic air pumping system. Figure 1.7 shows the 

FTA for this system.

FIGURE  1.6 Automatic air pumping system [Kececioglu, 1991].

Timer

Power Supply

Switch                              Contacts
Horn

Pump Tank

    



 Chapter 1 Introduction - Background 20

FIGURE  1.7 Fault tree for the automatic air pumping system [Kececioglu, 1991].

The FTA is a procedure that cannot be automatized easily. Therefore, it implies high costs (i.e., inten-

sive manual labor).

Figure 1.8 shows a table with a comparison between FMEA and FTA [MacDiarmid, 1997].

Pressure tank
   rupture

 Basic
  tank
failure

           Overpressure
                in tank

     
          Pump operates
                too long

           Current fed to
        motor for too long

              

Contacts closed
    too long

                                           
                                              

 

 Basic                      No command to                                                                           No command to
contacts
failure
                  open contacts

                                    Operator did not
                                     open the switch

                                              
 

Basic                                       Timer                               Basic                                                        No command
timer                                        sets time                         operator                                                      to operator
failure                                      too long                           failure

                                                                                                                                               

                     
Basic                           Secondary
alarm                             alarm
failure                           failure

 

                                         Switch closed
                                              too long

 Basic                            open switch
switch
failure
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FIGURE  1.8 Selection of FMEA vs. FTA [MacDiarmid, 1997]

Although the benefits of using qualitative analysis are proven, the methods require special training 

and are very labor intensive. Thus, the use of qualitative analysis in product development demands 

significant resources for implementation and maintenance. Also, quantification of process-related 

data is difficult when using qualitative analysis (e.g., validation of reliability programs).

TABLE  4.1

Condition FMEA 
preferred

FTA 
preferred

Primary concern is safety of public or 
operating and maintenance personnel

X

Primary concern is the identification of all 
possible failure modes

X

Primary concern is a quantified risk 
evaluation

X

Completion of a functional profile is of 
critical importance

X

Multiple potentially successful functional 
profiles are feasible

X

A small number of clearly differentiated top 
events can be explicitly identified

X

Top events cannot be explicitly defined or 
limited to a small number

X

High potential for failure due to software error X

High potential for failure due to human error X

Product functionality is highly complex and/
or it contains highly interconnected functional 
paths

Product functionality is basically linear with 
little human or software intervention

X

Product is not repairable once its function has 
been initiated (space systems)

X
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1.5.5 Quantitative Analysis

Analysis of failure data is as important as analysis of the failures themselves [Moss II, 1996]. Using 

quantitative analysis, it is possible to identify frequent failures and efficiently apply resources. 

Quantitative analysis produces numbers that can be used to compare two or more systems in terms of 

reliability. Also, qualitative analysis can be used to validate a reliability program (e.g., monitor a 

defect rate). Failure rate, reliability, mean time to failure (MTTF), and mean time between failure 

(MTBF) are commonly used parameters in quantitative analysis [Johnson, 1989].

Failure rate

Failure rate is the expected number of failures of a device, subsystem, or system for a given period of 

time [Shooman, 1968]. For example, if a device fails, normally, once every 1000 hours, the device 

has a failure rate of 1/1000 failures/hour. The failure rate is expressed as λ.

Reliability

Reliability is the probability that a device, subsystem, or system will function correctly throughout 

the interval [t0, t], given that it was functioning at time t0 [Johnson, 1989]. Reliability is expressed as 

R(t). Many references show that if the failure rate (λ) is assumed to be constant the relationship 

between reliability and failure rate is represented as R(t) = e-λt. That is, for a constant failure rate the 

reliability varies exponentially as a function of time. This relationship is commonly used in electronic 

components to show the relationship between reliability and time. This is because experience has 

shown that the failure rate for electronic components does include a period where the value for λ is 

approximately constant [Johnson, 1989]. The relationship between the failure rate and time (for elec-

tronic components) is called the bathtub curve. (See Figure 1.9.)

If the failure rate can not be assumed to be constant, the above expression relating reliability and fail-

ure rate can not be used. Therefore another modeling scheme has to be used instead. For example, for 

software the failure rate should decrease as a function of time because, generally, software faults are 

discovered and fixed as the software is being used.
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FIGURE  1.9 A reliability “bathtub” curve for electronics components [Moss II, 1996].

The bathtub curve can be interpreted as showing three phases. Early failures frequently result from 

failures occurring due to weak or out of standard components in the early life of systems. The mature 

rate assumes that the failure rate is constant. This phase indicates an expected useful life for the sys-

tem. Wearout assumes that the systems have been operational for a long period of time and are begin-

ning to experience failures. These failures are primarily due to the physical wear of components.

Plotting failure data enables various graphical analysis techniques. For instance, one could analyze a 

graph plotting failure data and infer whether a product is mature enough to be commercially released. 

That is, the failure rate is constant and low. As shown in Figure 1.9, an electronic product should be 

released when its reliability curve is at a “mature rate”.

Mean time to failure (MTTF)

Knowing about the mean time to failure is useful in specifying the quality of a system. Basically 

MTTF is the expected time that a system will operate before the first failure occurs. MTTF can be 

computed by averaging the time measurement of the first failure for identical systems placed into 

operation at the same time.
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Mean time between failure (MTBF)

The mean time between failures is sometime used interchangeably with MTTF. The conceptual dif-

ference is significant but the numerical difference is small [Johnson, 1989]. The MTBF is the average 

time between failures of a system, whereas the MTTF is the average time until the first system failure 

appears. The MTBF is calculated by averaging the time between failures for identical systems. MTBF 

also includes the time to repair a system and place it back into operation. Calculating the average time 

to repair a system is often determined experimentally for different faults. As a result, it is difficult to 

estimate average time to repair a system.

Sources for reliability data

Sources for reliability data can be internal or external. Most companies place more importance on 

their own internally generated data than on data from external sources [Ireson, 1996]. Internally reli-

able data is typically generated by:

• Research tests

• Prototype tests

• Environmental tests

• Qualification tests

Manual methods are still important in the collection, retrieval, and analysis of reliability data [Ireson, 

1996]. Generating reliability data (e.g., from reliability testing programs) usually requires that spe-

cific conditions be recorded in conjunction with failure itself in order to ensure test validity. A com-

mon use for internally generated data is the development of forms for classifying failures on an 

individual basis. (See Figure 1.10.) The forms are used to classify failures as they are identified and 

fixed. After the failures are classified and stored in some form of electronic format (e.g., databases or 

spreadsheet), qualitative analysis can be performed on the reliability data.
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FIGURE  1.10 Failure and Replacement Report [Ireson, 1996].

Also there are external data sources for reliability information. The most comprehensive of these data 

bases is the Government-Industry Data Exchange Program (GIDEP) [Ireson, 1996]. This database 

contains information on the design, production, and field operation of highly reliable products. A 

company can use the GIDEP by submitting all relevant reports and test results; it will then be eligible 

to receive the benefits of the program (e.g., access the database).

Data generated using quantitative analysis can produce information about the reliability of a product. 

However, this information usually is available after the fact, so it does not contribute to the current 

product development process. Therefore, in-process feedback is not available to developers. This is 
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because current practice does not try to change the development process based on data being col-

lected from this same process.

1.5.6 The Gap Between Qualitative and Quantitative Analysis

Figure 1.11 illustrates two ends of the spectrum of reliability analysis. At one end is qualitative anal-

ysis which is detailed on cause-effect, close to developers, and it is labor intensive. At the other end is 

quantitative analysis which abstract from origin and cause, is distant from developers, and is automa-

tizable. These fundamental differences between analytical approaches creates a gap in the reliability 

analysis. This gap represents the need for a measurement system that can be used by developers and 

that can enable mathematical modeling.

FIGURE  1.11 The Two Ends of Reliability Analysis [Chillarege, 1996]

1.5.7 Orthogonal Defect Classification (ODC)

ODC has been applied to the development of software in over 50 projects at many IBM locations in 

recent years, ODC has reduced the cost of qualitative analysis by a factor of 10, while reducing soft-

ware defects by a factor of 80 in a period of 5 years [Chillarege, 1996]. IBM claims that ODC pro-

vides fast feedback to developers and sufficient quantification to support management decisions 

while not overwhelming users with details. Therefore, ODC can be considered as a possible solution 

for filling the existing gap between qualitative and quantitative analysis.

Qualitative Analysis

• Detailed on cause-effect

• Qualitative

• Close to developers

• High cost

• Labor intensive

Quantitative Analysis

• Abstract from details on origin and cause

• Quantitative

• Distant from developers

• Low cost

• Automatizable

Gap 
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ODC is based on a scheme for classification and analysis of software defects detected during all 

development phases [Halliday, 1993]. ODC enables fast feedback about a software development pro-

cess during different development phases, not just after the project is completed.

The term orthogonal in the context of ODC is understood as follows: “ODC essentially means that 

we categorize a defect into classes that collectively point to the part of the process that needs atten-

tion, much like characterizing a point in a Cartesian system of orthogonal axes by its (x, y, z) coordi-

nates” [Chillarege, 1992].

ODC is considered as an in-process system because it gives feedback to the developers during the 

process. Its methodology consists of two main parts: Information Capture and Information Extrac-

tion.

Information Capture

In information capture, process related data is captured using a classification scheme characterized by 

a well-defined set of attributes. This set of attributes captures defect information as well as process 

information. The following is an example of a set of attributes used on IBM’s ODC. (Note: these 

attributes are explained in more detail later in this document.)

Defect Type - The type of defect being classified (Assignment, Checking, Timing/Serialize, 
Algorithm, etc.)
Source - The origin of the defect (Reused-Code, Rewritten-Code, Refixed-Code, etc.).
Impact - How the defect impacts the system (Usability, Performance, Reliability, Instability, 
Migration, etc.)
Trigger - What has activated the defect (Design Conformance, Rare Situation, Concurrence, 
Operational Semantics, etc.)

Once attributes are chosen, the process of collecting defect data begins. For instance, a classification 

table such as the one shown in Figure 1.12 could be used to classify software defects. The idea here is 

to choose one, and only one option from each field of the table. That is, the ODC user classifying the 

defect is instructed to choose only one option from each available field. For example, the user can 

choose only one option from the Defect Type field (i.e., Assignment, Checking, Timing/ Serialize, 

etc.). The data collected using the information capturer enables information extraction.
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FIGURE  1.12 Sample classification table [Halliday, 1993]

Information Extraction

In information extraction, the classified data is analyzed. This analysis is performed using the differ-

ent classification attributes (e.g., Defect Types and Triggers). Useful information can be obtained by 

displaying two attributes in a graph (e.g., what trigger was most effective for a defect type). Figure 

1.13 shows a graph plotting defect types vs. triggers.

DEFCON 2.96- Defect Classification for project ATL

Phase Found: Defect ID: Date:

Phase Intro: Component: Part:

Defect Type
Assignment
Checking
Timing/Serialize
Algorithm
Interface
Function
Bld/Pkg/Mrg
Documents

Source
Reused-Code
Rewritten-Code
ReFixed-Code
Vendor-Written
Old-Function
New-Function
Scaffolded-Code

Impact 
Usability 
Performance 
Reliability   
Instability 
Migration
Maintainability 
Documentation
Integrity/Security
Serviceability
Standards
Capability

Trigger
 Design Conformance
 Rare Situation   
Concurrence
Operational Semantics
Side Effects
Backward Compatibility
Lateral Compatibility
Language Dependencies
Document Consistency

Complete all fields and press ENTER to validate
F1= Help      F3= Exit    F12= Cancel
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FIGURE  1.13 Defect type vs. triggers [Halliday, 1993]

Using defect types distributions changes over time, making it is possible to generate defect signa-

tures. These signatures can be used as basis for processes health monitoring (i.e., comparing the mon-

itored process signature with a model). Figure 1.14 shows four plots of defect types that can be used 

to extract defect signatures.
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FIGURE  1.14 Example of four defect types signatures [Santhanam, 1996]

ODC has been applied to the development of software in over 50 projects in recent years. ODC pro-

vides feedback to management and developers while not overwhelming users with details [Santha-

nam, 1996]. Unfortunately, applying IBM’s ODC to the development of mobile robots is not a 

straightforward process. Many key differences between pure software and electromechanical systems 

render the existing ODC useful as guideline but not as a direct tool. For example, one problem with 

using the current ODC is the difference between the Defect Types1 used for software development 

and the Defect Types used for the development of complex electromechanical systems such as mobile 

robots. 

1.  Defect Types are attributes of the ODC classification scheme.
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At the time of writing, no research on the use of ODC’s for complex electromechanical systems con-

taining moving parts has been conducted, and only one report about ODC’s use on electromechanical 

systems with non-moving parts is available. The report describes ODC’s application to the design of 

Wearable Computers [Amezquita, 1996], where an experiment applying ODC to two generations of 

Wearable Computers was performed. Defects were collected through interviews with developers that 

worked on the projects sometime long after the fact, and thus were limited to the items each person 

interviewed could remember. This totaled only eighty defects. No in-process feedback was attempted, 

as the application of the ODC was made after completing the computer’s development. This work 

showed the possibility of applying ODC to the development of electromechanical systems, but was 

very limited in size and scope.

Issues

In order to modify and extend the existing ODC methodology, the differences between software and 

electromechanical hardware must be understood. Understanding these differences will enable the 

design of a taxonomy for the RODC to enable capturing of process information relevant to the devel-

opment of complex electromechanical systems (mobile robots). The design of the RODC taxonomy is 

explained in chapter 2 (RODC Prototype). Additionally, in order to validate the new methodology, a 

validation process should be designed and performed.

Key differences include:

Degradation - Hardware degrades very differently than software. For instance, once software is sta-

ble (or reliable) it won’t “wear out” after a specific amount of time or number of use cycles. Hardware 

(for instance, mechanical gear) has a limited life time and may “age” differently depending on the 

specifics of component design and conditions of use.

• Degradation

• Recovery

• Environment

• Component Maturity

• Interfaces

• Physical Interaction

• Severity and Impact

• Cause
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Recovery - Most of the time recovery from software defects is performed by restarting the program. 

For example, in the case of a software crash, no rework is done on the code; recovery can be obtained 

by simply re-starting the program or re-setting the computer. For hardware, however, maintenance 

and repair is usually necessary after a defect has halted the system.

Environment - Influences from the environment (e.g., temperature, vibration, dust, radiation, etc.) can 

severely effect hardware. A hardware component may work perfectly in a certain environment but 

fail in another. Software, however, does not fail because of a change in the environment (although the 

computer itself might).

Component Maturity - Software components for mobile robots are not at the same level of commer-

cialization as hardware. At least for mobile robots, software is generally developed from scratch. On 

the other hand, much of the hardware may consist of off-the-shelf components for which sharing of 

information about component performance is possible and recommended. As software components 

are generally unique, sharing of component information among projects is less likely.

Interfaces - Software interfaces are heavily dependent on specifications. If these specifications are 

correctly implemented, then interface problems can be avoided. On the other hand, hardware inter-

faces are dependent on specifications, tolerances, materials, assembly practices, etc. Even with well-

defined specifications, correctly manufactured hardware interfaces can present defects over time 

(e.g., lubricant problems). 

Physical Interaction - Hardware interaction is much more complex than software. Software modules 

(or components) do not suffer from physical interferences from other modules as hardware does. For 

instance, a hardware component might function acceptably in a certain physical location; however, if 

moved to a new location it might fail (e.g., because of the interaction of electromagnetic fields).

Severity and Impact - The impact of software defects (as considered in IBM’s work) is always in 

terms of the user’s point of view (as expected). No dangerous situations are considered in case of soft-

ware defects (or faults) because of the kind of applications studied by IBM. But in the case of mobile 

robots, the impact can be more severe. A defect, either in hardware or software, might be catastrophic 
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(e.g., a mobile robot used on highways might cause a fatal accident in the case of a defect or failure).

Cause - The cause of software defects (as considered in IBM’s work) does not consider hardware 

related causes such as transportation, storage, manipulation, etc. 

RODC Supporting Tools

Tools to support the methodology (for instance, data collection) have to be created since IBM’s tools 

were developed for internal use and are customized for use in IBM’s software laboratories [Santha-

nam, 1996]. Tools are defined here as computer programs (e.g., software for data entry, data manipu-

lation, graphics generation and display, statistical analysis, etc.).

The following factors should be addressed during the development of these tools: 

User interface - Ease of use is fundamental in order to minimize mistakes.

Interactive feedback - Interaction is very important for in-process feedback.

Automation - Automated tools are required to enable interactive feedback.

