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Abstract

Most research on machine learning has focused on sce-
narios in which a learner faces a single, isolated learning
task. The lifelong learning framework assumes that the
learner encounters a multitude of related learning tasks
over its lifetime, providing the opportunity for the trans-
fer of knowledge among these. This paper studies lifelong
learning in the context of binary classification. It presents
the invariance approach, in which knowledge is trans-
ferred via a learned model of the invariances of the do-
main. Results on learning to recognize objects from color
images demonstrate superior generalization capabilities
if invariances are learned and used to bias subsequent
learning.

1 Introduction
Supervised learning is concerned with learning an unknown
target function from a finite collection of input-output exam-
ples of that function. Formally, the framework of supervised
learning can be characterized as follows. Let F denote the set
of all target functions. For example, in a robot arm domain,
F might be the set of all kinematic functions for robots with
three joints. Every function f 2 F maps values from an input
space, denoted by I, into values in an output space, denoted
by O. The learner has a set of hypotheses that it can consider,
denoted by H, which might or might not be different from F .
For example, the set H could be the set of all artificial neural
networks with 20 hidden units, or, alternatively, the set of all
decision trees with depth less than 10. Throughout this paper,
we make the simplifying assumption that all functions in F are
binary classifiers, i.e., O = f0; 1g. We will refer to instances
that fall into class 1 as positive instances, and to those that fall
into class 0 as negative instances.

To learn an unknown target function f� 2 F , the learner
is given a finite collection of input-output examples (training
examples)

X = fhi; f�(i)ig; (1)

which are possibly distortedby noise. The goal of the learner is
to generate a hypothesish 2 H, such that the deviation (error)

E =
X
i=inI

Prob(i) jjf�(i) � h(i)jj (2)

between the target function f� andh on future examples will be
as small as possible. Here Prob is the probability distribution

according to which the training examples are generated. Prob
is generally unknown to the learner, as is f�.

Standard supervised learning focuses on learning a single
target function f�, and training data is assumed to be avail-
able only for this one function. However, if functions in F
are appropriately related, it can be helpful to have access to
training examples of other functions f in F as well. For ex-
ample, consider a robot whose task is to find and fetch various
objects, using its camera for object recognition. Let F be the
set of recognition (i.e., classification) functions for all objects,
one for each potential target object, and let the target function
f� 2 F correspond to an object the robot must learn to recog-
nize. X, the training set, will consist of positive and negative
examples of this object. The task of the learner is to find an
h which minimizes E. In particular, the robot should learn
to recognize the target object invariant of rotation, translation,
scaling in size, change of lighting and so on. Intuitively speak-
ing, the more profound the learner’s initial understanding of
these invariances, the fewer training examples it will require
for reliable learning. Because these invariances are common to
all functions in F , images showing other objects can provide
additional information and hence support learning f�.

This example illustrates the idea of lifelong learning. In
lifelong learning, a collection of related learning problems is
encountered over the lifetime of the learner. When learning
the n-th task, the learner may employ knowledge gathered in
the previous n � 1 tasks to improve its performance [Thrun
and Mitchell, to appear].

This paper considers a particular form of lifelong learning
in which the learning tasks correspond to learning boolean
classifications (concepts), and in which previous experience
consists of training examples of other classification functions
from the same family F . More formally, in addition to the set
of training examples X for the target function f�, the learner
is also provided n� 1 sets of examples

Xk = fhi; fk(i)ig (k 2 fk1; k2; : : : ; kn�1g

with kj 2 f1; 2; : : :; jF jg
8j 2 f1; 2; : : : ; n� 1g) (3)

of other functions ffk1; fk2; : : : ; fkn�1g � F taken from the
same function family F . Since this additional data can support
learning f�, we shall call each Xk a support set forX. The set
of available support sets for X, fXkjk = k1; k2; : : : ; kn�1g,
will be denoted by Y . Notice that the input-output examples in
the support sets Y may have been drawn from n� 1 different
probability distributions.



