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1 INTRODUCTION

Research on machine learning has, over the last decades, produced a variety of techniques to

automatically improve the performance of computer programs through experience. Approaches

to machine learning can roughly be divided into two categories, passive and active, each making

characteristic assumptions about the learner and its environment.

1.1 Passive Learning

In the passive learning paradigm, a learner learns purely through observing its environment.

The environment is assumed to generate a stream of training data according to some unknown

probability distribution. Passive learning techniques di�er in the type of results they seek to

produce, as well as in the way they generalize from observations. Common learning tasks are

the clustering, classi�cation, or prediction of future data.

Passive learning techniques can be subdivided into order-free and order-sensitive approaches.

Order-free approaches rest on the assumption that the temporal order in which the training data

arrives does not matter for the task to be learned. It is assumed that the training examples

are generated independently according to a stationary probability distribution. The majority of

machine learning approaches falls into this category. For example, unsupervised learning usually

aims to characterize the underlying probability distribution or to cluster the data. Supervised

learning, on the other hand, is concerned with approximating an unknown target function (con-

ditional probability) from a set of observed input-output examples.

Passive learning has also been studied in order-sensitive learning scenarios, which are settings

in which the temporal order of the training data carries information relevant to the learning task.

This is the case, for example, if consecutive training examples are conditionally dependent on
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each other, and learning about these dependencies is crucial for the success of the learner. Time

series prediction or speech recognition are examples for order-sensitive learning domains.

1.2 Active Learning

The active learning paradigm di�ers from the passive learning paradigm, in which the learner

is a pure observer, by the learner's ability to interact with its environment. More speci�cally,

the learner can execute actions, which have an impact on the generation of training data. The

freedom to execute actions imposes an important challenge that is speci�c to active learning:

Which actions shall a learner generate during learning? How can a learner e�ciently explore

its environment?

In active learning one can also distinguish between order-free and order-sensitive cases.

Order-free active learning rests on the assumption that what is observed in the environment

depends only upon the most recently executed action. Perhaps the best-studied approach of

this kind is learning by queries (Angluin, 1988), (Atlas et al., 1990), (Baum and Lang, 1991). In

query learning, the available actions are queries for values of an unknown target function. The

environment provides immediate responses (answers) to these queries.

In order-sensitive approaches, on the other hand, observations may depend on many actions.

For example, approaches to learning optimal control (like airplane control, or game playing) fall

into this category. To describe the long-term dependencies between actions and observations, it

has frequently proven helpful to assume that the environment possesses internal state informa-

tion. Actions in
uence the state of the environment, and the state determines what the learner

observes.

Exploration refers to the process of selecting actions in active learning. Although most of

the exploration techniques reviewed in this paper are applicable to active learning in general, we

will primarily focus on action selection issues in order-sensitive scenarios. Indeed, most of the

approaches listed here have originally been applied in order-sensitive frameworks. Notice that

throughout the paper we will make the simplifying and restrictive assumption that the state of

the environment is fully observable.

2 ACTION SELECTION STRATEGIES

2.1 Principles

How can a learner pick the right action for learning? At �rst glance, it might seem appropriate to

use random action selection mechanisms to generate actions (Whitehead, 1991). Random action

selection is frequently used, primarily for two reasons: (a) it is simple, and (b) it usually ensures

that any possible �nite sequence of actions will be executed eventually. However, it has been

shown, both through theoretical analyses as well as empirical �ndings, that more sophisticated

query and exploration strategies can often drastically reduce the number of training examples

required for successful learning. This is because responses to di�erent actions typically carry

di�erent amounts of information. Random sampling often does not take full advantage of the
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opportunity to select the most informative query/action.

Intuitively speaking, in order to learn e�ciently one would like to execute actions that are

most informative for the learning task at hand. The more one expects to learn from the outcome

of an action, the better it is. Indeed, this \greedy" principle, the optimization of knowledge gain,

has been employed in most approaches to action selection in active learning.