Generalizability - The tools should be applicable to many projects. 

Portability - The tools should be usable on a variety of computer platforms.

After expanding and considering the issues described in this section, a methodology based on ODC 

applied to mobile robots can aid data collection for reliability evaluation, management, and in-pro-

cess feedback. 

The next chapter will describe the RODC Prototype developed in this research.



Chapter

2

This chapter describes the development and implementation of a measurement system pilot called 

Robot Orthogonal Defect Classification (RODC). The extraction of information from the pilot is 

described in a separate chapter (Data Analysis). First, the pilot environment where the RODC was 

implemented is described. “Pilot environment” refers to the specific robot subsystem testbed and the 

mobile robot development where the methodology was applied. Secondly, the taxonomy design is 

explained. A taxonomy contains attributes that detail how information can be captured and where 

information about a process can be extracted.

Then the data collection implementation is explained. Data was collected using a classification 

scheme (paper-based questionnaire and computer programs) based on the taxonomy design.

The chapter is divided into three parts:

• Pilot Environment

• Taxonomy Design

• Data Collection

RODC Pilot
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2.1 Pilot Environment

The pilot environment consists of the following:

• Pilot mobile robot

• Pilot testbed

2.1.1 Pilot Mobile Robot

This research was developed at Carnegie Mellon University, The Robotics Institute, Field Robotics 

Center. The Pilot mobile robot where the research was applied is a mobile robot called Nomad. (See 

Figure 2.1.)

FIGURE  2.1 The Nomad robot developed at Carnegie Mellon University

Nomad is a planetary-relevant mobile robot that traversed 200 kilometers across the Atacama Desert 

in Chile. (See Figure 2.2.) The decision to choose this machine as the pilot mobile robot was based on 

the author’s participation as a member in the development team, and also because the development of 

the machine was almost exclusively in-house. Moreover, the majority parts of the analyzed sub-

systems (Motion Systems) were manufactured in-house by the development team. Therefore, manu-

facturing defects were available.
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FIGURE  2.2 The Atacama desert in Chile

2.1.2 Pilot TestBed

This research created a RODC framework applied to the development of electromechanical motion 

systems. (See Figure 2.3.) The reason for using this particular type of system as a testbed is its com-

mon use on robotic systems. Most robotic systems, if not all, make use of a motion subsystem. Basi-

cally this motion subsystem enables mechanical motion from a received command. An example of 

this mechanical motion is the movement of the robot or part of the robot (e.g., wheels, legs, antennas, 

and laser scanner mirrors). By focusing the work on motion systems (motion generation and control), 

the scope of the research is clearly directed. 
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FIGURE  2.3 Typical Mobile Robot Motion System 

With the focus on motion systems, subsystems that are heavily dependent on software and extremely 

diverse in function (such as navigation, safeguarding, and planning) were not considered. In doing so, 

the problem was made more manageable. (Figure 2.4 shows the relationship between a typical mobile 

robot system and the motion subsystem.)

Additionally, pneumatic or hydraulic motion systems are not addressed.

FIGURE  2.4 Typical Mobile Robot System

The RODC work described in this thesis does not consider software defects. Previous research on 

ODC applied to software exists [Bhandari and Halliday, 1993], so one can directly adapt IBM’s 

scheme to the development of software intensive mobile robots subsystems in future work. In the 

future, generalization to other robotics subsystems should be possible because the motion subsystem 

consists of electronic components, electromechanical components (e.g., actuators), and software - the 

basic elements found on mobile robots. (See Figure 2.5.)

 Desired motion
     
Motion System Actual motion

   Sensing

Safeguarding

(e.g. Stereo)

(e.g., Laser)

 Planning Navigation Motion System
 Robot
 Motion
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FIGURE  2.5 Components of a Typical Motion Subsystem

Two Nomad motion systems (that were developed in-house) were used as a source of data for this 

research: locomotion and antenna pointing. (See Figure 2.6 to Figure 2.8.) 

FIGURE  2.6 Nomad Motion Systems

Command
Motion

Controller
Amplifier Actuator Motion

SensorHardware

Software
       +

Pointing

Locomotion
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FIGURE  2.7 Nomad Locomotion Subsystem

Stowed Deployed

RS232-C / Ethernet

RT Controller

AmplifierHardware
RT Software

VME cage

+

Mechanical
Electrical

AmplifierAmplifierAmplifier

Motion
Wheel

Temperature
Safety circuit

AmplifierAmplifier Electric
Motor

Temperature
Safety circuit

Motion
 Steering

Mechanism

Mechanism

Power Supply

Transformer Chassis [Whittaker, Bapna, 1997]

Locomotion Motion System Schematic

Electric
Motor
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FIGURE  2.8 Nomad Pointing Subsystem

Having access to the entire process of designing, manufacturing, and assembly enabled collection of 

data for multiple development phases. Parts for the motion systems were mostly manufactured in-

house. (See Figure 2.9.)

Antenna

Counter Mass

Elevation Actuator

Azimuth Assembly

Slip Ring/

RF Joint Assembly

Amplifier

Motion

Slip ring

Mechanical

Electrical
Power Supply

Antenna

RT Controller

Hardware

RT Software

VME cage

+

Amplifier Mechanism

Pointing Mechanism [Whittaker, Bapna, 1997]

Pointing Motion System Schematic

Electric
Motor
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FIGURE  2.9 Parts for Nomad Motion Systems

This section has described the pilot environment from which data collection was possible using the 

RODC measurement system. The next sections contain the design and implementation of the RODC 

taxonomy and the data collection scheme.

Wheel Parts

Wheel Partially Assembled
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2.2 Taxonomy Design

In this section the taxonomy design is explained. This taxonomy includes not just defect types, but 

many other attributes needed for information extraction. Ideally the taxonomy should be independent 

of the specifics of a subsystem or robot design. Human error and confusion should be minimized by 

using a simple classification process that allows easy data entry. The goal in this work is to collect 

enough process information to enable inferences about the development process, not just defects.

The activity of collecting data represents one of the most important segments of a reliability program. 

A well-organized system for collecting reliability data is challanging [Lloyd, 1991]. For instance, 

having insufficient quantities or insufficiently detailed data can result in not being able to analyze the 

data effectively.

In designing a data collection system one should be concerned about the kind of data to be collected 

and why this data is necessary (i.e., what kind of data is important and how this data can be analyzed). 

Also, consideration should be given to how broad and detailed the coverage should be (i.e., the mini-

mum amount of information required to satisfy needs [Lloyd, 1991].)

The design of a form should be tailored to the type of devices being analyzed. For instance, a form 

used for electronics components might not be useful for mechanical components. This is especially 

important for electromechanical systems, such as mobile robots. The need is for a simple form that 

can be used to classify both electronics and mechanical defects, thereby reducing effort needed to 

maintain the form and train developers.

Forms should be easy to use so errors can be minimized. One way to minimize errors is the use of 

checkmark options instead of description fields [Lloyd, 1991]. That is, the user does not have to type 

text for each option. This approach was used throughout the RODC development.
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2.2.1 RODC Taxonomy Version 1.0

To illustrate the point that the taxonomy design should be well thought through, the evolution of the 

RODC will be explained next. Figure 2.10 shows the taxonomy version 1.0. A short description for 

the taxonomy attributes follows. (Note: These attributes are explained in more detail for the final ver-

sion later in this section.)

Source - Origin of the defect component or module (vendor, new design, reused design)

Development Phase - Development phase where the defect was detected

Severity / Impact - How the defect impacts the system

History - Defect history (considered, not considered, known, supposed to be fixed, repeated)

Trigger - What caused the defect to be discovered (formal review, informal review, component test, 
system test, stress test, field test, user operation)

Defect Type - Classification of the defect (function, environment, interface, interaction, assembly, 
intermittent, damage, manufacture, documentation)

Electrical, Mechanical - Hardware component that presented the defect.

Software (taken from IBM Watson Research) - In this classification a working model adapted from 
IBM [Chillarege, 1992] was used.

Short Description - This information allows a better understanding of how the classification tool is 
being used by the user.
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FIGURE  2.10 RODC Classification Scheme Version 1.0

Project / Subsystem
____________________
____________________

Designer / Maintainer
_________________
_________________

Source
__ Vendor
__ New Design
__ Reused Design

Date:__/__/__

Page: __ of __

Development Phase

__ Configuration Design 
__ Detailed Design
__ Fabrication
__ Assembly
__ Integration
__ Redesign
__ Field Operation

N/C ____________________   

Severity

__ Severity 1 (Failure -> 
Redesign is imperative)

__ Severity 2 (May fail the 
system -> Redesign is 
recommended)

__ Severity 3 (Will not fail 
the system -> Re-evalu-
ate the design)

N/C ___________________

History

__ Considered
__ Non Considered
__ Known (Not new)
__ Supposed Fixed
__ Repeated

N/C ___________

Trigger

__ Formal Review
__ Informal Review
__ Component Test
__ System Test
__ Stress Test
__ Field Test
__ User Operation

N/C _____________

Defect Type

__ Function (Marginally used)
__ Environment (e.g., Heat)
__ Interface (Not compatible)
__ Interaction (Interferences)
__ Assembly (improper)
__ Intermittent
__ Damage
__ Manufacture (≠Datasheet)
__ Documentation (schematic)

N/C ____________________

Electrical

  __ Connector/Connections
  __ Cables
  __ Soldering
  __ Electrical Noise
  __ Ground Loops
  __ Short Circuit
  __ Timing
  __ PCB Design
  __ Power Supply
  __ Mechanical Assembly

  N/C _________________

Mechanical

__ Structural support
__ Welding
__ Rivets
__ Fasteners
__ Gear / Drive
__ Bearing
__ Sealing Component
__ Motor
__ Brake
__ Clutch
__ Appropriate material
__ Lubricant
__ Contact Sensor
 __ Vibration
 __ Noise

N/C ___________

Software(IBM©)

__ Assignment
__ Interface
__ Checking
__ Timing / Serial-

ization
__ Build / Package /

Merge 
__ Documentation
__ Algorithm

N/C _____________

Short Description: (briefly describe the defect)

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________
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There were several problems in Taxonomy version 1.0:

Trigger Attribute- The power of capturing defect triggers is the capability of identifying the activities 

that discovered the defect. The set of options for the triggers in the RODC version 1.0 (e.g., formal 

review, informal review, etc.) did not explicitly identify the activity. For instance, to say that a formal 

review identified a defect is not good enough to be used as advice [Santhanam, 1997]. What was done 

during the review is what is important (e.g., design conformance, compatibility check, etc.). 

Cause - To provide a deeper qualitative analysis characteristic to the RODC taxonomy, an attribute to 

capture the cause of the defects was added.

Defect Type Attribute - The defect type attribute covered some of the defects that were being found 

during the data collection. But modifications were necessary so defects could be classified. Modifica-

tions such as adding: Performance, Specification, Missing Component, Esthetic, and Unclassified 

were necessary to allow defect classification. (Note: These defect types will be explained in detail 

later in this section.)

Software - No software defects were collected (as explained in Data Collection). So the software part 

of the defect classification was removed.

Impact Personnel- An attribute called Impact Personnel was added. This attribute was used to capture 

the impact of the defect on personnel. This attribute is important for management feedback.

Development Phases - Changes were made to the development phases to better represent the develop-

ment of motion systems on a mobile robot project.

As in the IBM ODC, the set of attributes used in the RODC was experimentally verified (e.g., are the 

current triggers sufficient to describe the activities that discovered a defect?, Is there any redundant 

information being collected?). The taxonomy was modified several times to include attributes that 

enabled orthogonal classification of defects and extraction of development process information.

Next the design of the final version of the RODC taxonomy is described. 
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2.2.2 RODC Taxonomy Version 2.0

Figure 2.11 shows the final version of the RODC taxonomy interface. (Note: The attribute software 

was removed from the taxonomy and some others were added.)

FIGURE  2.11 Final version of the RODC taxonomy interface.

The evolution of the taxonomy to the final version was based on a design process and on experimen-

tal verification. The goal during the taxonomy development was to verify that the RODC taxonomy 

allowed enough process data to be collected to: enable reliability information extraction and process 

data to aid in project management.
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2.2.3 RODC Taxonomy Attributes

In this section the taxonomy attributes (or fields) will be explained. Some complex attributes (i.e., 

Trigger, Development Phase, and Defect Type) will be detailed later in this section.

Defect ID - An unique ID for the defect.

Defect grouped # - Field to aid data input. For instance, if the user needs to type 10 related defects, 

this field works as a counter.

Date Defect Found - Date when the defect was found.

Subsystem’s Name - Name of the subsystem where the defect belongs (e.g., Nomad-Locomotion).

User Name - The person entering the defect data.

Source - Origin of the defect component or module: 

• New design

• Reused design

• Vendor

• Unclassified

Cause - The cause of the defect:

• Miscommunication (human factors, documentation)

• Change or misunderstanding of requirements

• Design

• Manufacturing (<> datasheet)

• Assembly (improper)

• Environment (e.g., heat)

• Storage

• Unclassified

Development Phase - The development phase in which the defect was found:

• (1) Requirements and configuration

• (2) Design
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• (3) Fabrication

• (4) Integration of components

• (5) Performance test

• (6) Integration to robot

• (7) Field performance test

• (8) Long term operation

Severity - The severity of the defect to the development of the subsystem:

• Prevented design (forced a redesign)

• Prevent manufacturing

• Prevented assembly (needed fix)

• Failure (fix or redesign is imperative)

• May produce a failure in future

• No risk of failure in future

• Unclassified

Impact Personnel - The impact of the defect on personnel (how many developers were impacted by 

this defects):

• 1 person

• 2 to 3 persons

• More than 3 persons

• Unclassified

Considered during Design - Was this defect considered during design? (Did developers consider this 

possibility during design?)

Not Known by the Developer - Is this defect known by the developer? (Did developers seen this 

before?)

Time to Fix (hrs.) - How long did it take the development team to fix the defect?

• 0.5 ~ 200 hours

• Unclassified

Time to Prevent (hrs.) - How long would it take to prevent this defect (e.g., rechecking the drawings)?



 Chapter 2 RODC Pilot - Taxonomy Design 49

• 0.5 ~ 200 hours

• Unclassified

Trigger - What was the developer activity that revealed the defect?

• Requirements conformance

• Configuration conformance

• Design conformance

• Previous design check

• Compatibility check

• Documentation check

• Inspection & pre-assembly

• Component performance test

• System performance test

• Stress test

• Field test

• User operation

• Unclassified

Defect Type - The type of defect:

• Performance (not working as expected)

• Damage (needs repair)

• Specification (incorrect or change)

• Interface (incompatibility)

• Interaction (interferences)

• Documentation (schematics, instructions)

• Missing component

• Esthetic (appearance)

• Assembly process (improper)

• Unclassified

Electrical Component - The type of electrical component that presented the defect:

• None

• Connector/cable

• Soldering
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• PCB

• Power supply

• Servo amplifier

• Servo motor

• Optical switch

• Mechanical switch

• Slip-ring

• Encoder

• Potentiometer

• Electromechanical brake

• Electromechanical clutch

• Unclassified

Mechanical Component - The type of mechanical component that presented the defect:

• None

• Structural support

• Welding

• Rivets

• Fasteners

• Gear / drive

• Bearing

• Sealing component

• Lubricant

• Axle / shaft

• Unclassified

Unclassified fields Description - Explanation of why a defect was not classified on all fields 

(attributes). For instance, it could be a request to add a new mechanical component to the list.

Notes: - This field is basically used to describe the defect during the development of the taxonomy 

(short description of the defect). For instance, if the taxonomy changes the new classification would 

still be possible by reading the “Notes:” field.

Last Updated - Last time the defect was updated.
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It is important to describe some complex attributes (fields) of the taxonomy. The next section will 

detail the design of complex attributes.

2.2.4 Complex RODC Taxonomy Attributes

In this section the design of the following complex taxonomy attributes will be detailed:

• Development Phases

• Triggers

• Defect Types

Development Phases

Motion systems development phases might start in a late phase compared to other subsystems of a 

mobile robot. This is because the motion system requirements (or problem definition) need data from 

other subsystems (e.g., what are the components that need to be controlled?, how many actuators?, 

how many sensors?, etc.). These phases usually happen at different times for different subsystems. 

For example, some parts of the Nomad locomotion system were being fabricated before production of 

the pointing mechanism (motion system) had begun. This means that if one was trying to classify 

defects from these two subsystems during the same development phases (i.e., a common scheme for 

the entire robot development phases) he or she would have problems classifying the defects in the 

development phases. Figure 2.12 shows the development phases used in this research. (Note: These 

development phases may not be general. They are typical for a particular research center; the Field 

Robotics Center.)
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FIGURE  2.12 Motion Systems Development Phases

The development phases will be described next.