Given:

� a space of hypotheses H : I �! O

� a set of training examples X = fhi; f�(i)ig of some un-
known target function f� 2 F , drawn with probability dis-
tributionProb.

� in lifelong supervised learning: a collection of support sets
Y = fXkg, which characterize other functions fk 2 F .
Here Xk = fhi; fk(i)ig.

Determine:

a hypothesis h 2 H that minimizesX
i2I

Prob(i) jjf�(i) � h(i)jj

Table 1: Standard and lifelong supervised learning.

Support sets can be useful in a variety of real-world sce-
narios. For example, in [Lando and Edelman, 1995] an ap-
proach is proposed that improves the recognition rate of hu-
man faces based on knowledge learned by analyzing different
views of other, related faces. In speaker-dependent approaches
to speech recognition, learning to recognize personal speech is
often done by speaker adaptation methods. Speaker adaptation
simplifies the learning task by using knowledge learned from
other, similar speakers (e.g., see [Hild and Waibel, 1993]).
Other approaches that use related functions to change the bias
of an inductive learner can be found in [Utgoff, 1986], [Ren-
dell et al., 1987], [Suddarth and Kergosien, 1990], [Moore et
al., 1992], [Sutton, 1992], [Caruana, 1993], [Pratt, 1993], and
[Baxter, 1995].

Table 1 summarizes the problem definitions of the standard
and the lifelong supervised learning problem. In lifelong su-
pervised learning, the learner is given a collectionY of support
sets, in addition to the training set X and the hypothesis space
H. This raises two fundamental questions:

1. How can a learner use support sets to generalize more accu-
rately?

2. Under what conditions will a learner benefit from support
sets?

This paper does not provide general answers to these ques-
tions. Instead, it proposes one particular approach, namely
learning invariance functions, which relies on certain assump-
tions regarding the function set F . It also presents empirical
evidence that this approach to using support sets can signifi-
cantly improve generalization accuracy when learning to rec-
ognize objects based on visual data.

2 The Invariance Approach
The invariance approach first learns an invariance function �
from the support sets in Y . This function is then used to bias
the learner as it selects a hypothesis to fit the training examples
X of the target function f�.

2.1 Invariance Functions
Let Y = fXkg be a collection of support sets for learning
f�. Recall our assumption that all functions in F have binary
output values. Hence, each example in a support set is either
positive (i.e., output 1) or negative (i.e., output 0). Consider a
target function, fk 2 F with k 2 f1; : : : ; jF jg, and a pair of

examples, say i 2 I and j 2 I. A local nvar ance operator
�k : I� I �! f0; 1g is a mapping from a pair of input vectors
defined as follows:

�k(i; j) =

(
1 if fk(i) = fk(j) = 1
0 if fk(i) 6= fk(j)

not defined if fk(i) = fk(j) = 0

The local invariance operator indicates whether both instances
are members of class 1 (positive examples) relative to fk. If
�k(i; j) = 1, then fk is invariant with respect to the difference
between i and j. Notice that positive and negative instances of
fk are not treated symmetrically in the definition of � .

The local invariance operators �k (k = 1; : : : ; jF j) define a
(global) invariance function for F , denoted by � : I � I �!
f0; 1g. For two examples, i and j, �(i; j) is 1 if there exists a
k for which �k(i; j) = 1. Likewise, �(i; j) is 0 if there exists
a k for which �k(i; j) = 0:

�(i; j) =

(
1; if 9k 2 f1; : : : ; jF jgwith �k(i; j) = 1
0; if 9k 2 f1; : : : ; jF jgwith �k(i; j) = 0
not defined, otherwise

The invariance function � behaves like an invariance operator,
but it does not depend on k. It is important to notice that the
invariance function can be ill-defined. This is the case if there
exist two examples which both belong to class 1 under one
target function, but which belong to different classes under a
second target function:

9i; j 2 I; k; k0 2 f1; : : : ; jF jg : �k(i; j) = 1 ^ �k0(i; j) = 0

In such cases the invariance mapping is ambiguous and is not
even a mathematical function. A class of functionsF is said to
obey the invariance property if its invariance function is non-
ambiguous1. The invariance property is a central assumption
for the invariance approach to lifelong classification learning.