2.2 Query Selection

Recent research on query learning has led to a variety of approaches for the active selection of

queries. For example, in (Atlas et al., 1990), (Cohn, 1994) two approaches to learning by queries

are described that both use a neural network model of the learner's uncertainty. During learning,

queries are favored that have the least predictable outcome. Uncertainty is estimated either by

the di�erence of two models constructed from the same observations (Atlas et al., 1990), or

based on an analysis of the parameters of the estimator (Cohn, 1994). Both approaches have

proven superior to random sampling in empirical comparisons. (Paass and Kindermann, 1995)

propose a method that integrates an external cost function into the active learning framework.

More speci�cally, their approach favors queries that minimize the decision costs, which allows

to focus learning on performance-relevant areas. Their approach is computationally expensive,

since it relies on explicit Monte-Carlo integration.

2.3 Exploration

In order-sensitive scenarios, exploring unknown parts of the environment requires sequences of

actions to be executed. For example, if a lunar robot agent aims to explore the back side of the

moon, it has to get there �rst|and getting there might require even more exploration. Tech-

niques that employ models of the expected knowledge gain and then direct explorative actions

to unknown parts of the environment are called directed exploration techniques (see (Thrun,

1992b) for an overview). While most existing approaches share the philosophy of selecting ac-

tions through maximizing the knowledge gain, they di�er in the particular way knowledge gain

is estimated. Some estimate this quantity implicitly from a speci�c data structure, other utilize

explicit models represented using separate data structures. In addition, a variety of heuristic

estimators have been used for estimating the expected knowledge gain. Estimators typically use

related quantities such as frequency, density, recency, or empirical prediction errors.

For example, (Kaelbling, 1993) suggests an approach to exploration in which actions are

favored unless they have repeatedly been found to be disadvantageous. As a consequence, actions

are selected that exhibit good performance or that are unexplored or both. A similar approach

following the same line of thought is proposed in (Koenig and Simmons, 1993). Their approach

bears close resemblance with heuristic search techniques for graphs, (Korf, 1988), although

it di�ers in that it does not assume the availability of a model of the environment. Koenig

and Simmons also derive worst-case bounds for the complexity of exploration for deterministic

shortest-path problems. In (Sutton, 1990), a so-called exploration bonus is assigned to actions.

This bonus measures, for each environment state, the elapsed time since each available action
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was executed. As a consequence, actions that were not executed for a long time are favored for

exploration. Sutton also employs a dynamic programming technique to propagate exploration

utility through the state space of the environment using a model of the environment, which

is easy to obtain for the environments he studied. Another approach to exploration has been

proposed by Dayan and Sejnowski (unpublished). Here exploration achieved through a Bayesian

prior that expresses uncertainty as a function of how often and when an action has been executed.

In (Thrun, 1992a) several of these approaches are compared empirically, along with a combined

approach taking frequency and recency into account. Approaches speci�c to memory-based

learning can be found in (Moore, 1990) and (Schaal and Atkeson, 1994). Memory-based learning

memorizes all training data explicitly. In these approaches, the density of previous data points

is used to asses the utility of actions for exploration. Schaal also takes into account knowledge

about the goal of learning to focus exploration.

2.4 Focussing Exploration

Most active learning techniques estimate the expected knowledge gain of the learner for each

applicable action, and they select actions through maximizing knowledge gain. In order for

this methodology to work e�ciently, two assumptions have to be made: (a) the heuristic for

estimating the gain of knowledge must yield approximately correct action preferences, and (b)

gaining knowledge per se must be helpful for the learning task.

Both assumptions are not necessarily ful�lled in practice. Most heuristics for exploration

are somewhat ad hoc, hence their e�ectiveness varies across environments and learning tasks.

Moreover, depending on what goal the learner aims to achieve, sometimes only parts of the

environment have to be known in order to perform optimally. This is typically the case, for

example, in the context of reinforcement learning (Barto et al., to appear), (Sutton, 1990),

(Watkins and Dayan, 1992). In reinforcement learning, the learning task is to generate control,

i.e., to learn action policies that maximize a given reward function. Exploring regions in state

space that are irrelevant for the task of learning control is a waste of both time and memory

resources.