Requirements and Configuration - Requirements are studied and detailed. Different design alterna-

tives are evaluated (the configuration is detailed enough to enable Design). A configuration design 

review is performed.

Design - Different design alternatives (that fulfill the requirements) are evaluated. Documents con-

taining schematics and parts are generated to capture the final design (the design is detailed to compo-

nent level enabling Fabrication of Components). A detailed design review is performed.

Fabrication of Components - Raw material and components are acquired. Parts are manufactured 

(structural, driving mechanisms, printed circuit boards, etc.). Parts are assembled forming Subsystem 

Components (i.e., mechanical and electrical). Pre-tests and modifications are performed.

Integration of Components - Components are integrated to form the Motion System. Pre-tests and 

repairs are performed.

Performance Test - Tests are performed to check subsystem requirements and design satisfaction. 

Repairs are performed fixing discrepancies.

Integration to Robot - The motion subsystem is integrated with the mobile robot system. Pre-tests and 

repairs are performed as needed.

Requirements
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Design 
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 Integration Integration
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Long Term
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Field Performance Test - The motion subsystem is tested during a mobile robot demonstration or test 

on field operations. Tests and repairs are performed as needed. 

Long Term Operation - The Motion Subsystem is modified, if necessary, to fix problems or to adapt 

to commercial applications. Operations begin on a regular basis or commercially.

Triggers

Triggers activate and /or discover defects (or faults). Triggers might be the environment or other con-

ditions that help or force a defect to appear. In this work, the focus is on the activity that the developer 

was doing when the defect was found. Identifying the most effective triggers can be extremely impor-

tant. For instance, knowing the best triggers for specific defects migh enable earlier detection. This 

can then ensure that fewer defects will appear in later development phases (i.e., Long Term Opera-

tion). Thus, fixing defects early on can improve robot reliability.

Management can make use of triggers to save valuable resources. For instance, a mechanical struc-

tural defect may cause a great number of resources to be consumed in a later development phase if 

this defect is not detected in earlier development phases. The use of triggers in this research is 

explored in the chapter Data Analysis.

Some of the triggers described here could be refined for more detailed activities (e.g., on Component 

Test, exactly what kind of test was performed), but this has to be carefully executed since many trig-

gers will not allow appropriate quantification (few defects per trigger). The level of refinement is a 

starting point; it will be improved in future work according to future measurement system require-

ments.

There is a basic difference between the triggers that have “check” and the ones that have “test” words 

in their names. The triggers with “check” are related to reviews and discussions. Triggers with “test” 

are related to physical actions on components.

Requirements Conformance Check - Human factors that identify the defect by thinking about con-

formance to the requirements. For example, a developer may hold a discussion with another person to 
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search for different opinions or may have a discussion during a formal review, asking “Is this config-

uration fulfilling the requirements?”

Configuration Conformance Check - Human factors that identified the defect by thinking about con-

formance to the configuration.

Design Conformance Check - Human factors that identify the defect by thinking about conformance 

to the design. For example, in the design the system may use two power supplies while the current 

schematic may just show one power supply. The reviewer may ask, “Is this schematic describing the 

design correctly?” Or “Are these components assembled as despicted in the design?”

Previous Design Check - Human factors that identify the defect by thinking about previous experi-

ences. For example, a comparison to a previous design may reveal the defect; similarly, it may be 

revealed by asking “This design was used before, did it work?”

Compatibility Check - Human factors that identify the defect by checking compatibility between 

components or subsystems; similarly, it may be revealed by informal or formal review.

Documentation Check - Human factors that identify the defect by checking documentation. This trig-

ger is related to defects on documentation. For instance, a check on a drawing may reveal missing 

dimensions.

Inspection & Pre-Assembly - An inspection identifies the defect. For example, a visual inspection of a 

part may reveal damage. A pre-assembly operation may discover the defect. For example, the devel-

oper may have tried to fit the parts together before assembly, but there may have been an interference 

or parts may have been missing.

Component Performance Test - Tests of performance on individual components revealed the defect. 

The question asked may be “Is this component producing the desired results?”

System Performance Test - Tests of subsystems working together as a final product (integrated) dis-

covered the defect. The question being answered is “Is this system producing the desired results?”
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Stress Test - Submitting the subsystems/system to extreme conditions.

Field Test - Tests in the field discovered the defect.

User Operation - User operation revealed the defect. For instance, the user may have operated the 

system in a different way than during tests. For instance, the user gave a set of commands to the robot 

that were not tested before.

Unclassified - It is not possible to classify the defect using the current set of triggers.

Defect Types

The field Defect Type captures the nature of the defect. Defect Type captures neither the cause nor 

the consequences of the defect. Analysis of ocurrences of each defect type over the project lifetime 

will provide a variety of process insights.

The following are the Defect Types and the process insight that might be gained by tracking the 

occurances of this defect:

Performance (not working as expected) - The component is working as according to specifications (is 

out of specification). 

What can be expected to be derived from this Defect Type? 

• Is this a good development? 

• Are the component technologies well understood?

Damage (needs repair) - The component is damaged. It needs to be fixed or replaced.

What can be expected to be derived from this field? 

• This can be used to trigger a more detailed analysis. Was this a design problem? Why?

Specification (incorrect or change) - The specification is incorrect or has changed. Example: A mis-

understanding or change in the requirements caused a developer to modify the design. 

What can be expected to be derived from this field? 

• Are the requirements well understood and translated to specifications?

Interface (incompatibility) - Wrong interfaces and / or incompatibility were found between compo-

nents.
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What can be expected to be derived from this field? 

• Are the component technologies well understood? 

• Was the design detailed enough (attention to detail)?

Interaction (interference) - The components might function independently, but they do not work as a 

system.

What can be expected to be derived from this field? 

• Are the component technologies well understood? 

• Was the design detailed enough (attention to detail)?

Documentation (schematics, instructions) - These are defects related to error in schematics, diagrams, 

instructions, procedures, and manuals.

What can be expected to be derived from this field? 

• Are people being careful enough in the details? 

• Trigger a more detailed analysis on what are the consequences (cost) of a bad docu-
mentation.

Missing Component- There is a component missing.

What can be expected to be derived from this field? 

• Was this forgotten from the design? Or just not included on the documentation?

Esthetic (appearance) - There is an esthetic problem.

What can be expected to be derived from this field? 

• Are people being careful during manufacturing, assembly, and operation?

Assembly Process (improper) - Improper or incorrect assembly was found.

What can be expected to be derived from this field? 

• Are people being careful during assembly?

• What are the consequences (cost) of bad assembly procedures?

Unclassified - It was impossible to classify the defect using the current set of Defect Types.

A good taxonomy

A taxonomy identified as “good” should orthogonaly capture process characteristics as well as enable 

the classification of the majority of defects without redundancy. Also the level of detail of the data 

collected should be carefully chosen. For instance, if too many types of defects are present in the tax-
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onomy, quantification will be more difficult because the classified defects will be divided among the 

many defect types. On the other hand, if just a few defect types are present in the taxonomy, the 

extraction of information is difficult. This is because one defect type could represent more than one 

piece of information.

Another example of the necessity of carefully choosing the level of detail of the data collected is 

regarding the attribute (or field) component (i.e., electrical component and mechanical component). 

For instance, deciding if the type or class of components is sufficient or that manufacturer and the 

model of the component should be specified (e.g., microcontroller or a Motolora MC68HC11-E 

microcontroller, bearing or NSK-1165/2 ball bearing). In this research the level of detail was limited 

to the type of components (e.g., connector, power supply, encoder, fasteners, bearing, lubricant, etc.). 

The main reasons for this choice were:

Improve quantification and ease classification - As explained before, quantification can be improved 

by using few types of components (more defects per type of components). If using computer tools, 

quantification should not be a big problem since abstraction of the levels are possible (e.g., all kind of 

connectors add to a generic connector type). But this approach does not help classification because 

many more options would be available to users, resulting in more opportunities for error. To make 

available many kinds of components is very labor intensive because all possible component models 

from diverse manufacturers have be present to enable defect classification.

Electronic components become obsolete relatively quickly - An electronic component commonly 

used now will be obsolete in a few years. Therefore the data collected about this component will not 

be useful after few a years. For example, a microcontroller from the Motolora MC689HC11 family is 

largely used on the industry today: however, this microcontroller architecture will be considered 

“old” five years from now.

Mechanical components - Mechanical components vary widely in part numbers and manufacturers 

for similar parts. Also, these components can be made from different materials. That is, developers 

can represent parts using different manufacturer reference code.
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Another characteristic of a good taxonomy is that it is valid. The problem here is to validate the tax-

onomy. One way to validate a taxonomy is to relate the data collected to facts that happened during 

the development of a system [Santhanam, 1997]. This validation process is explained in Chapter 3, 

Data Analysis in the Validation section.

After the taxonomy is designed, the data collection process can begin. The next section will describe 

the process of data collection used in this research.
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2.3 Data Collection

In a data collection system a large amount of data may be entered manually by support personnel or 

by developers. Support personnel collect data from customers, developers, or from any other source 

of defects (e.g., a manufacturing shop) and then classify the defects using the available classification 

tools. Developers can directly classify the defects if the classification tools are easy to use, or they can 

be interviewed by support personnel in order to supply defect data.

To enable correct data analysis many parts must work well together: a process and tools to collect 

data, an appropriate storage mechanism for the data, an environment that supports statistical methods 

for modeling and estimations, and a flexible data-oriented graphics tool [Jones, 1996].

This section describes the process of implementing the RODC taxonomy to enable data collection for 

the RODC prototype. Initially, data was collected using paper-based forms. Then the process was 

improved to include a more flexible parameterized process using computer tools. The focus of this 

section is on the computer tools; details about the design of the database (tables, forms, queries, and 

reports) will also be presented.

2.3.1 Data Collection Tools

According to [Halliday, 1993] “tools supporting the methodology” were the main obstacles to the 

deployment of the ODC method in IBM laboratories. An important finding from the IBM work was 

that tools for classification and analysis are necessary but do not necessarily need to be automated. In 

fact, in one case at IBM, a data collection scheme completely based on paper was deployed faster 

than many other automated data collection scheme tools [Halliday, 1993]. This led to the initial deci-

sion to not use automated classification or analysis tools in the RODC prototype.

The decision while enabling fast data collection, made it difficult to quickly modify the taxonomy.

Data collection in this prototype initially required paper forms (RODC V1.0) distributed to Nomad 

developers. In doing so, the implementation was accomplished quickly (since development on paper 

is faster then development of computer-based tools for data collection). That is, before any computer 
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tool was developed, defect data was being collected and the process of data entry was simple and fast. 

For each defect, one table was used. At the end of every day, the tables were collected.

This scheme did not work well for two reasons. First, people were just filling the forms when they 

thought it was appropriate (that is, when time allowed or when they were asked to do so); second, the 

taxonomy was not sufficiently mature (that is, classification was not very easy because the attributes 

were not orthogonal).

The second attempt to collect data using paper-based forms worked better. Developers were inter-

viewed all day long to identify defects. The author walked around the laboratory (FRC) asking the 

developer questions and recording information on the forms. This scheme stopped working when 

changes to the taxonomy were necessary. That is, once the taxonomy was revised, data collected on 

previous forms had to be manually rewritten. (Note: no computer tools had been developed at that 

time. Focus was on the taxonomy design and the amount of data collection. As a result, attention was 

paid to minimizing missed defects.) The necessity for a more flexible method of data collection arose 

very quickly.

The third and successful method of collecting data was using a tape recorder. Instead of writing the 

defects according to the attributes available on the forms (thus limiting the amount of information that 

could be captured), general process information was collected. Flexibility was greatly improved and 

the time consumed during the interviews was greatly reduced. (This improvement was appreciated by 

the developers and led to them accepting the data collection scheme.) This turned out to be very effec-

tive because more information could be captured in less time.

Data continued to be collected during the development of the computer-based tools.

2.3.2 Computer Tools

To enable data analysis three criteria must be met: an appropriate storage mechanism for the data, an 

environment that supports statistical methods, and a data-oriented graphics tool. These requirements 

imply the necessity of using computer tools.
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Some computer tools were analyzed (i.e., electronic spreadsheets, databases, and statistical analysis 

packages). Of these the Relational Database Management System (RDBMS or RD) was selected as 

most appropriate because it meets all the criteria: it can create the forms used to input data to the data-

base, interact with the data stored in the database supporting statistical methods, and enable data-ori-

ented graphics.

Relational Database Management Systems

A relational database management system is a software used to create, maintain, modify, and manip-

ulate a relational database [Hernandez, 1997]. In a relational database, data is stored in tables contain-

ing records that contain attributes (or fields). Each record in a table has a field containing a unique 

value (ID) used for its identification. To access the data contained in a record it isn’t necessary to 

know the physical location of the record; instead data can be retrieved by knowing the record ID or by 

running a query.

Relationships in a RD are specified by establishing relationships between RD tables. These relation-

ships can be one-to-one, one-to-many, or many-to-many.

One-to-one - In this relationship a single record in one table is related to one and only one record in 

another table. This record on the second table can be related to only one record in the first table.

One-to-many - In this relationship a single record in one table is related to one or more records in a 

second table. This record on the second table can be related to only one record in the first table.

Many-to-many - In this relationship a single record in the first table is related to one or more records 

in the second table. One record on the second table can be related to one or more records in the first 

table. This relationship requires that a third table be used as an auxiliary table. That is, the third table 

stores relationship between IDs of the first two tables.

All three types of relationships are used in the design of this particular computer-based tool and will 

be described in the RODC Database Design section.

Once table relationships are established, data can be queried in several ways. For example, extraction 
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of data about the defects that caused a system failure can be accomplished by running a query that 

searches the database for defects that have the potential to cause the system to fail. Queries basically 

navigate through the relationships and return data that match certain criteria. Also, queries can per-

form actions on the database (for example, deleting or updating table information). The language 

used to perform database operations is called Structural Query Language (SQL). It is beyond the 

scope of this research to introduce SQL.

Many RDBMS are commercially available. Some examples are: Access, Oracle, MS SQL Server, 

DB2, Informix, FoxPro, FileMaker, etc. The software package chosen was Access from Microsoft. 

Access was chosen because of its advanced features and easy-to-use visual interface. Documentation 

for Microsoft Access, a desktop database used by millions of users around the world every day [Lit-

win, 1997], was readily accessible.

2.3.3 RODC Database Design

The most important step in designing a database is deciding how to structure stored data. Several ref-

erences for RDBMS design are available, including [Elmasri, 1989], [Kroenke, 1995], and [Fleming, 

1989]. The RODC database design is divided in the following:

• RODC Tables

• RODC Table Relationships

• RODC Forms

• RODC Reports

RODC Database Tables

As explained in the previous sections, the RODC method collected information about the develop-

ment process of mobile robots rather than simply collecting information about defects. Therefore, 

tables were created to store information about different aspects of the mobile robot development. That 

is, tables were designed to implement the RODC taxonomy. 

Other tables were created to capture process information. For instance, tables were created to store 

information about institutions and personnel working in the development of the robots (e.g., NASA 
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Ames - Hans Thomas).

Next, RODC tables are described. 

The list of tables includes: 

• Institutions

• Personnel

• Roles

• Projects

• Subsystems

• Reliability Methods

• Pictures

• Project & Institutions

• Projects & Subsystems

• Subsystems & Personnel

• Subsystems & Reliability Method

• Projects & Pictures

• Subsystems & Pictures

• Defects

• Defect Type

• Defect Source

• Defect Cause

• Development Phases

• Defect Severity

• Person Impact

• Triggers

• Electrical Components

• Mechanical Components

(Note: In the implementation of the tables in Access, the author used the prefix tbl in each table name 

to help in the differentiation of tables, queries, reports, etc., ex: tblDefetc, qryDefects, rptDefects.)

It is important to mention here that the tables were designed using parametrization. This enables ref-

erences between tables using IDs (pointers). These references allow changes to field names on the 



 Chapter 2 RODC Pilot - Data Collection 64

tables without having to change every record (one by one) in the database. For example, if the Taxon-

omy name for a Defect Type changes, it is not necessary to change all the records in the database, just 

the name on the Defect Type table. Moreover, this feature saves space since each database record 

stores an ID that points to a more complex structure (more costly in space).

Institutions

This table stores information about institutions such as addresses, contact names, etc. (See Figure 

2.13.) The relationship to the database is that one project refers to one or more participating institu-

tions. That is, a project can have one or more institutions participating in its development.