The concept of invariance functions is quite powerful. Sup-
pose F holds the invariance property. If � is known, every
training instance i for an arbitrary function fk 2 F can be cor-
rectly classified, given there is at least one positive instance of
fk available. To see, assume ipos 2 I is known to be a positive
instance for fk. Then for any instance i 2 I, �(i; ipos) will be
1 if and only if fk(i) = 1. Although the invariance property
imposes a restriction on the function family F , it holds true
for quite a few real-world problems, such as those typically
studied in character recognition, speech understanding, and
various other domains. For example, a function family obeys
the invariance property if all positive classes (of all functions
fk) are disjoint. One such function family is the family of
object recognition functions defined over distinct objects.

2.2 Learning the Invariants
In the lifelong learning regime studied in this paper, � is not
given. However, an approximation to �, denoted by �̂ can
be learned. Since � does not depend upon the specific target
function f�, every support set Xk 2 Y can be used to train
�̂, as long as there is at least one positive instance available
in Xk. For all k 2 f1; : : : ; jY jg, training examples for �̂ are
constructed from examples i; j 2 Xk:

h(i; j); �k(i; j)i

1It is generally acceptable for the invariance function to be ambigu-
ous, as long as the probability for generating ambiguously classified
pairs of examples is zero.



Figure 1: Fitting values and slopes: Let f� be the target
function for which three examples hx1; f

�(x1)i, hx2; f
�(x2)i,

and hx3; f
�(x3)i are known. Based on these points the learner

might generate the hypothesish1. If the slopes are also known,
the learner can do much better: h2.

Here �k must be defined, i.e., at least one of the examples i and j
must be positive under fk. In the experiments described below,
� is approximated by training an artificial neural network using
the Backpropagation algorithm.

The invariance network, once learned, can be used in con-
junction with a training set X to infer values for f�. Let
Xpos � X be the set of positive training examples in X. Then
for any ipos in Xpos, �̂(i; ipos) estimates f�(i) for i 2 I. If this
estimate is interpreted as a probability (of the event that i is
positive under f�), Bayes’ rule can be applied

Prob(f�(i)=1) = 1 �

0
@1 +

Y
ipos2Xpos

�̂(i; ipos)

1��̂(i; ipos)

1
A
�1

(4)

Notice that in this approach, �̂ is similar to a distance metric
that is obtained from the support sets [Moore et al., 1992;
Baxter, 1995]. The invariance network �̂ generalizes the notion
of a distance metric, because the triangle inequality need not
hold, and because an instance ipos can provide evidence that i
is member of the opposite class (iff �̂(i; ipos) < 0:5).

In general �̂ might not be accurate enough to describe f�

correctly. This may be because of modeling limitations, noise,
or lack of training data. We will therefore describe an alter-
native approach to the lifelong learning problem that employs
the invariance network, which has been found empirically to
generalize more accurately.

2.3 Extracting Slopes to Guide Generalization
The remainder of this section describes a hybrid neural network
learning algorithm for learning f�. This algorithm is a special
case of both the Tangent-Prop algorithm [Simard et al., 1992]
and the explanation-based neural network learning (EBNN)
algorithm [Mitchell and Thrun, 1993]. Here we will refer to it
as EBNN.

Suppose we are given a training set X, and an invariance
network �̂ that has been trained using a collection of support
sets Y . We are now interested in learning f�. One could, of
course, ignore the invariance network and the support sets alto-
gether and train a neural network purely based on the training
data X. The training set X imposes a collection of constraints
on the output values for the hypothesish. Ifh is represented by
an artificial neural network, as is the case in the experiments
reported below, the Backpropagation (BP) algorithm can be
used to fit X.