A common strategy to focus exploration is to explore and to exploit simultaneously, by

taking both knowledge gain and the task-speci�c utility of actions into account. Boltzmann

distributions and semi-uniform distributions provide ways to combine random exploration with

exploitation. These distributions explore by 
ipping coins, but the likelihood of individual ac-

tions is determined by the task-speci�c exploitation utility: In Boltzmann distributions the

likelihood of picking an action is exponentially weighted by its utility, and in semi-uniform dis-

tributions the action with the largest utility has a distinct high probability of being executed.

Notice that most of the aforementioned approaches have indeed originally been proposed in com-

bination with task-speci�c exploitation. In (Thrun, 1992b) it has been empirically demonstrated

that the combination of exploration and exploitation can yield faster learning than either com-

ponent in isolation. The fundamental dilemma of choosing the right ratio between exploration

and task-speci�c exploitation is called the exploration-exploitation dilemma. Often exploration
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and exploitation are traded o� dynamically so that exploration fades in time.

2.5 Complexity Results

In addition to empirical studies, theoretical results emphasize the importance of exploration in

active learning. Based on a result in (Whitehead, 1991), which shows that random walk explo-

ration can require exponential learning time in various cases, it has been shown that directed

exploration techniques can reduce the complexity of active learning from exponential training

time (random exploration) to polynomial training time (Thrun, 1992a), (Koenig and Simmons,

1993). Similar results exist in the query learning framework (Angluin, 1988), (Baum and Lang,

1991). Although most results apply to certain deterministic environments only, in practice they

often carry over to stochastic environments.

3 EXAMPLE

This section brie
y describes an arti�cial neural network approach to exploration in real-valued

domains. This approach shares many of the ideas in the current literature: the expected knowl-

edge gain is estimated during learning, and actions are selected greedily such as to maximize

knowledge gain. Unlike most other approaches, it operates in real-valued domains and uses

arti�cial neural networks to estimate the gain of knowledge.

3.1 Modeling Competence

Assume the learning task is to approximate an unknown target function f : I!O. Here, I

denotes the input space, and O denotes the output space of both f and its approximation,

denoted by f̂ . Assume that at any instance of time, the learner can execute one of its actions,

denoted by A. Actions in
uence the state of the environment and hence have some impact

on the training examples given to the function approximator. Notice that in the experiments

reported below I is the product of A and the state space of the environment.

A competence map is a function ĝ : I!< that assesses the accuracy of f̂ . It is trained

as follows. For each observed input-output example hi; f(i)i 2 I � O of f , there will be some

model error "(i) = jjf̂(i)� f(i)jj. The competence map models this error "(i) as a function of

i. Hence, each training example for f̂ also produces a training example for ĝ, as illustrated in

Fig. 1. The competence map is used to direct exploration, by selecting actions that maximize

ĝ. More speci�cally, the learner explores by picking actions for which its own competence is

minimal, i.e., for which its internal models are most inaccurate. Such actions are assumed to

maximize the gain of knowledge.

It should be noted that competence estimates, as they are described here, may only be ap-

proximately correct, since the dynamics of the estimators f̂ and ĝ are usually hard to model.

In addition, if due to model limitations f̂ fails to model the environment in su�cient detail,

unmodeled e�ects can be a constant source of model error and perpetually provoke more ex-

ploration. This is the case, for example, if (many-to-one) function approximators like arti�cial

neural networks are employed in highly stochastic environments,
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Figure 1: Training the model and the competence map.

3.2 Empirical Results

To illustrate exploration via a competence map, consider the environment depicted in Fig. 2.

The input to the learner is its x-y-position in a two-dimensional world. Its task is to navigate

from the starting position (box) to the goal position (cross) while avoiding collisions with the

walls or the obstacle. Actions, denoted by (�x;�y), are small displacements which, when

executed, are added to the current position. When the agent reaches its goal or, alternatively,

when it collides with a wall or the obstacle, it is reset to its starting position.