FIGURE  2.13 Institutions Table

Personnel

This table stores information about personnel working on the projects. (See Figure 2.14.) The relation 

to the database is that one subsystem refers to one or more members of the Personnel table. Also one 

member of this table can belong to one or more institutions. That is, a subsystem can have one or 

more developers. Also one developer can belong to one or more institutions (dual affiliation).
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FIGURE  2.14 Personnel Table 

Besides contact information this table captures the experience of developers in working on robot 

development and also identifies whether the developers had used reliability improvement techniques 

previously. This data can be used on the reliability analysis of projects or subsystems. For instance, 

reliability problems in a development project could be related to personnel experience in working 

with mobile robot designs and experience with reliability improvement techniques.

Roles

This table stores information about developer roles on a subsystem (e.g., Electronic Leader). (See 

Figure 2.15.) The relationship to the database is that one member from the Personnel table can fulfill 

more than one role within a subsystem. For instance, one developer can have different roles in differ-

ent subsystems. This table is associated with the Personnel table and can be used to infer relationships 

between reliability problems and personnel working on the project or subsystem.

FIGURE  2.15 Roles Table
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Projects

This table stores information about projects. (See Figure 2.16.) The relationship to the database is that 

one project can include one or more members of the Subsystems table and one or more members of 

the Pictures table. Members of this table can belong to one or more institutions. That is, a project can 

have one or more subsystems, one or more pictures (images, schematics, etc.), and the project may 

belong to one or more institutions. For instance, the Nomad robot has several subsystems, and 

includes several images and schematics representing the robot. As mentioned earlier, in this research 

two Nomad subsystems were used in the prototype: locomotion and pointing for communications.

FIGURE  2.16 Projects Table

Also, included are fields for the project: URL, manager, contact person, complexity index, spent bud-

get, planned budget, and deadlines. The idea here is to provide information that will aid management 

and future work.

URL - Pointer to the URL project. Developers will be able to access project documents using this 

pointer.

Manager - Project manager information (pointer to the Personnel table).

Contact person - Information documenting the name of the person to be contacted regarding this 

project. It might be the manger or any other person classified on the Personnel table.
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Complexity index - The complexity index is used for data analysis. (See Data Analysis chapter - 

Defect Model.)

Spent budget - Developers can track the project budget. Access to this field can be restricted to autho-

rized personnel.

Planned budget - Same use as for the spent budget.

Deadlines - A reinforcement of the project schedule. Developers can check upcoming deadlines.

Subsystems

This table stores information about subsystems. (See Figure 2.17.) The relationship to the database is 

that one subsystem can include one or more members of the Personnel table and one or more mem-

bers of the Pictures table. Also one member of this table can belong to one or more projects. That is, 

the subsystem can have one or more developers and one or more pictures (images, schematics, etc.); 

the subsystem can also belong to one or more projects (e.g., re-used design).

FIGURE  2.17 Subsystems Table 

As in the Projects table, some management supporting fields were included: URL, responsible, com-

plexity index, spent budget, planned budget, and deadlines. The idea here is to provide information to 

aid management and future work. These fields will not be described here since they are very similar 

to the field on the Projects table described above.
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Reliability Methods

This table stores information about reliability methods. (See Figure 2.18.) The relationship to the 

database is that one member of the Subsystem table can point to one or more members of the Reliabil-

ity table, and one personnel member can point to one or more members of the Reliability table. That 

is, subsystems can make use of one or more reliability methods. Also personnel can have experience 

with one or more reliability methods.

FIGURE  2.18 Reliability Methods Table

Pictures

This table stores Pictures (photos, schematics, diagram, etc.). (See Figure 2.19.) The relation to the 

database is that one member of the Defect table, Subsystem table, and Project table can include one or 

more members of the Picture table. That is, a defect, subsystem, or project records can include a pic-

ture. For instance, a photo of a damaged axle can be include on the defect record. Projects and sub-

systems can have one or more pictures too. 

FIGURE  2.19 Pictures Table

To optimize the manipulation of data in the database, pictures are included in “external” tables as ref-

erences (i.e., just the picture ID is stored, no picture files are stored in tables other than in the Picture 
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table). For the user this issue is transparent. When a defect record is shown on the user screen, the 

RODC database reads the image from the Picture table and displays it on the appropriate field of the 

defect record. This feature is described on the RODC Forms and Reports sections.

Project & Institutions

This is an auxiliary table. This table stores auxiliary information so one record from one table can 

refer to multiple instances in another table. (See Figure 2.20.)

Databases make use of auxiliary tables to store multiple instances of records linked to different tables. 

For instance, one record of this table may contain a project ID pointer and an institution ID pointer. 

Doing so, it is possible to have one project that refers to many institutions and vice versa. An example 

of using the Project & Institutions Table can be seen in Figure 2.21.

FIGURE  2.20 Projects and Institutions Table 

FIGURE  2.21 Example of using the Projects and Institutions Table

The following five tables are also auxiliary tables: Project & Pictures, Projects & Subsystems, Sub-

systems & Pictures, Subsystems & Personnel, and Subsystems & Reliability Method.

No further description will be given here since the design used in these tables is basically the same as 

the one used on the Projects & Institutions Table.
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Defects

This table stores information about defects. (See Figure 2.22.) This is the main table containing defect 

records. Most of the fields in this table are pointers to tables described in this section. 

FIGURE  2.22 Defects Table

Defect Type 

This table stores information about defect type. (See Figure 2.23.) The relationship to the database is 

that one defect can refer to one defect type. That is, a defect can be only one type.

FIGURE  2.23 Defect Type Table 

Defect Source

This table stores information about the source of defects. (See Figure 2.24.) The relationship to the 

database is that one defect can refer to one defect source. That is, a defect can have only one source.
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FIGURE  2.24 Defect Source Table 

Defect Cause

This table stores information about defect causes. (See Figure 2.25.) The relationship to the database 

is that one defect can refer to one defect cause. That is, a defect can have only one cause.

FIGURE  2.25 Defect Cause Table 

Development Phases

This table stores information about development phases. (See Figure 2.26.) The relationship to the 

database is that one defect can refer to one development phase. That is, only one development phase 

may be chosen per classified defect.

FIGURE  2.26 Development Phases Table 

Defect Severity

This table stores information about the severity of the defects. (See Figure 2.27.) The relationship to 

the database is that one defect can refer to one level of defect severity. That is, only one severity cate-

gory can be chosen per classified defect.
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FIGURE  2.27 Defect Severity Table 

Person Impact

This table stores information about how defects impact personnel. (See Figure 2.28.) The relationship 

to the database is that one defect can refer to one defect impact. That is, only one impact is chosen per 

classified defect.

FIGURE  2.28 Person Impact Table

Defect Trigger

This table stores information about what triggers defects. (See Figure 2.29.) The relationship to the 

database is that one defect can refer to one defect trigger. That is, only one trigger is chosen per clas-

sified defect.

FIGURE  2.29 Defect Triggers Table

Electrical Components

This table stores the name of electrical components. (See Figure 2.30.) The relationship to the data-

base is that one defect can refer to one electrical component. That is, only one component can be cho-

sen per classified defect.
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FIGURE  2.30 Electrical Components Table

Mechanical Components

This table stores the name of mechanical components. The relationship to the database is that one 

defect can refer to one mechanical component. This table was designed using the same scheme as in 

the electrical components table.

Tables on a DBMS are fundamental elements in data storage. Once tables are created then it is possi-

ble to make a relationship between them and thus to enable data retrieval. 

RODC Table Relationships

Relationships in a relational database are used to link tables and to allow “navigation” in the database. 

Using relationships, it is possible to keep different types of data in different tables (e.g., images, a per-

sonnel list, defect types, etc.). Doing so, the database becomes more manageable because different 

types of data and complex structures can be accessed by simply knowing the table name and the 

record ID. 

Several types of information maybe needed to create a relationship: the name of the tables involved, 

the type of relationship desired, and the key field of one of tables. The key field is usually the ID field 

of the table (e.g., DefectID, CauseID, DevPhaseID, etc.).

Access supports three different types of relationships: one-to-one, one-to-many, and many-to-many 

(requires an auxiliary table). These types are explained in the Relational Database Management Sys-

tems section.

Figure 2.31 shows the tables relationships in the RODC database.
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FIGURE  2.31 RODC table realtionships  

The graphical links used in Access represent the type of relationship.

Access has a tool called form that enables the simultaneous use of tables and relationships. The next 

section describes how forms were used to collect the data used in the RODC prototype.

. . 1 ∞ ∞ ∞
one-to-one one-to-many many-to-many
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RODC Forms

Having an easy-to-use interface is fundamental to the data collection process. If the user spends a sig-

nificant amount of time classifying a defect, it is likely that he or she will not classify all the defects 

found. A good user interface is also important because it can minimize human mistakes [Halliday, 

1993]. In a typical RD, tables are shown to users as spreadsheets. (See Figure 2.32.) Users enter data 

into tables by typing information into the cells of the spreadsheet interface.

FIGURE  2.32 RODC tables in spreadsheet format

By using forms in Access, it is possible to generate a better interface to input data into the tables than 

the spreadsheet interface. (See Figure 2.33.) Using this interface the user is able to focus on the data-

base register that he or she is inputting and therefore minimize confusion. Besides that, the “visual” 

space for the field Notes: is increased, so users can easily type and read text in this field.
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FIGURE  2.33 Interface using forms in Access

Another powerful feature of using forms is the possibility of displaying linked data. For instance, a 

table that is linked to a second table can be displayed in the same form as a single table form. That is, 

the information from the second table is linked to the first table and then displayed to the user. Figure 

2.34 shows a form for the Project table that links the project manager and contact person fields to the 

Personnel table. Doing so the user can choose from a list of options presented in the form Projects 

built from the Personnel Table. Note the list of options available for the project manager when the 

user clicks on the pull-down menu. This data is being linked to the Personnel Table and is displayed 

to the user in a transparent way.
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FIGURE  2.34 Example of a form linking two tables

Figure 2.35 shows the user interface for the RODC Defect Table. This main interface is used for clas-

sifying defects in the RODC database. The form designed here links several tables (as shown in Fig-

ure 2.31) to make options available to users.

The user has a pull-down menu for most options; the only fields in which the user needs to manually 

type in details are on the Unclassified Description: and Notes: field, but these fields are optional. 

(Note: Only a few examples of screen shots are shown here.)

The user can not type in the defect or other attributes. This feature minimizes confusion since it elim-

inate typing errors. In the case where the user is not able to classify the defect, he can type a short note 

explaining why classification is not possible. These notes were analyzed later determining whether 

changes to the taxonomy were necessary.
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FIGURE  2.35 RODC User Interface
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A database that only stores data would not be appropriate for use in the RODC method since informa-

tion extraction is a main components of the method. A tool called Report, allows for the display of 

data contained in an Access database. The next section describes the reports designed for the RODC 

prototype.

RODC Reports

The primary use of reports is for output. Reports are bound to tables and queries. In the same way that 

forms can be used to link tables, reports are used to extract information from tables. Reports in 

Access can also generate data-driven graphics.

Queries

One of the most effective ways of extracting information from a database is by using queries. Gener-

ally, queries are used to “navigate” through the database and extracted data can then be used in 

reports. Figure 2.36 show a partial result of a query executed on the defect data of the RODC data-

base. The goal was to display defect types and then causes for each record.

FIGURE  2.36 Partial results of a query



 Chapter 2 RODC Pilot - Data Collection 80

The following SQL code was used to generate the simple query shown above.

SELECT tblDefects.DefectID, tblDefectType.DefectTypeName, tblDefectCause.CauseName FROM tblDefectType INNER 

JOIN (tblDefectCause INNER JOIN tblDefects ON tblDefectCause.CauseID = tblDefects.CauseID) ON tblDefect-

Type.DefectTypeID = tblDefects.DefectTypeID;

As one can imagine, developing the SQL code for a more elaborated query is relatively complex. For-

tunately, Access has a visual interface to generate queries. Figure 2.37 shows the design of the same 

query used to generate the defect type and cause list shown before, but this time using the visual inter-

face.

FIGURE  2.37 Visual interface to generate queries

The majority of queries developed for the RODC prototype were developed using the visual tools 

available in Access. Several queries were developed to enable information extraction. (See Figure 

2.38.) These queries are described in the Appendix B.
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FIGURE  2.38 RODC Queries

Reports

The reports developed for the RODC are extremely important for the process of extracting informa-

tion from the RODC data. Figure 2.39 shows a report with data-driven graphics for the query of 

defect type and cause for the entire database.
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FIGURE  2.39 Report for showing defect types and causes

Reports can be generated to combine the data in many forms. In this case, the defect types were plot-

ted on the horizontal axes and then the cause of each defect was plotted in the vertical axis. Instead of 

having one vertical bar for each cause per each defect, the author chose to plot the individual contri-

bution of each cause for the total number of defects per each defect type. Looking at Figure 2.39, one 

can see that the main cause for the defect types interface and performance is design.

The next chapter explores the use of reports for extracting information from the RODC database.
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Chapter

3

This chapter describes the analysis performed on data collected during the development of motion 

systems on a mobile robot project. This analysis provides validation of the measurement scheme and 

information for the mobile robot developer team. The set of defect data here refers to the defect data 

collected from the development of the Nomad robot. As explained in the RODC Pilot chapter, two 

subsystems containing motion systems were investigated (i.e., Locomotion and Pointing Mechanism 

for Communications). Ideally, these sets of data should have been treated separately so as to incorpo-

rate knowledge gained from the analysis of the first set of data (e.g., locomotion defects) and then to 

apply that knowledge to the second set of data (e.g., pointing defects). As will be explained later in 

this chapter it was not possible to use this approach because the pointing defect data alone does not 

contain sufficient numbers of defect signatures.

A total of 465 defects were collected from the Nomad development process.

Two types of analysis will be performed on the collected data:

• Validation

• Information Extraction

Data Analysis
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3.1 Validation 

The objective of the validation analysis is to validate the measurement scheme. Such validation will 

be accomplished by comparing defect signatures to logic signatures. Logic signatures are signatures 

produced by a process of analyzing the probability (in each development phase) that defects will 

occur. They are explained later in this chapter. Moreover, validation can be accomplished by relating 

trends in the collected data to facts about the project (from which the data was collected). By analyz-

ing the collected data and comparing facts about what happened during a project, one can tell if the 

measurement system is sound [Santhanam,1997].

Thus, validation will be accomplished by explaining the similarities and differences between the 

defects signatures and logic signatures. Validation will also be accomplished by relating analysis of 

the collected data to events that occurred during a project. That is, if the measurement system can 

capture development process characteristics, not just defects, that will enable more useful information 

extraction. Another way of validating a measurement system is to extract information. That is, if the 

measurement system provides information that really matters to developers, then this measurement 

system is said to be valid [Santhanam, 1997]. 

In order to validate the measurement system in the IBM Watson Research Center ODC work, a set of 

requirements needed to be satisfied [Chillarege, 1991]. This set of requirements, called Sufficient 

Conditions, was the third validation method used in the RODC.

Once validation is accomplished, we can say that we trust the data for performing information extrac-

tion. The following three sections will describe each validation method used in the RODC method.

3.1.1 Logic Signatures

The following are the steps for the validation using logic signatures:

1. Create logic signatures

2. Create defect signatures from collected data

3. Select defect signatures for comparison to logic signatures

4. Compare signatures and explain differences
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Create Logic Signatures

The name logic signatures refers to the likelihood that certain defects will happen at certain times. To 

allow the creation of logic signatures, a matrix including Development Phases and Defect Types was 

created. (See Table 3.1.) The idea here is to assign probable quantities of defects for each develop-

ment phase. For instance, the defect type Assembly Process (improper) will not appear during the 

development phase Requirements and Configuration. Therefore, the matrix cell representing the 

intersection between these two fields will receive the lowest value possible for probable quantity (in 

our case 0). Logic signatures are not meant to be generic; for example, the set of logic signatures 

described here were created from the experience of developing robots in a specific research center, 

the Field Robotics Center at Carnegie Mellon University. A survey was sent to robot developers at the 

Field Robotics Center (see Appendix C). The results were used to populate Table 3.1. (As a result, 

they should be independently evaluated for use in other centers.) The idea here is to enable the use of 

logic signatures with a specific robot development in a specific research center. To generalize the 

logic signatures, one can study other research centers that develop such machines and use the tools 

generated in this work to aid the creation of appropriate logic signatures. This is because the same 

scheme can be applied to the development of other robots, thereby generating defect data for investi-

gation. Generalization is not the goal of this research, future RODC implementations will have to 

address this issue.