EBNN does this, but it also derives additional constraints
using the invariance network. More precisely, in addition to
the value constraints in X, EBNN derives constraints on the
slopes (tangents) for the hypothesis h. To see how this is

1. Let Xpos � X be the set of positive training examples in X.

2. Let X 0 = ;

3. For each training example hi; f�(i)i 2 Xpos do:

(a) Computeri�̂(i) =
1

jXposj

X
ipos2Xpos

@�̂(i)(ipos)

@i
using

the invariance network �̂.
(b) Let X 0 = X0 + hi; f�(i);ri�̂(i)i

4. Fit X 0.

Table 2: Application of EBNN to learning with invariance
networks.

done, consider a training example i, taken from the training
set X. Let ipos be an arbitrary positive example in X. Then,
�̂(i; ipos) determines whether i and ipos belong to the same
class—information that is readily available, since we are given
the classes of i and ipos. However, predicting the class using
the invariance network also allows us to determine the output-
input slopes of the invariance network. These slopes measure
the sensitivity of class membership with respect to the input
features in i. This is done by computing the partial derivative
of �̂ with respect to i at (i; ipos) (making use of the fact that
artificial neural networks are differentiable):

ri�̂(i) :=
@�̂(i; ipos)

@i

ri�̂(i) measures how infinitesimal changes in i will affect the
classification of i. Since �̂(�; ipos) is an approximation to f�,
ri�̂(i) approximates the slope rif

�(i). Consequently, in-
stead of fitting training examples of the type hi; f�(i)i, EBNN
fits training examples of the type

hi; f�(i);rif
�(i)i:

Gradient descent can be used to fit training examples of this
type, as explained in [Simard et al., 1992]. Fig. 1 illustrates the
utility of this additional slope information in function fitting.

Notice if multiple positive instances are available in X,
slopes can be derived from each one. In this case, averaged
slopes are used to constrain the target function:

ri�̂(i) :=
1

jXposj

X
ipos2Xpos

@�̂(i; ipos)

@i
(5)

Here Xpos � X denotes the set of positive examples inX. The
application of the EBNN algorithm to learning with invariance
networks is summarized in Table 2.

Generally speaking, slope information extracted from the
invariance network is a linear approximation to the variances
and invariances of F at a specific point in I. Along the invari-
ant directions slopes will be approximately zero, while along
others they will be large. For example, in the aforementioned
find-and-fetch tasks, suppose color is an important feature for
classification while brightness is not. This is typically the case
in situations with changing illumination. In this case, the in-
variance network could learn to ignore brightness, and hence
the slopes of its classification with respect to brightness would
be approximately zero. The slopes for color, however, would



Figure 2: Objects (left) and corresponding network inputs
(right). A hundred images of a bottle, a hat, a hammer, a
coke can, and a book were used to train and test the invariance
network. Afterwards, the classification network was trained to
distinguish the shoe from the glasses.

be large, given that slight color changes imply that the object
would belong to a different class.

When training the classification network, slopes provide ad-
ditional information about the sensitivity of the target func-
tion with respect to its input features. Hence, the invariance
network can be said to bias the learning of the classification
network. However, since EBNN trains on both slopes and
values simultaneously, errors in this bias (incorrect slopes due
to approximations in the learned invariance network) can be
overturned by the observed training example values inX. The
robustness of EBNN to errors in estimated slopes has been
verified empirically in robot navigation [Mitchell and Thrun,
1993] and robot perception [O’Sullivan et al., 1995] domains.

3 Example
3.1 The Domain: Object Recognition
To illustrate the transfer of knowledge via the invariance net-
work, we collected a database of 700 color camera images of
seven different objects (100 images per object), as depicted in
Fig. 2 (left columns).

