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Abstract

Panacea is a modular system which incorporates a steer-
able sensor into an existing neural network driving sys-
tem, ALVINN. A �xed camera cannot see the road when
it makes sharp bends. For a vision system that builds
a map of the road, it is straightforward to point the
camera down the road; but ALVINN directly outputs a
steering command without generating an intermediate
road representation. Insight from the training scheme
used in ALVINN, however, provides an interpretation
of the steering command in terms of the road geometry
and appropriate camera pointing strategies. Tests on the
Carnegie Mellon Navlab II with a steerable camera have
shown that the system signi�cantly improves ALVINN's
performance, particularly in situations requiring sharp
turns and quick responses.

The Panacea active camera control system illustrates
a trend in the ALVINN project away from treating neu-
ral networks as simple black box function approximators.
Instead, the neural network's behavior is modeled sym-
bolically and reasoned about to improve system perfor-
mance. Two other examples of model based reasoning
about network performance in the ALVINN system are
brie
y described.

1. Introduction

ALVINN (Autonomous Land Vehicle in a Neural Net-
work) is a neural network based system which has been
successful in driving robot vehicles in a variety of sit-
uations [1, 2]. However, since ALVINN maintains no
state information about the world, but processes each
sensor frame individually, it can become confused on
sharp curves when the �eld of view no longer displays
the important features in the scene. A steerable sensor
allows the perception system to select the desired �eld
of view to maximize the information content of a sen-
sor frame [4]. For a vision system that builds a map

of the road, it is straightforward to point the camera
in the desired direction, but ALVINN directly outputs
a steering command, without generating an intermedi-
ate road representation. Panacea interprets this steering
command as a point on the road and pans the camera in
the desired direction. However since ALVINN is trained
with a �xed sensor orientation, the position of the sensor
during training is implicitly encoded in the weights and
moving the camera results in the outputs of the network
being invalid for the given con�guration. Panacea solves
this problem by post-processing the steering response of
the neural network as a function of the current sensor
con�guration. A signi�cant advantage of this approach
is that existing networks can run under this new system
without any modi�cation or retraining. Panacea was im-
plemented on the Carnegie Mellon Navlab II and has
demonstrated improved performance of ALVINN net-
works, particularly on roads with sharp curves.

2. ALVINN Architecture and Training

The ALVINN system's basic architecture is a three lay-
ered arti�cial neural network shown in Figure 1. A re-
duced resolution camera image is fed into a 30x32 array
of input units, which are fully connected to a hidden
layer of 4 units. The hidden units are fully connected
to a vector of 30 output units, and the steering response
is given as a Gaussian activation level centered on the
correct steering curvature.

ALVINN's neural net is trained \on the 
y", and the
human driver's steering responses are used as the teach-
ing signal. ALVINN is able to learn from this limited
data by arti�cially expanding its training set. Each orig-
inal image is shifted and rotated in software to create 14
additional images in which the vehicle appears to be sit-
uated di�erently in relation to the road (See Figure 2).
The training signal for each of these new images is cal-
culated by assuming a pure-pursuit [5] model of driving
and transforming the original steering response accord-
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Figure 1: ALVINN driving network architecture.
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Figure 2: The single original video image is shifted and
rotated to create multiple training exemplars in which
the vehicle appears to be at di�erent locations relative
to the road.
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Figure 3: Illustration of the \pure pursuit" model of
steering.

ingly. One of the advantages of using a weak model like
pure-pursuit is that it is independent of the driving sit-
uation. Figure 3 illustrates this model. With the vehicle
at position A, the pure pursuit model assumes the goal is
to bring the vehicle to the road center at the target point
T , a predetermined distance ahead of the vehicle. After
transforming the image with a horizontal shift s and ro-
tation � to make it appear that the vehicle is at point B,
the appropriate steering direction according to the pure
pursuit model should also bring the vehicle to the target
point T. Mathematically, the formula to compute the ra-
dius of the steering arc that will take the vehicle from
point B to point T is

r =
l2 + d2

2d
(1)

where r is the steering radius, l is the lookahead distance
and d is the distance from point T the vehicle would end
up at if driven straight ahead from point B for distance
l. The displacement d can be determined using the fol-
lowing formula:

d = cos � � (dp + s + l tan �) (2)

where dp is the distance from point T the vehicle would
end up if it drove straight ahead from point A for the
lookahead distance l, s is the horizontal distance from
point A to B, and � is the vehicle rotation from point
A to B. The quantity dp can be calculated using the
following equation:

dp = rp �

q
r2
p
� l2 (3)

where rp is the radius of the arc the person was steering
along when the image was taken.