In Table 3.1, a scale ranging from 0 to 3 is used to assign the probable quantity of defects. The lowest 

bound (0) means that no defect of this type should be found during a specific development phase. The 

highest value (3) means that a significant number of defects are likely during this phase. For instance, 

the defect type Interfaces (incompatible) will likely have a significant number of defects during the 

development phase Integration of Components. This is because during the development phase com-

ponents will be integrated for the first time to form a subsystem. That is, chances of having interface 

incompatibility problems during this development phase are high.

The scale description follows:

0 - No defects should occur
1 - A small number of defects should occur
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2 - A moderate number of defects should occur
3 - A significant number of defects should occur

After the matrix was completed, one logic signature was plotted for each defect type. Figure 3.1 

shows the logic signature plotted separately for the defect type Specification. The other logic signa-

ture plots can be found in Appendix D.

TABLE  3.1 Probable Occurrence of Defect Types on Development Phases

Dev. Phase
Vs.

Defect Type

Requirements 
and 

Configuration
Design

Fabrication 
of 

Components

Integration 
of 

Components

Performance 
Test

Integration 
to Robot

Field 
Performance 

Test

Long 
Term 

Operation

Assembly 
Process 
(improper)

0 0 1 3 1 3 1 0

Damage 
(need fix)

0 0 2 1 3 2 3 1

Documenta-
tion (sche-
matics, 
instructions)

2 3 2 2 1 2 1 1

Esthetic 
(appearance)

0 0 3 2 3 2 3 3

Interaction 
(interfer-
ences)

0 2 2 3 1 3 1 0

Interfaces 
(incompati-
ble)

0 2 1 3 1 3 1 0

Missing 
Component

0 1 2 3 2 2 1 0

Perfor-
mance (not 
working as 
expected)

0 1 1 2 3 2 3 2

Specifica-
tion (incor-
rect or 
change)

3 3 2 1 2 1 0 0
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FIGURE  3.1  Logic Signature for Specification

Create Defects Signatures from Collected Data 

The name defect signatures refers to the occurrence of defects during various phases. To allow the 

creation of defect signatures, defect data was extracted from the defect database using queries. Figure 

3.2 shows a plot containing all collected defects for the Nomad robot.

The plots are fundamental for data interpretation in this work. For instance, a quick analysis of Figure 

3.2 reveals some key signatures. For instance, the defect type Interface has two peak values at the 

Integration of Components and Integration to Robot development phases. (See Points 1 and 2 in Fig-

ure 3.2. below) This is expected since in these two development phases, components are integrated to 

form subsystems and later to form the robot. More on the interpretation of Nomad defect data will be 

described later in this chapter.
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FIGURE  3.2 Nomad Defects

Here it is important to mention that the term defect data in use in the analysis process contains both 

defects from Nomad’s locomotion motion system and Nomad’s pointing motion system. This is 

because these defects collectively represent a significant improvement in the quantification of 

defects. Figure 3.3 and Figure 3.4 show pointing and locomotion defects plotted separately. When 

compared to Figure 3.2 these plots lack signature representation. For instance, in the pointing defects 

no defect types are present during three development phases. This fact makes it difficult to create 

defect signatures.
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FIGURE  3.3 Pointing Defects
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FIGURE  3.4  Locomotion Defects

Select Defect Signatures for Comparison to Logic Signatures

Using defect data (locomotion + pointing defects) a plot was generated for each defect type. The goal 

of this validation step is to identify and select candidates for comparison to the logic signatures. Ide-

ally, defect signatures should be generated from defect types that are represented in multiple develop-

ment phases. This is because a defect signature can only be created from multiple points. But, defect 

types are not always present in each development phase. This problem has been caused by two fac-

tors: either because the classification scheme was not available during Nomad’s development phases 

or because specific defect types were not present. For instance, the measurement scheme was neither 

available during the Requirements and Configuration development phase nor during the Design 

development phase for the Nomad locomotion motion system. Therefore, defects were not collected.

The idea is to select defect signatures generated from the presence of defect types during multiple 

development phases. In this case, defect data from specific defect types would have to be collected in 

three or more development phases in order to be included. Moreover, it is necessary that a reasonable 



 Chapter 3 Data Analysis - Validation 93

number of defects be present in the signature. In this case, signatures should be based on at least 10% 

of the total defects collected. The rationale for using this 10% figure is based on preliminary observa-

tion of the defect data. That is, it seems that a defect type containing less than 10% of the total number 

of defects collected did not store enough information when compared to other defect types.

For instance, the defect signature Missing has defects present in three development phases, but this 

signature does not satisfy the minimum number of defects necessary in a signature (i.e., ~ 40). (See 

Figure 3.5.) Figures 3.6 to 3.9 show selected defect signatures.

FIGURE  3.5 Defect Signature Missing

Defects Missing / DevPhases (all)

0

5

10

15

20

25

(3)Fabrication of
Components

(4) Integration of
Components

(5) Performance
Test

(6) Integration to
Robot

(7) Field
Performance

Test

Missing Component



 Chapter 3 Data Analysis - Validation 94

FIGURE  3.6 Defect Signature Interaction

FIGURE  3.7 Defect Signature Interface
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FIGURE  3.8 Defect Signature Damage

FIGURE  3.9 Defect Signature Performance

Compare Signatures and Explain Differences

In this step of the validation, logic signatures will be compared to defect signatures. The idea here is 

to accomplish validation by the interpretation of the similarities and differences between the logic 

signatures and the defect signatures selected in the previous section.

It is important at this point to mention that very few defects were collected during the development 

phase Field Performance Test. This is because defect classification during Nomad’s field perfor-
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mance test was not required. That is, developers had no obligation to collect defects; very little docu-

mentation is available concerning problems occurring during the field performance test in the 

Atacama desert in Chile. The defects collected were limited to what developers could remember 

weeks after the fact. This problem is addressed in Chapter 4: Conclusions, Lessons Learned section.

Defect Type Interaction

As can be seen in Figure 3.10 the two signatures have a similar appearance. As one might expect, the 

number of defect type Interaction increases from Fabrication of Components phase to Integration of 

Components. (See Point 1 in Figure 3.10.) The number of defects decreases from Integration of Com-

ponents to Performance Test (see Point 2 in Figure 3.10), and then it increases again at the Integra-

tion to Robot development phase (see Point 3 in Figure 3.10). Therefore the signature seems logical 

and is thus a good comparison to the interaction logical signature.

FIGURE  3.10 Signatures for Defect Type Interaction

Defect Type Interface

As can be seen in Figure 3.11 the two signatures have a similar appearance. As one might expect, the 

number of defect type Interface increases from Fabrication of Components phase to Integration of 

Components. (See Point 1 in Figure 3.11.) The number of defects decreases from Integration of Com-

ponents to Performance Test (see Point 2 in Figure 3.11) since less component integration is per-

formed in this phase, and then it increases again at the Integration to Robot development phase (see 
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Point 3 in Figure 3.11). Therefore the signature seems logical and is thus a good comparison to the 

interaction logical signature. 

It is important to mention here that the idea in this validation is to compare the general shape of the 

signatures and proportions of the number of defects. At any moment the author infers that the number 

of defects that will probably occur during the Integration of Components is equal to the number of 

defects that should occur during the Integration to Robot development phase. The numbers on the 

logic signatures indicate the likelihood that certain defects will happen at certain times. For instance, 

in the interface logical signature a development phase that has an index of 3 (e.g., Integration of Com-

ponents) will likely have a significant number of defects when compared to development phases that 

have 0 and 1 as indexes (e.g., Performance Test).

FIGURE  3.11 Signatures for Defect Type Interface

The next two signatures did not provide a good match to the logical signatures. But it is appropriate to 

describe them in this research because they illustrate that differences between signatures can be 

explained. 

Defect Type Damage
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FIGURE  3.12 Defect Type Damage Signatures

The difference in appearance of the signature for the Performance Test and Integration to Robot 

development phases is because the Locomotion and Pointing motion systems are subsystems that did 

not have extensive performance tests before being integrated into Nomad. Actually, the Locomotion 

Motion System was fully assembled for the first time during the Integration to Robot development 

phase. This fact pushed the majority of defect type Damage to the Integration to Robot development 

phase. That is, no tests were performed on the fully assembled Locomotion Motion System before the 

tests performed during the Integration to Robot. The reason for the difference on the signature in the 

Field Performance Test development phase, as explained before, is because few defects were col-

lected in this development phase.

The author believes that if appropriate tests had been used to check the performance of Nomad’s 

motion systems during the development phase Performance Test, defect signatures would have a bet-

ter match with the logical signatures.

Defect type Performance

As can be seen in Figure 3.13 the two signatures have a similar appearance for Fabrication of Compo-

nents and Integration of Components but not for the other development phases.
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FIGURE  3.13 Defect Type Performance Signatures

The difference in the appearance of the signatures for the Performance Test and Integration to Robot 

development phase is because no significant performance tests were conducted on the subsystems 

before the Integration to Robot development phase. The major components of the locomotion sub-

system were integrated during the Integration to Robot development phase. Therefore, defects of type 

Performance, which should have been discovered during tests on the development phases Integration 

of Components and Performance Test, were discovered later during tests realized during the Integra-

tion to Robot phase. 

Figure 3.14 shows how the signatures could have a better match if Performance defects were identi-

fied during the Performance Test phase. In this figure Performance defects were moved from Inte-

gration to Robot to Performance Test simulating that Performance defects are likely to be found in 

the Performance Test development phase rather then in the Integration to Robot phase.

The similarities on the signatures can be seen by comparing the format of the signatures constructed 

between Points 1, 2, and 3 on the two graphs shown in Figure 3.14.
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FIGURE  3.14 Simulating Performance Tests

Basically, this section has shown validation through comparison. Defect signatures were compared to 

logic signatures, and differences between signatures were explained. This suggests that the measure-

ment scheme is sound.

The next section will show validation through analysis of the defect data by relating it to events that 

occurred during Nomad development.
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3.1.2 Defect Signatures and Facts on Nomad

A defect measurement system differs from a defect classification scheme because it captures develop-

ment process characteristics [Chillarege, 1992]. In this section validation will be accomplished by 

relating process characteristics stored in the defect data to events that occurred during the develop-

ment of the Nomad robot.

Looking at Figure 3.16 it is easy to identify the existence of a large number of Interface defects in the 

Integration to Robot development phase. It is known that one of the main reasons for interface prob-

lems is the absence of documentation containing detailed information on connectivity (i.e., how to 

interface to a particular component or subsystem) [Pahl, 1996]. So based on the large number of 

defects in the Integration to Robot development phase, we can assume that a problem existed in the 

Nomad development process. That is, this analysis identified a known development characteristic of 

the Nomad robot (i.e., lack of documentation). To check this hypothesis Documentation defects will 

be investigated next.

FIGURE  3.15 Defects Interfaces
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Looking at the Defect Type Documentation plot (Figure 3.2 on page 90) and noticing that only two 

defects were reported one would guess that Nomad’s development team did one of the following 

regarding documentation:

• The team did an outstanding job on documentation.

• The team did not collect Documentation defects.

• The team did not generate documentation.

• The team did not perform a documentation check.

Unfortunately, the two last reasons accounted for the number of Documentation defects shown. In 

fact, the only two Documentation defects collected were identified by an outside company hired to 

manufacture some parts. Since the great majority of parts manufactured for the Nomad were pro-

duced in-house, the lack of documentation was not a concern. That is, developers interacted fre-

quently while developing the robot. This intensive verbal communication was necessary to 

compensate for missing documentation information. But, as expected, this lack of documentation had 

negative consequences on Nomad’s development process. 

It is important to mention here that this research does not intend to evaluate development procedures, 

the effectiveness of developers, optimization of designs, etc. Moreover, this is not a study of, or com-

mentary on of the Nomad development process. It is beyond the scope of this research to identify or 

analyze these consequences. The goal here is to use the data generated by the measurement system to 

identify development process characteristics and refine the measurement tools.

Looking at Figure 3.16, notice the almost identical numbers of Performance defects in the Integration 

to Robot and Performance Test development phases. (See Points 1 and 2 in Figure 3.16. below.) It 

seems logical that a significant number of Performance defects are likely to be discovered during 

tests designed to verify performance (i.e., tests executed during the Performance Test development 

phase) but Figure 3.16 does not show an increase of the number of Performance defects for the Per-

formance Test phase. Based on this lack of an increasing number of defects, we can assume that a 

problem existed in the Nomad development process. This assumption is supported because no signif-

icant performance tests were realized in the Performance Test phase. 
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FIGURE  3.16 Defects Performance

Assuming that different subsystems are developed by the same development team using identical 

schemes, one can expect that Damage defects found during the Fabrication of Components develop-

ment phase will be present for one subsystem if the other subsystem has damage defects as well (for 

complex electromechanical systems).

There is no defect type Damage indicated during the development phase Fabrication of Components 

for the Pointing Mechanism subsystem. (See Figure 3.3. on page 91.) Several conclusions could be 

drawn from this:

• The component fabrication process was perfect.
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Thus, this indicates a characteristic of the development process. That is, the development process for 

the Locomotion subsystem was not the same one used on the Pointing Mechanism subsystem (i.e., the 

measurement system captured a process characteristic).

3.1.3 Sufficient Conditions

The sufficient conditions are a set of requirements that once satisfied suggest a valid measurement 

system [Chillarege, 1991].

Process sub-space fully covered by attributes

The taxonomy attributes of a measurement system need to be associated with the process that is to be 

measured. Moreover, the attributes should fully span the process sub-space so that a sufficient num-

ber of process characteristics can be collected to enable extraction of useful information about any 

part of that sub-space.

As the nature of this work is experimental it is difficult to guarantee that the first set of RODC 

attributes will satisfy the sufficient conditions. Some adjustments were required during the RODC 

development so that the attributes would span the entire problem sub-space (motion systems). All 465 

defects were classified using the current set of attributes. Therefore, it is assumed that the current 

attributes adequately span the process sub-space.

Orthogonality

The second sufficient condition is the orthogonality during classification and extraction of informa-

tion. Defects being classified should be placed in a distinct independent position in the classification 

scheme and information extracted (e.g., a process deficiency) should point to a distinct point much 

like points in Cartesian space.

After adjustments during the development of the RODC scheme, defects were classified without 

ambiguity. Thus, the classification scheme indicate orthogonality. Orthogonality in the extraction of 

information is addressed in Section 3.2.: Information Extraction.
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Number of attributes adequate to make the necessary inferences

The third sufficient condition is the necessity of having an adequate number of taxonomy attributes so 

inferences can be made about the process. The process of identifying the number of attributes was 

described in Section 2.2: Taxonomy Design. The attributes provided information that developers 

needed. Actually, new information can still be gathered from the current RODC scheme.

Extracting information from the RODC is addressed in Section 3.2: Information Extraction.
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3.1.4 Conclusions on Validation 

The Validation performed here is not perfect. It is a starting point that should be refined in subsequent 

research. There are some weaknesses as described below.

Because no defect data were available prior to this research, the logic signatures are based more on 

Field Robotics Center developer’s feelings and personal observations rather than on scientific data 

analysis. Therefore, these signatures are questionable. Nevertheless, they serve as a starting point. In 

the future these logic signatures will be replaced by defect models built from defect databases. Thus, 

they will become more dependable as additional data is collected.

Also because the number of defects collected enabled logic signature comparison only for a few 

defect types, the number of process characteristics that could be validated was limited. Moreover, no 

defects were collected in the initial development phases. Therefore, the validity may be questionable 

for these early stages.

As illustrated in previous sections, the measurement system appears valid based in the sufficiency 

tests and comparison to logical and actual data. Defect signatures generated from the measurement 

system were successfully compared to logic signatures and differences were explained. That is, anal-

ysis of defect data generated by the measurement system showed that the development of Nomad 

motion systems followed a logical path according to previous experiences from the development of 

mobile robots at the Field Robotics Center, Carnegie Mellon University. 

This section concludes the validation steps. Now that the measurement system has been shown to 

adequately capture process information, information extraction can follow. That is, information use-

ful to developers and management can be extracted.
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3.2 Information Extraction 

The objective of this section is to describe a process to extract relevant information from defect data 

collected with the measurement system. Relevant information here means information important to 

the development of mobile robots. In our case, the focus is on reliability and project management 

information extraction.