In addition to its coordinates, the learner is able to perceive a potential function d(x; y), which

is depicted in Fig. 2a. The potential measures the \distance" to the goal and to the obstacles,

such that steepest descent yields a collision-free path to the goal location from arbitrary starting

positions. Both the state transition function and the potential function are initially unknown.

The goal of learning is to learn a control strategy for selection actions which carry the agent

to the goal. This is done by learning the state transition function and the potential function.

Once a reasonable model of these functions has been identi�ed, pure hill climbing will result in

admissible paths, such that the goal can be reached without collision.

In our experiments, a multi-layer network was trained with the Backpropagation algorithm

to model the motion dynamics and the potential function values. The input to this network

was the current position (x; y) and action (�x;�y). It was trained to predict the next position

(x0; y0) and the corresponding potential function value d(x0; y0). The actual network consisted of

two separate components, one for predicting the next position (x0; y0) with no hidden units, and

one for predicting the potential function value. The latter component consisted of 10 units with

radial-bases activation functions in the �rst hidden layer, and 8 units with a logistitic activation

function in the second layer.

Competence was also modeled by an arti�cial neural network which received the same four

input values as the model, but was trained to predict the squared model prediction error, given

by � [(x0pred�x0obs)
2+(y0pred�y0obs)

2+(dpred�dobs)
2]. Here � is an appropriate normalization

constant which ensures that competence values lie in [0; 1]. In the actual implementation,
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Figure 2: Potential function. The darkness indicates the combined \distance" to the goal and

the obstacle/walls.

the competence network had two hidden layers with six logistic units each. During learning,

exploration and exploitation were combined using a selective attention mechanism described

elsewhere (Thrun, 1992b), which traded o� exploration and exploitation dynamically based on

expected costs and bene�ts.

In an experimental study three approaches to exploration were compared: (a) random ex-

ploration, (b) pure exploitation, i.e., always following the best known path, and (c) directed

exploration based on competence. Since pure exploitation might get stuck and fail to explore

exhaustively, in rare cases actions had to be generated randomly. In 15,000 learning steps, each

technique learned the linear motion dynamics well. However, they produced di�erent models of

the potential function. Random exploration (c.f. Fig. 3a) performed most poorly. The resulting

model was not accurate enough to allow the agent to navigate to the goal. When actions were

generated by pure exploitation, a reasonable path was found from the start to the goal. The

approach yielded good performance in terms of navigation. The model, however, was rather

inaccurate and the world was poorly explored, as can easily be seen from Fig. 3b. The best

results in terms of both control and model accuracy were found with directed exploration using

the competence map. Competence map exploration also resulted in a much smaller number of

collisions during learning, yet yielding the most accurate model. These �ndings demonstrate

the advantage of directed exploration techniques over random exploration. Further details may

be found in (Thrun, 1992b).
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Figure 3: Results. (a) Random Exploration. (b) Exploitation (whenever possible). (c) Explo-

ration with a competence map.

4 CONCLUSION

In active learning, the learner is given the ability to execute actions during learning. Hence, the

learner can, to a certain extent, control the stream of training data. A key challenge of active

learning is to select actions so as to optimize the rate of learning.

This paper reviews and discusses several heuristic approaches to the selection of actions

during active learning, which can primarily be found in the literature on neural networks and

reinforcement learning. In order to illustrate how these ideas work in practice, a concrete explo-

ration mechanisms based on arti�cial neural networks is outlined. In this approach, exploration

is achieved through estimating the learner's competence. The basic philosophy behind this and

most other approaches to the selection of actions is to estimate the expected gain of knowledge

as a function of the actions to be executed. The learner, then, picks actions which maximize the

expected knowledge gain.

While the area of passive, order-free learning has been studied extensively in the �eld of

machine learning, statistics, and arti�cial neural networks, considerably little e�ort has been

spent on the exploration of active learning issues. This might be attributed to the fact that

passive learning is simpler, and many learning tasks do not provide the opportunity to select

actions. Natural learners such as animals and humans, however, learn actively, as they make

use of their capability to act and in
uence their environment. They are truly embedded in their

environments, they act and observe. If arti�cial agents need to learn autonomously, they most

likely will have to follow the same learning principles.
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