3. Panacea

Panacea uses the pure-pursuit drivingmodel to adjust an
existing ALVINN network's steering output in response
to variations in sensor orientation. Since the model is
also used internally by ALVINN during training, the
same assumptions are made in the two modules. When
used with a �xed sensor, both systems produce identical
responses.

ALVINN outputs a steering response which can be
symbolically interpreted as a turning radius, or a desired
arc. In the pure-pursuit model, every such arc maps to
a single target point TP, at the speci�ed look-ahead dis-
tance from the sensor. Thus for a given vehicle pose,
the position of the TP should remain invariant under
changes in sensor orientation. In other words, the pure-
pursuit model implies that there is a \correct" TP for the
current vehicle pose, which is independent of the sensor
pan. ALVINN's response is in sensor coordinates since
it implicitly assumes that the camera is pointing directly
ahead. However, since the sensor is not in its original ori-
entation, the turning radius given by ALVINN no longer
steers the vehicle towards the target point. Therefore
we have to compensate for the change in sensor orien-
tation, and generate the arc which correctly steers the
robot towards the TP corresponding to the vehicle's ac-
tual position.

Panacea thus converts ALVINN's outputs into a tar-
get point representation, and generates the arc (in the
current vehicle frame) which drives the robot towards
the TP. Figure 4 illustrates this transformation. The
equations for this transform are derived below:

d = r � sgnr
p

r2 � l2 (4)

l0 = (l � a) cos � � d sin � + a (5)

d0 = (l � a) sin � + d cos � (6)

r0 =
d02 + l02

2d0
(7)

where r is the steering radius reported by ALVINN and
r0 is the compensated radius calculated by Panacea,
while d and d0 are the o�sets. l0 is the analog of l,
ALVINN's lookahead distance, in the vehicle reference
frame. The steering radius r0 reported by Panacea is
used to control the vehicle.

To gain a better understanding of the equations, a
surface plot of the compensation against the input pa-
rameters was made. For clarity, turning radii were con-
verted to curvatures, and the compensation expressed as
the di�erence between the input and output curvatures.
Figure 5 displays compensation as a function of input
curvature and camera pan angle for two di�erent looka-
head distances. The graph on the left corresponds to a
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Figure 4: Sensor pan compensation using Panacea.

typical Navlab II con�guration (l = 10 meters, a = 3:3
meters). The compensation seems to be independent of
the input curvature, and varies proportionally with the
camera pan angle over the values encountered in prac-
tice. However it is interesting to note that this is not
true in general. The graph on the right shows the same
surface with an extreme value for l = 250 meters. Note
that the compensation is no longer independent of the
input curvature. Although the implementation on the
Navlab II could have been approximated using a planar
model of the surface, the computational savings would
be insigni�cant since the original equations are already
quite simple. Therefore Panacea computes the precise
compensation using equations 4 to 7.

4. Sensor Pointing

Panacea also addresses the issue of intelligent sensor con-
trol. ALVINN's output, which may be interpreted as a
TP on the center of the road ahead of the vehicle, can
be used to pan the camera in order to keep the road in
view. The following equation relates the position of the
TP to the pan angle:

� = tan�1
d0

l0 � a
(8)

where l0 and d0 are de�ned in Equations 5 and 6 respec-
tively. This allows us to control the sensor directly from
the output of our neural network, in a manner which is
completely consistent with the pure-pursuit model. The
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Figure 5: Curvature compensation with lookahead of 10m and 250m respectively.

actual implementation is somewhat complicated by con-
trol issues such as oscillations caused by the dynamics of
the system. In practice this was solved by introducing a
damping term which smoothed the sensor's response.

There are a number of advantages associated with con-
trolling the sensor based on the network's output:

� By directing the sensor towards the TP, the impor-
tant features of the scene as perceived by ALVINN
are centered in the �eld of view.

� Images of this type are closer to those seen during
training, and therefore accuracy of the network is
increased.

� Since the sensor responds more quickly than the
robot vehicle, the network is able to \look before
it leaps".

Panacea is implemented so that the compensation for
sensor displacement and the control of the sensor are
decoupled. Thus ALVINN can drive the vehicle even
when the sensor is being used to look at other features
in its environment, such as signs, provided that the road
remains at least partially in the �eld of view.