Analysis Without Math

In the late 1980’s very few successful quality process control programs existed in the United States 

[Ellis, 1986]. The lack of success was due to the training executed in most programs. In most cases, 

training was executed by statistical experts with an emphasis on complex statistical and mathematical 

terms. These terms scared management and factory workers, so attempts to implement the quality 

process control measures failed. On the other hand, experience has shown that when statistical logic 

is used but statistical terms are not, quality programs are much more accepted since workers and man-

agement are able to see that statistical quality control is logical.

This research takes the approach of developing a measurement system that can be used by all devel-

opers. For this reason, tools were developed without the use of complex statistical terms or proce-

dures. Doing so it is expected that the acceptance to the method will be reasonably fast and training 

can be kept to a minimum. If developers can understand the concepts quickly and realize that no sig-

nificant extra work is required from them in order to use the system, then they will probably be will-

ing to cooperate in the implementation and use of the RODC system.

A survey was sent to robot developers at the Field Robotics Center (see Appendix C) to inquire what 

information developers consider to be relevant in the mobile robot development process. The results 

of the survey indicated data of most use to developers:

• What are the most critical defects in a mobile robot development?

• How can the most critical defects be evaluated? (i.e., what kind of tools should be
used?)

• How can the most critical defects be addressed or acted upon?

• What are the most common defects for each development phase?
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• What is the cost to fix the most common defects? 

• What are the most expensive defects?

• What caused the defects to be found?

• What components present an uncommon proportion of failures in mobile robots?

These items will be addressed throughout this section.

It is beyond the scope of this research to indicate defect remedies. Therefore, the third item (how to 

address / act on the most critical defect?) will not be addressed in this research. The idea is to provide 

tools that will allow a development team to identify development problems. Solutions for these prob-

lems will depend on development characteristics (e.g., development team, resources available, previ-

ous experiences, etc.). The next sections show how the measurement system can be used to indicate 

development problems.

The process of extracting information is accomplished by running queries that allow the users to cross 

fields in the RODC database and then present the results with plots from which conclusions can be 

drawn.

The next sections show how mobile robot development process information was extracted using the 

RODC prototype.

3.2.1 Crossing Fields

The procedure of crossing fields consists of displaying the collected defect data in such a way that 

information can be extracted. For instance, simultaneously displaying fields from the defect database 

(e.g., Defect Type, Triggers, and Causes) enables cross information extraction. The list of important 

information (relevant to developers) extracted from the survey is developed inside the following divi-

sions:

• Most Costly Defects

• Most Effective Triggers 

• Development Phases with Most Defects

• Most Common Causes for Defects

• Components that Presented More Defects
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Most Costly Defects

The relevant information according to developers addressed in this section are: the most critical 

defects, the most expensive defects, and the cost to fix the most common defects. Critical defects here 

are referred as Costly Defects.

Two types of Costly Defects are investigated: reliability and management. Regarding reliability one 

can say that the most costly defects are the ones that have the highest severity (in terms of reliability): 

in our case Severity - Failure. But for management the most costly defects are those that impact per-

sonnel: in our case Impact Personnel - 2 to 3 Persons. Also, costly defects for management are the 

ones that require more time to be fixed, in this case using the field Time to Fix (hrs.).

Another interesting aspect of the most costly defects is the weight effect that these can have in the 

data analysis. For instance, consider defect type Damage that might have dozens of defects and defect 

type Interface with hundreds of defects in the defect database. One could assume that because the 

interface defects occurred more often than damage defects, resources should be spent to prevent 

them. But in reality the damage defects were Costly Defects, ones that should receive priority in 

being prevented in the next development of a mobile robot, or ones that should be deal with in-pro-

cess to change a current defect trend.

The following figures show examples of plots from where Costly Defects were identified in Nomad’s 

defect data.

Figure 3.17 shows the distribution of Nomad’s defects severity field. According to the definition of 

Costly Defects from the reliability viewpoint, three types of severity are relevant: Failure, May Pro-

duce a Failure, and No Risk of Failure.
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FIGURE  3.17 Nomad Defects Severity Distribution

A development team using this method can actually decide where they want to focus their efforts. If, 

for example, reliability is a prime consideration, this method would let developers see where to spend 

resources. To carry this example further, as a result of identifying the Costly Defects for reliability, 

the development team could focus on 49% of the total number of defects. That is, focus on defects 

Failure (31%) and May produce a Failure in the future (18%). In another example, assuming that the 

team is looking for Severity - Failure (that is, defects that failed the system), the number of defects is 

reduced to 31% of the total number of defects.

Figure 3.18 shows the entire defect set for Nomad and the Costly Defects for reliability. 
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FIGURE  3.18 Reduction of the number of defects to be studied - Costly Defects for Reliability

The reduction of the number of defects to study in this case can help focus attention on critical defects 

in terms of reliability.

Figure 3.19 shows the distribution of Nomad’s defects impact field. According to the definition of 

Costly Defects from the management viewpoint, the most costly defect is Impact Personnel - 2 to 3 

Persons.
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FIGURE  3.19 Nomad Defects Impact distribution

As a result of identifying Costly Defects for management, the development team would focus on 63% 

of the total number of defects. Actually, assuming that management is looking for Impact Personnel - 

2 to 3 Persons and for defects that require significant time to be fixed (e.g., Time to Fix (hrs.) >= 5 

hours), the number of defects to be investigated would be considerably reduced. Figure 3.20 illus-

trates this example. Upper plot is all defects with impact on 2-3 persons. The lower plot is the subset 

of these defects that required more then five hours to remedy.
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FIGURE  3.20 Reduction of the Number of Defects to be studied - Costly Defects for Management.

This section shown how costly (critical) defects can be extracted from the RODC database. Identify-

ing the costly defects helps developers focus on a smaller number of defects for data analysis. The 

next sections will show how the measurement system can be used to extract information that matters 

to developers. Also they will illustrate how costly defects can be used to narrow the focus of attention 

on defects.
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Most Effective Triggers

The relevant information according to developers addressed in this section is how defects were iden-

tified in each development phase. The expression “Identify a defect” is here referred to as the trigger 

for the defect (that is the condition or state that made it possible to discover the defect).

The idea is to extract the most effective triggers and the development phases where defects are dis-

covered. Effective triggers can be used to reveal defects so they can be fixed in the early stages of a 

mobile robot development. From a reliability viewpoint, identifying and fixing defects in earlier 

development phases means ensuring that fewer defects will appear in a later development phase (i.e., 

Long Term Operation). Thus, fixing defects early should improve robot reliability.

Management can make use of the effective triggers to reveal costly defects. Identifying and fixing 

defects in early stages can save valuable resources. For instance, a mechanical structural defect may 

cause a great number of resources to be consumed in a later development phase if this defect is not 

detected in earlier development phases. That is, the work to fix the defect can take more time and/or 

resources (e.g., re-designing dependent parts, disassembling complex subsystems, preventing devel-

opers from working, etc.).

The following figures show examples of plots in which effective triggers were identified in Nomad’s 

defect data. As can be seen in Figure 3.21, the effective triggers for the Nomad project were: Inspec-

tion and Pre-Assembly (45%), Component Performance Test (17%), and Field Test (16%). That is, 

these triggers were the ones that revealed the majority of defects during the Nomad development. 

This kind of information is extremely important because it shows the kinds of activities that the 

development group performed that were effective in revealing defects. Therefore, these activities 

should be re-enforced in future developments.
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FIGURE  3.21 Nomad Defect Triggers Distribution

Knowing when to apply the most effective triggers can aid in planning activities for the development 

group. Figure 3.22 shows when triggers were more effective.

FIGURE  3.22 Development Phases Where Triggers Were More Effective
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Figure 3.22 shows that Inspection & Pre-Assembly was the most effective trigger at Integration of 

Components and Integration to Robot development phases. This observation seems logical because 

these are the development phases where more assembly is performed. Inspecting and pre-assembling 

components before the final assembly process can reveal many defects (e.g., Interface defects) as 

expected.

Another important issue regarding triggers is the identification of triggers that were more effective in 

revealing specific defects. Figure 3.23 shows a plot in which the most effective triggers for specific 

defects can be extracted (for instance, the most effective trigger for the defect type Interaction and 

defect type Interface is the trigger Inspection & Pre-Assembly). Thus, if a development team is ana-

lyzing these types of defects then the most effective activity to reveal these defects is Inspection & 

Pre-Assembly.

FIGURE  3.23 Most Effective Triggers for Specific Defects
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Based on the approach for most effective triggers for specific defects one can identify the most effec-

tive triggers for costly defects. Figure 3.24 shows triggers for Nomad’s costly defects from which the 

most effective triggers can be extracted.

FIGURE  3.24 Nomad Effective Triggers for Costly Defects
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Development Phases with Most Defects

Identifying development phases that contain the greatest number of defects or specific defect types 

can aid management in deciding where, when, and how to spend resources. That is, this investigation 

enables the identification of development problems. One can visualize if the robot is becoming more 

reliable by tracking development phases with respect to most costly defects on reliability. Therefore, 

tracking reliability goals can be accomplished.

Figure 3.25 shows plots of Nomad’s costly defects vs. development phases. One can notice that in the 

Integration to Robot development phase the number of defects increases considerably. Therefore, in 

the future management should consider bringing more developers to the team during this develop-

ment phase. Also it is possible to note the contribution of each defect type, so management can better 

decide the type of developer who should be hired for specific development phases. That is, deciding 

the expertise necessary for specific development phases is made possible.

FIGURE  3.25 Nomad Costly Defects (Management) vs. Development Phases

Assuming that reliability can be tracked by quantifying the number of costly defects (on reliability) in 
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each development phase, one could use Figure 3.26 - Nomad Costly Defects (Reliability) for tracking 

reliability goals. For instance, tracking reliability can enable robot maturity monitoring (i.e., is the 

robot mature enough to be deployed?).

FIGURE  3.26 Nomad Costly Defects (Reliability) vs. Development Phases

As can be seen at Figure 3.26 even though the number of defects collected during the Field Perfor-

mance Test phase was very limited, the number of defects that were costly for reliability during the 

Field Performance test was higher than in the other development phases. Ideally a robot should be 

deployed when 1) the number of critical defects becomes small (or decreases), thus showing improve-

ments in the robot’s reliability; or 2) a specific reliability goal is achieved.

Most Common Causes for Defects

As in the previous section, identifying the most common causes for defects can aid management in 

deciding where, when, and how to spend resources. Regarding reliability, knowing the most common 

causes for costly defects (on reliability) enables isolation of these causes. Therefore, reliability can be 

improved by diminishing the number of costly defects. Figure 3.27 shows that the majority of defects 
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during Nomad motion systems development were caused by improper design. 

FIGURE  3.27 Nomad Defect Causes

Saying that defects were caused by improper design is not very useful information for developers. 

Unless these design-related defects are detailed, little can be inferred from Figure 3.27. Unfortunately 

the current version of the RODC does not detail design causes. The main reason for this is that the 

RODC prototype was not available during the Nomad Design phase. Developers were not able to 

remember the exact reasons for design flaws. Therefore, the author decided not to detail causes since 

it would not be possible to experimentally validate the RODC taxonomy for design-related attributes.

Nevertheless the RODC method can be easily refined to include such details. That is, for future work 

RODC can be refined to include detailed description of causes for defects that are related to design. 

Then it will possible to use RODC to better help developers address design issues.
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Figure 3.27 can be used to reinforce the importance of design reviews. The Nomad development pro-

cess did not include design reviews. This fact may explain why the majority of Nomad defects were 

caused by design.

Figure 3.28 shows a plot of defect types and the causes of Nomad defects. 

FIGURE  3.28 Causes of Nomad Defects

Note that in addition to besides Design, Miscommunication (human factors, documentation) was the 

other main cause for defects Interface. (See Point 1 in Figure 3.28.) As explained before in this 

research, there was a lack of documentation in the Nomad development process. This information 

shows that a good part of defect Interface could probably be avoided by adopting a documentation 

policy. The author believes that robot developers know the importance of documentation, but until 

the time of this writing no reports quantifying defects caused by documentation were available. The 

information presented here should help to convince developers of the necessity of thorough documen-

1
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tation.

Components That Present Most Defects

Identifying the components that present the most defects can aid the development team in understand-

ing what categories of components need special attention. For instance, Figure 3.29 shows that elec-

trical Connectors and Cables are responsible for 64% of the total number of electrical related defects. 

FIGURE  3.29 Electrical Components Defects Distribution

Figure 3.30 shows the causes of the electrical components related defects.
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FIGURE  3.30 Causes of Electrical-Related Defects

Figure 3.30 shows that the primary cause for electrical-related defects was Assembly. This is one 

more example of the kind of information developers need to help them decide where to spend 

resources.

Figure 3.31 shows that Structural Support is responsible for 64% of the total number of mechanical-

related defects. Therefore, special attention should be given to these kinds of components. It is also 

interesting to note that 36% of mechanical defects on Nomad were on mechanical components Fas-

teners. This is an example of component technology that seems simple to developers but still keeps 

presenting problems in complex electromechanical systems such as Nomad.
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FIGURE  3.31 Mechanical Components Defects Distribution

Figure 3.32 shows the causes for the mechanical components related defects. 

FIGURE  3.32 Causes of Mechanical-Related Defects
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3.2.2 Conclusions on the Information Extraction

This section has illustrated how to extract important information about the development of mobile 

robots from defect data collected with the measurement system (RODC) developed in this research. 

The focus is on identifying development problems, rather than recommending appropriate courses of 

action. The examples considered here are based more on Field Robotics Center developers’ feelings 

and personal observations rather than on feelings and observations from the mobile robot community 

at large. But, as explained in the prototype chapter, the measurement system is parametrized. This 

parametrization allows a reasonably easy change to the prototype to accommodate changes without 

having to re-design the database. For instance, new database queries and crossing field procedures 

can be generated in a short time (minutes). Thus, using this research as a guideline, incorporating 

important information into the measurement system in the future should be straightforward.

The crossing fields procedure were developed in detail to illustrate how information can be extracted 

from real data. Although the procedures and results presented in this section are primarily a starting 

point for future work, the information extracted can already be useful in the future development of 

mobile robot motion systems. Effective triggers can be used to reveal defects in the next generations 

of mobile robots. For example, showing the most common causes for defects, the development team 

can better apportion resources to avoid defects. Finally, examples of how the information can aid 

management and improve reliability were described.



Chapter

4

This chapter describes lessons learned during the development of the RODC, contributions of the 

research, and proposes future work.

Conclusions
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4.1 Lessons Learned

The opportunity to apply the RODC to the development of a mobile robot was fundamental to exper-

imentally tune the measurement system and to draw the observations described in this chapter.

An important lesson learned in this research is the importance of commitment of management and 

developers to the RODC measurement system. Dr. Deming, a key player in the improvement of Japa-

nese manufacturing organizations, strongly believed that the responsibility for quality stays with 

management, while very few responsibilities stay with developers [Montgomery, 1996]. The author 

believes that this statement is correct and applicable to the RODC experience. Because Nomad man-

agement had not been convinced of the utility of RODC, data collection was not always easy and in-

process feedback did not occur.

The lessons learned are:

• Taxonomy Design

• Data Collection

• Data Analysis
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4.1.1 Taxonomy Design

The main objective of a taxonomy design is to enable data collection. Not only defect types should be 

identified, but many other attributes used to capture process information should be included in the 

taxonomy. The goal is to enable the data collection necessary to extract process information without 

overwhelming the user with questions. That is, only the minimum amount of information required for 

analysis should be collected.

Experience with RODC use has shown that the number of attributes should be carefully chosen since 

the time spent for data entry can be long and can thus discourage users from classifying all defects. It 

was found that data entry time was inversely related to the user’s tendency to record defects. 

The set of attributes used in the RODC was experimentally verified. Using RODC in a mobile robot 

development turned out to be very important because it enabled modifications on the taxonomy as 

described in Chapter 2, Section 2.2. The IBM ODC taxonomy became stable after several years of 

modifications [Santhanam, 1997]. Based on IBM’s experience and this first experience with RODC, 

it is expected that the RODC taxonomy will require modification during the next few applications 

before it can be expected to stabilize.

Taxonomy attributes that require developers to guess (for instance, Time to Prevent) should be 

removed because they are dependent on the developer’s mood and physical conditions. Experience 

with RODC has shown that if the developer is tired or upset with a defect consequence (at the time of 

the defect classification), it is likely that the attribute that required a guess will not be completed or it 

will be incorrectly completed. Besides that, developers dislike the fact that they had to take the extra 

time guessing an answer to classify a defect. This fact was noticed in the following RODC attributes: 

Time to Prevent (hrs.) and Considered During Design.

Time to Prevent (hrs.). The idea here was to collect information that would enable comparison 

between the time used to fix a defect to the time that would have been required to prevent the defect 

(evaluating design procedures). For instance, a defect caused by an outdated document and that took 

10 hours to be fixed could be prevented by having a document check procedure that would take one 
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hour of developer time. Some conclusions can be drawn from this kind of data if a significant number 

defects with similar characteristics are found. Most of the time developers did not know the answer or 

did not want to talk about this attribute. Thus most of the time this attribute was not used to classify 

defects.

Considered During Design - Developers did not remember if the defect was considered during the 

design process to be either possible or likely to occur. 

These two attributes could theoretically be used to evaluate design procedures of mobile robots but 

experience has shown that they had very limited utility because the data was based on a designer’s 

guess or opinion rather then facts.

Some attributes caused confusion for developers. They required a classification policy to be imple-

mented for data consistency. The attributes are: Time to Fix (hrs.) and Impact Personnel.

Time to Fix (hrs.) - It was not clear if the time spent to fix the defect should also include manufactur-

ing time or just include project personnel time. The decision was made to consider only the time that 

project personnel spent working fixing the defect because some Nomad parts were sent to be manu-

factured outside FRC, thus making difficult to track the total time to fix the defects. The same deci-

sion was applied to the time spent waiting for parts to be ordered and received - This information was 

not recorded since the time could not be controlled internally.

Impact Personnel - It was not clear if the impact on personnel attribute should include the people 

required to fix the defect or whether it should also include the people who were not able to work 

because of that defect. The decision was made to consider only people who needed to fix the defect 

because determining the number of people who were influenced by the defect was very complex and 

involved people who were not necessarily working on the motion system (e.g., software developer for 

navigation).

The point here is that maintaining consistency along all development phases and making these poli-

cies clear for developers is essential for effective RODC benefit.
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4.1.2 Data Collection

During the RODC data collection several lessons were learned. Without commitment to classify 

defects developers did not report every defect found. This problem was especially noticeable in the 

Field Performance Test development phase. Supporting material for data collection was sent to the 

developers, but no defects were collected during the field tests. The field performance test defects 

reported in this research were collected through interviews weeks after the fact. Developers believe 

that hundreds of defects happened during the field test but they had priorities other than collecting 

defects. This is unfortunate because this data could have been used to improve the development pro-

cess of mobile robot motion systems.

During the process of collecting data an early start is recommended. Design phase defects are critical 

and should be recorded. The use of paper-based tables and a tape recorder was very effective for col-

lecting defects in the initial phase of this work. 

Less critical and quickly repaired defects are not easily remembered by developers. If the collection 

scheme does not allow for fast classification, then it is unlikely that developers will classify such 

defects.

When developers are under pressure they don’t want to talk about defects (especially if something is 

not working). The classification scheme has to be efficient and fast so developers will not have the 

impression that they are wasting time. Special attention should be taken to keep the classification 

scheme working when close to deadlines. Developers tend to be under pressure before deadlines; 

thus, it is necessary to re-enforce the commitment to data collection.

The occurrence of repeated defects is a problem that must be addressed. For instance, 30 defects in 

one of the Nomad wheels meant in fact 120 defects total because all 4 wheels of Nomad had to be 

fixed. But they are repeated defects. They have the same defect type, cause, severity, and impact. 

Thus, little can be learned by classifying all was 120 defects in this case. Also the time to fix each 

defect is not the same since knowledge was gained whiling fixing the initial defects. 

The approach taken in the RODC in this case was to count a repeated defect only once. This approach 
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has to be re-evaluated because of the total time required to fix multiple instances of the repeated 

defect.

By classifying all repeated defects, one could show the importance of details. That is, design and 

assembly that may have implications in many parts should get special attention because one mistake 

will be duplicated many times.

4.1.3 Data Analysis

The advantage of working as a developer in the Nomad project gave the author the possibility of 

relating defect signatures to facts that happened during the development process. The opinions 

Nomad developers had regarding data analysis were very important. The author believes that data 

analysis should always include feedback from developers. That is, the data analysis should be tuned 

to provide something that developers can learn from. The RODC method is easily understood by 

developers because no complex statistical terms are used throughout the data analysis.

Understanding that the goal of data analysis is to identify development process problems, not how to 

fix them, is fundamental. The work of remedying process problems is a separate activity from the 

RODC.

The option of using a database to be the main engine of the RODC proved to be extremely effective. 

Moreover, using the Access software provided the necessary computer tools for data collection 

forms, data storage, and data reports.

The development of tools based on the World Wide Web was appreciated by developers who 

intended to use the method in their based machines (UNIX, MACs, and PCs). Using its own domain 

name (www.in-process.org) provided easy access to the RODC site and thus improved the impression 

of having a more professional measurement system.
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4.2 Contributions

At the outset of this work no process measurement system tailored to the development of mobile 

robots was available. Defect data had not been generated, collected, or analyzed during the develop-

ment of mobile robots. Therefore, proposed solutions to process problems were based on guesses 

rather than management engineering. Moreover, many previous experiences have been lost because 

of the lack of a measurement system.

This research developed an easy-to-use measurement system that may transform the development of 

mobile robots into a controllable process. It extracts process information from mobile robot develop-

ment using a proven taxonomy and shows how this information can be used to improve the process 

based on analysis of defect data.

Robot developers for the Nomad project were able to learn what the most costly defects were and dis-

covered that procedures that they thought were already mastered were still causing numerous defects 

and consuming resources. For instance, the implication of a lack of documentation policy was shown 

during the RODC data analysis procedure.

The RODC is a system that can be used to test the effectiveness of development process activities 

such as project review and quality improvement efforts since it generates data-driven information. 

Also it can be used to monitor reliability (e.g., defect rates) to indicate when the robot has achieved a 

desired goal.

The RODC provides a measurement system that can be used simultaneously by many robot develop-

ment centers to create the first multi-robot defect database available. The RODC database is capable 

of storing and providing information including defects, their causes, impact, severity, and component 

information. It also can store multimedia information such as schematics, pictures, movies, etc.

With the use of the RODC the creation of defect models is possible. In-process feedback will be 

enabled using these defect models. (See Section 4.3, Future Work.)

Because detailed steps regarding the experience of applying RODC to a mobile robot development 
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are described in this research, the process can be easily replicated. Interest has already been generated 

within the mobile robot community, and in particular in the National Robotics Engineering Consor-

tium (NREC), to use the RODC as a standard tool for the development of mobile robots.
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4.3 Future Work

The next step for further developing the RODC method is to provide process information during the 

development process of mobile robots (in-process feedback) not just after the fact. This section intro-

duces how RODC can be used to enable in-process feedback. Also later in this section modifications 

and improvements to the RODC method will be proposed. This section is divided into two parts:

• In-Process Feedback

• Proposed Improvements and Modifications

4.3.1 In-process Feedback

In-process feedback will be introduced in this section by the use of signature analysis.

Signature Analysis

Signature analysis consists of using defect signatures to point to problems in the development of 

robots and to track defect goals. That is, it shows how defect signatures can be used to identify possi-

ble problems in mobile robot development.

Ideally, information stored from previous projects can be used to minimize time and expense and 

improve quality by allowing the development team to learn from previous experiences. This can be 

accomplished after the fact: by understanding development mistakes, correction of these mistakes is 

enabled for the next generation of robots; similarly, corrections may be accomplished in-process (dur-

ing the development of the robot). In-process feedback can enable changes to be made during the 

development process to correct problems.

Signatures can be derived from graphic defect data. The analysis of these signatures provides infor-

mation feedback. Two typical uses of signatures are: 

• Comparing Patterns

• Fitting Defect Rate (using a model)
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Comparing Patterns 

A standard signature and the defect signature of a project are compared in order to identify develop-

ment problems. For example, if the project signature does not follow the standard signature pattern, 

then this discrepancy indicates that some problem might exist in the project development process. 

Defect signatures are derived from the distribution of defects through the development process. Fig-

ure 4.1 shows an example of a signature of Defect Type - Function. According to [Halliday, 1993] 

functional problems (Defect Type - Function) should decrease as the process proceeds. In application, 

if a defect signature for a Defect Type - Function rises in later stages of the project, it is likely that the 

project will produce a low quality product (i.e., it is unlikely that this project will deliver the desired 

functionality). Such a signature would indicate the need for a corrective action.

FIGURE  4.1 Example of a Standard Defect Type - Function Signature [Halliday, 1993]

Here the standard signature pattern is assumed to be reliable. That is, the standard signatures were 

derived from proven logic signatures or from previous defect signatures containing data from several 

development projects. Note that in this research what Halliday refers to as defects Functions are in 

fact referred to in this work as defects Performance.

At the time of this research, no defect databases were available from which defect signatures could be 

extracted. As a result, logic signatures were used as standard signatures to be compared to Nomad 
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defect signatures.

The following figures show an example of plots where defects signatures extracted from Nomad’s 

defect data were analyzed.

FIGURE  4.2 Defect Type - Performance Signature

Figure 4.2 shows an example of Defect Type - Performance plots from which it is possible to compare 

signatures. (Note: the circles are used to identify corresponding development phases.)

If members of the Nomad development team tracked the Defect Type - Performance signature, they 

would have been able to observe that the signature did not follow the expected standard performance 

defect signature between Integration of Components and Performance Test development phases. That 

is, the signature is almost horizontal in these development phases for the Nomad signature but the 

standard (logic) signature has approximately 45 degrees angle. Therefore, in-process feedback would 

be possible. 

Fitting Defect Rates 

In the fitting defects rates procedure, a defect signature is plotted against a defect rate model contain-

ing upper and lower limits. If the project signature exceeds a limit, an indication of process problems 
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exists (i.e., an investigation should be performed on the problematic area). Figure 4.3 shows an exam-

ple of a defect rate model.

This research can be used as a starting point for building mobile robot defect rate models. As more 

defects are collected from many different projects, more defect rate signatures will be available

FIGURE  4.3 Example of Defect Rate Model [Bhandari, 1993]

Unfortunately at the time of this study no defect rate models for mobile robots were available. There-

fore, no work on fitting defect rates was possible. This problem shows the opportunity to use this 

research as a starting point for building defect rate models. 
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4.3.2 Proposed Improvements and Modifications 

During the development of the RODC system several modifications were made to the measurement 

system. But as expected, there is a need for further improvements and modifications. This section will 

describe these items.

Taxonomy

As explained in previous chapters the RODC taxonomy was experimentally modified. But further 

modifications need to be addressed:

• If RODC is used with other subsystems (besides motion systems) then the taxonomy
will need to be re-designed to include relevant attributes. Following the steps pre-
sented in this research, the re-design of the taxonomy should be possible.

• Attributes related to design can be refined. For instance, saying that a defect was
caused by a design flaw is not detailed enough so developers can learn from previous
mistakes. These attributes should be refined to address this problem. Similarly
attributes related to the assembly process should be refined (e.g., What exactly went
wrong during the assembly?)

• A more detailed taxonomy should be developed to address defect types such as
Mechanical Structure. It is likely that this defect type can be broken into more detailed
defects related to structural problems.

• The current set of attributes should be checked to see if they can be used in the analy-
sis or to see if they can provide information relevant according to developers. For
instance are the attributes Not Known by the Developer or Considered During Design
useful? If not, they should be removed. This will save classification time and free
space on the classification user-interface for new attributes.

• The possibility of expanding multimedia tables such as the image table (tblImages)
should be considered. They can be expanded to include voice or video in order to cap-
ture comments about defects. Instead of typing comments, developers can record a
voice message, making the data collection process faster (assuming that multimedia-
capable computers will be available for data collection).

• Redundancy between attributes should be removed. For example Triggers and Devel-
opment Phases. Some of the activities or triggers seems not to be orthogonal to devel-
opment phases.

• Complex attributes should be revised and separated into two or more attributes if nec-
essary [Santhanam, 1997]. For instance, the activity that caused the defect to surface
and the circumstances or conditions that revealed the defect can be separated from the
Trigger attribute. The following example shows the separation of the RODC Trigger
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attribute into two more detailed attributes. This example illustrates how an attributte
can be refined to detail activities and triggers.

Activity: The activity that caused the defect to surface.
Inspection/Review of requirements and configuration
Inspection/Review of design
Fabrication of components
Integration of components
Performance test
Integration to robot
Field performance test
Stress test
Long term operation
Unclassified

Trigger: The circumstances or the conditions that revealed the defect.
Requirements conformance
Configuration conformance
Design conformance
Compatibility check
Documentation check
Basic test for component functionality under nominal unchallenging conditions
Extreme temperatures
Electrical noisy
Esthetic appeal
Unclassified

Data Analysis

The main future improvement in the data analysis is the implementation of the in-process feedback as 

explained in Section 4.3.1. Other improvements include:

• The RODC queries and reports can be modified according to developers feedback.
That is, the extraction of information should constantly be evaluated in terms of rele-
vance to developers.

• The concept of costly defects (i.e., narrow the number of defects analyzed) can be used
for design, fabrication, and assembly-related activities. 

• The standard used by commercial software packages used for quality improvement
and control should be verified and then a filter should be generated that will allow the
use of such packages with RODC. For instance, using Relex for reliability analysis.
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Internet-Based Tools

The tools based on the Internet World Wide Web (WWW) were not tested to the extent that they are 

ready for a production environment. The goal in this research is to implement a working prototype. 

This section proposes some improvements.

• In the present version of RODC, WWW pages use Active X scripts. This is not a prob-
lem if users have the right plug-ins in their WWW browsers or if they are using Inter-
net Explorer browser. But if Active X scripts become an issue, then Java scripts should
be used instead. Hopefully new tools will be available soon to translate from one type
of script to the other.

• The main upgrade that should be considered is in the database engine. The software
database used (Microsoft Access) is able to support approximately 2000 hits per day.
That is, approximately 2000 database accesses to the database per day are supported.
For a greater number of hits, the software should be upgraded to a more capable
engine such as Microsoft SQL Server, Oracle, or Informix. The advantage of using the
SQL Server from Microsoft is the existence of translators that will transform Access
databases into SQL Server databases (with some restrictions). 

• The RODC user interface can be improved by using some “intelligence” in the forms.
For instance, more attributes (or fields) can be shown to the user if the defect is a
costly defect. That is, for non-critical defects, the attributes will be limited and there-
fore may incline the user to enter more defects.

• Grouping options by logical activities can help in classifying defects. For instance, if
triggers are shown by logical groups (e.g., triggers that are design-related activities)
classification will be simplified.

• Help files were not implemented in the RODC. As in most software available now,
help files containing examples should be developed for the RODC to improve training
time and reduce mistakes.
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Appendixes - FMEA Tables 142

Appendix A - FMEA Tables

FIGURE  A.1 FMEA Table 1-4 [Borgovini, 1993]

FIGURE  A.2 FMEA Table 2-4 [Borgovini, 1993].
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FIGURE  A.3 FMEA Table 3-4 [Borgovini, 1993].

FIGURE  A.4 FMEA Table 4-4 [Borgovini, 1993].
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Appendix B - RODC Queries

Figure A.5 shows the RODC Access database queries.