5. Results and Discussion

This system was implemented on the Carnegie Mellon
Navlab II, using a video camera on a pan/tilt mount
(with constant tilt used throughout the experiments).
Tests were conducted on a single-lane bicycle path, and

on a two-lane street. The network was trained with the
video camera pointing directly ahead. In the �rst ex-
periment, the camera was o�set at a constant angle and
the vehicle switched to autonomous control. Panacea
compensated correctly for the change in orientation and
drove successfully. Subsequent tests were conducted
with the sensor under Panacea's control and the system
drove as reliably as the unmodi�ed ALVINN system. A
comparison between the two systems was then made at
a sharp fork in the road (See Figure 6). With a �xed
camera, ALVINN was unable to negotiate this stretch of
the road. The main reason for ALVINN's di�culty in
this situation is that road features on a sharply curved
road fall outside a �xed camera's �eld of view. In ad-
dition, the robot vehicle reacts slowly to steering com-
mands whereas a steerable sensor can pan fast enough
to keep the road in sight at all times.

A sensor which pans under Panacea's control results
in improved performance since the view seen by the sen-
sor tends to correspond more closely to the images in
the training set. Since the sensor points towards the TP,
the important features in the scene are always within
the �eld of view and the network is less likely to make
steering errors. In particular, when the robot sees a fork
in the road, the new system is less likely to dither over
the decision since whichever road segment �rst appears
most appropriate is immediately centered into the �eld of
view, and the chance of the network choosing the other
fork is thus substantially reduced. Higher level plan-
ning systems could exploit this by pointing the sensor
in the appropriate direction at an intersection, causing
ALVINN to choose one fork over another. This extension



Figure 6: Panacea successfully negotiates a sharp fork in Schenley park. Note the panning of the pan/tilt platform
(bottom center) at the intersection to keep the right fork in view.

has not yet been implemented.

Panacea embodies the following bene�cial attributes:

� Sound theoretical basis: Since Panacea uses the
pure-pursuit model, which is implicit in ALVINN,
no additional assumptions are introduced. Further-
more, when the sensor con�guration is static, the
outputs of both systems are identical, so Panacea is
transparent in that case.

� Modularity: Panacea is a post-processing module
for existing ALVINN systems. No additional time
is required to train ALVINN driving networks. This
also means that networks trained on a �xed sensor
can be used without modi�cation in the new system.

� E�ciency: The equations given above are very ef-
�cient, and the overhead of using Panacea on the
ALVINN system is negligible.

6. Future Work

Panacea has shown that active perception and neural
networks can be successfully integrated into a modular
system for autonomous driving. Although the imple-
mented system already demonstrates some advantages
of this merger, there are many interesting topics which
merit further exploration. In particular, the notion of
decoupling the sensor motion from the driving network
can be exploited further.

One application where it may be desirable to point the
sensor at the TP without necessarily driving towards it is
during obstacle avoidance. Here it is important that the
video camera used for road following continue to focus its
attention on the road, even during the temporary evasive
maneuvering so that the driving algorithms can continue
uninterrupted after the obstacle has been successfully
avoided.

Conversely, an example where it may be desirable to
point the sensor away from the center of the road, while
continuing to drive towards it, is in road sign detec-
tion. This is also an example of how multiple systems
could successfully share the same active sensor, since the
ALVINN system, when augmented by Panacea, does not
need the sensor to point at the center of the road as long
as the relevant features remain visible in the sensor's
�eld of view.

7. Conclusion

Panacea's success stems from the ability to interpretate
ALVINN's output as more than just a steering command.
The procedure used to train the neural network in the
ALVINN system insures that its output also represents
the position of the road ahead of the vehicle. Reasoning
about the behavior of the network to extract additional
useful information has proven to be a powerful technique
for improving ALVINN's performance.

Two other examples of reasoning about network be-
havior in the ALVINN system are the Input Reconstruc-
tion Reliability Estimation (IRRE) technique [3], and
our recent work on latency compensation. In IRRE, the
reliability of the network's response is estimated from
the accuracy with which the network can reconstruct the
input image from its internal representation. This tech-
nique augments the standard steering direction output
from the ALVINN network with a measure of the net-
work's con�dence in the appropriateness of that steering
direction. This con�dence measure has been employed
to select the most appropriate network among several
trained for di�erent situations.

In the latency compensation technique developed for
ALVINN, the delays inherent in capturing the video im-
age and processing it with the neural network are mod-



eled and then used to re�ne the steering direction pro-
duced by the neural network. Reasoning about the delay
in executing the network's command allows ALVINN to
eliminate control oscillations which can occur when driv-
ing at highway speeds.

By treating ALVNN's neural network as a system
which can be modeled and reasoned about, instead of
merely a black box which produces steering commands,
it has been possible to make extensions and improve-
ments to the ALVINN system which would have been
di�cult or impossible to achieve using strictly connec-
tionist methods.
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