FIGURE  A.5 RODC Queries

qryCause(all) - Extracts the cause for all defects from the RODC database.

qryCostlyDefectsImpactTimeToFixManagement(all) - Extracts the costly defects for management 

using the attribute Time to Fix as the impact for all defects from the RODC database.

qryCostlyDefectsSeverityReliability(all) - Extracts the costly defects for reliability using the 

attribute Severity for all defects from the RODC database.

qryDefects - Extract all defects from the RODC database.

qryDefectsComponents - Extracts all the defects related to components from the RODC database.
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qryDefectsComponentsElec(all) - Extracts all defects related to electrical components from the 

RODC database.

qryDefectsComponentsElecCause(all) - Extracts the cause for all defects related to electrical com-

ponents from the RODC database.

qryDefectsComponentsElecTimetoFix(all) - Extracts the time to fix for all defects related to elec-

trical components from the RODC database.

qryDefectsComponentsMech(all) - Extracts all defects related to mechanical components from the 

RODC database.

qryDefectsComponentsMechCause(all) - Extracts the cause for all defects related to mechanical 

components from the RODC database.

qryDefectsImpact(all) - Extracts the impact for all defects from the RODC database.

qryDefectsImpactManagement(all) - Extracts the impact for management for all defects from the 

RODC database.

qryDefectsSeverity(all) - Extracts the severity for all defects from the RODC database.

qryDefectsSeverityReliability(all) - Extracts the severity for reliability for all defects from the 

RODC database.

qryDefectsTimeToFix(all) - Extracts the time to fix for all defects from the RODC database.

qryDefectsVsCause - Extracts the defect type and its cause for all defects from the RODC database.

qryDefectsVsDesignPhaseVsTrigger - Extracts the defect type, the development phase, and its trig-

ger for all defects from the RODC database.

qryDefectsVsDevPhases(all) - Extracts the defect type and development phase for all defects from 

the RODC database.
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qryDefectsVsDevPhases(Loco) - Extracts the defect type and development phase for defects related 

to the locomotion motion system for all defects from the RODC database.

qryDefectsVsDevPhases(Point) - Extracts the defect type and development phase for defects related 

to the pointing motion system for all defects from the RODC database.

qryDefectsVsDevPhasesAssembly(all) - Extracts the defect type Assembly and development phase 

for all defects from the RODC database.

qryDefectsVsDevPhasesAssembly(Loco) - Extracts the defect type Assembly and development 

phase for all defects related to the locomotion motion system from the RODC database.

qryDefectsVsDevPhasesAssembly(Point) - Extracts the defect type Assembly and development 

phase for all defects related to the pointing motion system from the RODC database.

qryDefectsVsDevPhasesDamage(all) - Extracts the defect type Damage and development phase for 

all defects from the RODC database.

qryDefectsVsDevPhasesDamage(Loco) - Extracts the defect type Damage and development phase 

for all defects related to the locomotion motion system from the RODC database.

qryDefectsVsDevPhasesDamage(Point) - Extracts the defect type Damage and development phase 

for all defects related to the pointing motion system from the RODC database.

qryDefectsVsDevPhasesDocumentation(all) - Extracts the defect type Documentation and develop-

ment phase for all defects from the RODC database.

qryDefectsVsDevPhasesDocumentation(Loco) - Extracts the defect type Documentation and devel-

opment phase for all defects related to the locomotion motion system from the RODC database.

qryDefectsVsDevPhasesDocumentation(Point) - Extracts the defect type Documentation and 

development phase for all defects related to the pointing motion system from the RODC database.

qryDefectsVsDevPhasesInteraction(all) - Extracts the defect type Interaction and development 
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phase for all defects from the RODC database.

qryDefectsVsDevPhasesInteraction(Loco) - Extracts the defect type Interaction and development 

phase for all defects related to the locomotion motion system from the RODC database.

qryDefectsVsDevPhasesInteraction(Point) - Extracts the defect type Interaction and development 

phase for all defects related to the pointing motion system from the RODC database.

qryDefectsVsDevPhasesInterface(all) - Extracts the defect type Interface and development phase 

for all defects from the RODC database.

qryDefectsVsDevPhasesInterface(Loco) - Extracts the defect type Interface and development phase 

for all defects related to the locomotion motion system from the RODC database.

qryDefectsVsDevPhasesInterface(Point) - Extracts the defect type Interface and development 

phase for all defects related to the pointing motion system from the RODC database.

qryDefectsVsDevPhasesMissing(all) - Extracts the defect type Missing Component and develop-

ment phase for all defects from the RODC database.

qryDefectsVsDevPhasesMissing(Loco) - Extracts the defect type Missing Component and develop-

ment phase for all defects related to the locomotion motion system from the RODC database.

qryDefectsVsDevPhasesMissing(Point) - Extracts the defect type Missing Component and develop-

ment phase for all defects related to the pointing motion system from the RODC database.

qryDefectsVsDevPhasesPerformance(all) - Extracts the defect type Performance and development 

phase for all defects from the RODC database.

qryDefectsVsDevPhasesPerformance(Loco) - Extracts the defect type Performance and develop-

ment phase for all defects related to the locomotion motion system from the RODC database.

qryDefectsVsDevPhasesPerformance(Point) - Extracts the defect type Performance and develop-

ment phase for all defects related to the pointing motion system from the RODC database.
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qryDefectsVsDevPhasesSpecification(all) - Extracts the defect type Specification and development 

phase for all defects from the RODC database.

qryDefectsVsDevPhasesSpecification(Loco) - Extracts the defect type Specification and develop-

ment phase for all defects related to the locomotion motion system from the RODC database.

qryDefectsVsDevPhasesSpecification(Point) - Extracts the defect type Specification and develop-

ment phase for all defects related to the pointing motion system from the RODC database.

qryDefectsVsTriggers - Extracts the defect type and its trigger for all defects from the RODC data-

base.

qryPersonnelInstitution - Extracts personnel and the institution he or she belongs to from the 

RODC database.

qryPictureProjectDate - Extracts pictures and the project that it belongs to from the RODC data-

base.

qrySubsystem-Project - Extracts subsystems and the project that it belong from the RODC database.

qryTriggers(all) - Extracts the trigger for all defects from the RODC database.

qryTriggersCostlyDefectsManagement(all) - Extracts the triggers for the costly defects for man-

agement for all defects from the RODC database.

qryTriggersCostlyDefectsReliability(all) - Extracts the triggers for the costly defects for reliability 

for all defects from the RODC database.
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Appendix C - RODC Survey

Dear robot developer:

I am working with Dr. John Bares on mobile robot reliability. He suggested that I contact you because 
of your expertise in the mobile robot community.
I would appreciate it if you could please fill in and return this survey at your earliest convenience. The 
results of this survey will be used to help implement a measurement system for mobile robot develop-
ment (see http://in-process.org). It should take roughly 9 minutes of your time to complete this sur-
vey.
The survey is divided into two parts: logic defects and process information.
* Defects are any change in a project artifact (schematics, documentation, subsystems, etc.).

Logic Defects
Logic defects refer to the likelihood that certain defects will happen at certain times. The idea here is 
to assign probable quantities of defects to each mobile robot development phase. For instance, the 
defect type Assembly Process (improper) will not appear during the development phase Require-
ments and Configuration. Therefore, the matrix cell representing the intersection between these two 
fields will receive the lowest value possible for probable quantity (in our case 0). As another example, 
the defect type Interfaces (incompatible) will likely have a significant number of defects during the 
development phase Integration of Components. This is because during the development phase com-
ponents will be integrated for the first time to form a subsystem. That is, chances of having interface 
incompatibility problems during this development phase are high.
The table scale description follows:

0 - No defects should occur.

1 - A small number of defects should occur.

2 - A moderate number of defects should occur.

3 - A significant number of defects should occur.
Please write the numbers you think should be in each cell of the table located in the next page. Use 
your own experience in developing robots to guide your decision.

Process Information
Process information here means what needs to be known during the development of mobile robots. 
For instance, what kind of information would improve the process of developing a mobile robot (e.g., 
causes for defects, defect triggers, etc.)?
Please write three items in the list that is located below the Logic Defect table (see next page).

After you have completed the survey, please send a fax including the next page with your answers to 
(412)268-5895.

Thank you very much for your cooperation.
-JACK SILBERMAN
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Developer name: _______________________________________
1 - Logic Defect

2 - Process Information (please add the three most important items in your opinion)

•

•

•

Please send a Fax with this page to Jack Silberman at (412)268-5895.

TABLE  A.1 Probable Logic Defects - Please write your number in each cell

Dev. Phase
Vs.

Defect Type

Requirements 
and 

Configuration
Design

Fabrication 
of 

Components

Integration 
of 

Components

Performance 
Test

Integration 
to Robot

Field 
Performance 

Test

Long 
Term 

Operation

Assembly 
Process 
(improper)

Damage 
(need fix)

Documenta-
tion (sche-
matics, 
instructions)

Esthetic 
(appearance)

Interaction 
(interfer-
ences)

Interfaces 
(incompati-
ble)

Missing 
Component

Perfor-
mance (not 
working as 
expected)

Specifica-
tion (incor-
rect or 
change)
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Appendix D - Logic Signatures Plots

FIGURE  A.6 Assembly Logic Signature FIGURE  A.7 Damage Logic Signature
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FIGURE  A.8 Documentation Logic Signature FIGURE  A.9 Esthetic Logic Signature
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FIGURE  A.10 Interaction Logic Signature FIGURE  A.11 Interfaces Logic Signature
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Appendix E - Internet World Wide Web Based Tools

Tools based on server-client network and the Internet (e.g., WWW browsers) can enable quick 

response time, interactivity, and ease of use in gathering process data and feedback. The WWW can 

also enable the use of a system by a large number of users, therefore enabling a large amount of data 

to be collected.

Software and hardware are not necessarily independent in applications based on server-client technol-

ogy and the Internet World Wide Web. This is especially true on the server side because not all soft-

ware is available to all computer platforms. On the other hand, on the client side if applications are 

developed based on common standards such as the one used on the WWW (e.g., HTML and JAVA) 

then these applications are virtually independent of the hardware because different computer plat-

forms running different operating systems can present the same user-interface to users. 

The approach taken in this research is to develop tools based on the WWW so the effort for develop-

ing such tools can be reduced. RODC tools can be used by local users (in the Field Robotics Center) 

as well as users located remotely (e.g., anywhere on the Internet). That is, the goal is to develop one 

set of tools capable to be used by many different users.

This chapter is divided in the following sections:

• RODC Hardware

• RODC Software

• RODC on the WWW
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E.1 RODC Hardware

It is beyond the scope of this research to give detailed information on how to install the hardware or 

the software described here. Such information can be found in the manufacturer manuals.

The hardware requirements for hosting the RODC servers are reasonably small. The hardware has to 

be able to connect to the Internet serving files to RODC users. The term serving files here means host-

ing servers capable of working on the Internet.

Figure A.14 shows the RODC hardware scheme. (Note: software servers need to be located in just 

one hardware server.)

FIGURE  A.14 RODC Hardware Scheme

The RODC hardware has to be capable of hosting the RODC database files, a WWW server, and cer-

tificate server. These servers will be explained in Section E.2 RODC Software.
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Basically there were two options of hardware available: UNIX-based workstations (e.g., SUN and 

SGI) and Pentium-Pro (IBM PC compatible) machines.

Choosing between a UNIX machine and a PC sometime ago required compromise between speed and 

reliability vs. price. But today high-end PCs are fast and reliable, and they are less expensive when 

compared to UNIX workstations.

The decision was to use a Pentium-Pro based machine. This kept the development and server environ-

ments the same (Access runs on PCs). Besides that, the Pentium-Pro machine was faster than the 

available UNIX workstations.

The Pentium-Pro has enough resources to host the RODC servers. It has 200 MHz clock, 64 Mbytes 

RAM, 4 Gbytes hard disk, and a fast Ethernet interface (100 Mbits). The RODC does not requires all 

these resources. The reason for these numbers is because the hardware donated by Intel came with 

this configuration not because of minimum resources necessary to host the RODC servers. More 

details on the minimum configuration required by the RODC software will be given in Section E.2 

RODC Software.

It is important to mention here that the RODC hardware is a regular desktop computer. It is not a spe-

cial dedicated-server hardware that includes fault tolerance and other features. But it is capable of 

running the same software that runs on dedicated-server hardware. Nevertheless, by the time of the 

RODC development, the described configuration was considered a high-end PC. 

The RODC hardware is capable of hosting the RODC servers and still leaving enough resources for 

future expansions.
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E.2 RODC Software

The basic RODC software includes: an RDBMS database, a WWW server, a certificate server, and a 

WWW browser. Figure A.15 shows the RODC software scheme. (Note: all software uses the operat-

ing system to access the hardware).

FIGURE  A.15 RODC Software Scheme
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• WWW Server

• Certificate Server

• WWW Browser
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most reliable operating systems considered were the Windows NT 4.0 Server and Linux Redhat4.3. 

The decision was to use Windows NT 4.0 Server because of the availability of commercial WWW 

and certificate servers. The second reason for this choice was because the RDBMS used in the RODC 

(Access) runs on a Windows operating system. This fact allows some development on the server 

machine too.

RDBMS Database

As explained in a previous chapter, the RDBMS database used in the RODC Microsoft Access 97. 

Having Access installed in the RODC hardware server is not required since WWW servers support 

Open Database Connectivity (ODBC) protocol. An ODBC connection for Microsoft Access 97 

requires the data source name (name of the file) and a user id that has the rights to open the RODC 

database. To allow some development on the RODC hardware, Access was also installed.

WWW Server

Two commercial WWW servers were considered for use in the RODC System: 1) Netscape Enter-

prise Server; and 2) Microsoft Internet Information Server (IIS). The reason for evaluating these two 

servers instead of all the diverse WWW servers available for Windows NT was because they were 

rated as being the most reliable and having better performance when compared to the other servers 

[Web Developer, 97].

The decision was to use Microsoft Internet Information Server (IIS) version 4.0 because it supports 

dynamic ASP files. Access has a feature to generate dynamic ASP files that simplify the process of 

making Access files available for the WWW. This process will be described later in this chapter.

Certificate Server

The Internet WWW is an excellent way to remotely use databases such as the RODC system. But 

because of the Internet architecture, raw data is not safe from eaves dropping. That is, at some point at 

the Internet malicious connections can be made to read files that are being transmitted through that 

point. One solution for this problem is to use Secure Sockets Layer (SSL). By using SSL, transmis-

sion between two points is encrypted. Therefore, it is much harder to be eavesdrop.
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Security in the RODC system is an issue because project defect data may be confidential. If manage-

ment and developers understand that project defect data is secure during connections to a WWW 

server then it is likely that they will be less concerned about security in using the RODC system.

The certificate server is used to create an electronic certificate that is issued to a WWW server and 

users. Using SSL for WWW servers and users significantly increases the security of an Internet-based 

system.

The process of encrypting connections using SSL is almost transparent for users because the encryp-

tion protocol and keys are automatically exchanged between the user’s WWW browser (e.g., 

Netscape navigator) and the WWW server (i.e. RODC WWW server).

Two certificate servers were evaluated for the RODC system: 1) Netscape Certificate Server; and 2) 

Microsoft Certificate Server.

The decision was to use the Microsoft Certificate server because it has better integration with Win-

dows NT 4.0 Server and it is easy to use.

WWW Browser

Any WWW browser that supports JAVA, Active X, and SSL can be used with the RODC system.

Two examples of such browsers are Netscape navigator (with Active X plug-in) and Microsoft Inter-

net Explorer. 

The choice is based on user opinion and availability of WWW browsers for their computer platform.
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E.3 RODC on the WWW

The implementation of the RODC on the WWW followed these steps:

• Hardware Setup

• WWW Server Setup

• Database Setup for the WWW

• Certificate Server Setup

Hardware Setup

The hardware setup was accomplished by installing the Windows NT Server 4.0 operating system on 

Pentium Pro hardware. A name and IP address were issued from the computer science facilities at 

Carnegie Mellon University so the hardware could be connected to the Internet. The name of the 

machine where the RODC is running is helena.frc.ri.cmu.edu and the IP address is 128.2.196.36. 

After the setup of the hardware then the WWW server was installed.

WWW Server Setup

The WWW server was installed in the RODC hardware (helena) and a home page was created. The 

access to the WWW pages located in helena had the following pointer http://www.hel-

ena.frc.ri.cmu.edu/. As one can see, this is not easy to remember nor is it professional. 

The author has registered an Internet Domain Name named in-process.org with an Internet authority 

so in-process.org points to helena.frc.ri.cmu.edu. The domain name is a description of a computer 

“location” on the Internet. Users neither have to type in the name of a machine (e.g., hel-

ena.frc.ri.cmu) nor their IP address (e.g., 128.2.196.36) to access the WWW pages located in the 

WWW server.

After this registration, pages located in the WWW server can be accessed by using the following 

pointers http://in-process.org/ or http://www.in-process.org.

Figure A.16 shows the RODC home page.
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FIGURE  A.16 RODC Home page

The RODC home page has links to other WWW pages such as Members Area, which access is 

restricted to users registered to use the RODC system.
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Database Setup for the WWW

Microsoft Access 97 has a feature that enables the creation of ASP files. ASP files enable the use of 

databases such as Access in WWW applications. Figure 4.4 shows the WWW interface to the RODC 

system.

FIGURE  A.17 WWW Interface to the RODC System

The WWW interface to the RODC will be the same for any user on the Internet that has a browser 

with the capabilities described in this section.
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Certificate Server Setup

The certificate server was installed in helena using a procedure similar to the one used for the WWW 

server.

An electronic certificate has to be requested from the RODC administrator. To do so the user can send 

e-mail to support@in-process.org. In the case of the RODC system an electronic certificate was 

issued to the WWW server. Internet users can then make secure connections to the RODC WWW 

site.

The performance of the RODC system was not tested for multiple users accessing the database simul-

taneously. But according to reports, the scheme used in the RODC can handle such a situation.
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