Object color size
bottle green medium
hat blue and white large
hammer brown and black medium
can red medium
book yellow depending on perspective
shoe brown medium
glasses black small

The objects were chosen so as to provide color and size cues
helpful to their discrimination. The background of all images
consisted of plain, white cardboard. Different images of the
same object varied by the relative location and orientation of
the object within the image. In 50% of all snapshots, the
location of the light source was also changed, producing bright

Figure 3: Images, along with the corresponding network in-
puts, of the objects shoe and glasses. These examples illustrate
some of the invariances in the object recognition domain.

reflections at random locations in various cases. In some of the
images the objects were back-lit, in which case they appeared
to be black. Fig. 3 shows examples of two of the objects, the
shoe and the glasses.

Images were encoded by a 300-dimensional vector, provid-
ing color, brightness and saturation information for a down-
scaled image of size 10 by 10. Examples for the down-scaled
images are shown in Figures 2 (right columns) and 3. Although
each object appears to be easy to recognize from the original
image, in many cases we found it difficult to visually classify
objects from the subsampled images. However, subsampling
was necessary to keep the networks to a reasonable size.

The set of target functions, F , was the set of functions
that recognize objects, one for each object. For example, the
indicator function for the bottle, fbottle, was 1, if the image
showed a bottle, and 0 otherwise. Since we only presented
distinct objects, all sets of positive instances were disjoint.
Consequently, F obeyed the invariance property. The set of
hypotheses H was the set of all artificial neural networks with
300 input units, 6 hidden units, and 1 output unit, as such a
network was employed to represent the target function.

The objective was to learn to recognize shoes, i.e., f� =
fshoe. Five other objects, namely the bottle, the hat, the ham-
mer, the can and the book, were used to construct the support
sets Y . To avoid any overlap in the training set X and the sup-
port sets inY , we exclusively used pictures of a seventh object,
glasses, as counterexamples for fshoe. Each of the five support
sets in Y , Xbottle, Xhat, Xhammer, Xcan and Xbook, contained
100 images of the corresponding object (positive examples)
and 100 randomly selected images of other objects (negative
examples). When constructing training examples for the in-
variance network, we randomly selected a subset of 1,000 pairs
of images, 800 of which were used for training and 200 for
cross-validation. 50% of the final training and cross-validation
examples were positive examples for the invariance network
(i.e., both images showed the same object), and the other 50%
were negative examples. The invariance network was trained
using the Back-Propagation algorithm2 After training, the in-

2The classification accuracy of the invariance network was sig-
nificantly improved using a technique described in [Suddarth and
Kergosien, 1990]. See [Thrun and Mitchell, 1994] for details.
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Figure 4: Generalization accuracy, with (solid black curve) and without (gray curve) the invariance network and EBNN,
measured on an independent test set and averaged over 100 runs: (a) neural network training curves, one training example per
class, and (b) generalization curves with 95% confidence intervals, as a function of the number of training examples.

variance network managed to determine whether or not two
objects belong to the same class with 79.5% generalization
accuracy. It also exhibited 67.0% accuracy when tested with
images of shoes and glasses.

3.2 Learning to Recognize Shoes
Having trained the invariance network, we were now inter-
ested in training the classification network, fshoe. The network
employed in our experiments consisted of 300 input units, 6
hidden units, and 1 output unit—no effort was made to opti-
mize the network topology. A total of 200 examples of images
showing the shoe and the glasses were available for training
and testing the shoe classification network. In our first exper-
iment, we trained the classification network using only two of
these: a randomly selected image of the shoe (positive exam-
ple), and a randomly selected image of the glasses (negative
example). Slopes were computed using the previously learned
invariance network.3

Our experiments mainly addressed the following two ques-
tions, which are central to the lifelong learning framework and
the invariance approach:
1. How important are the support sets, i.e., to what extent does

the invariance network improve the generalization accuracy
when compared to standard supervised learning?

2. How effectively can EBNN overcome errors in the invari-
ance network? How does EBNN compare to using the in-
variance network as a learned, generalized distance metric
(cf. Eq. (4))?
Fig. 4a shows the average generalization curve as a function

of training epochs with and without the invariance network.
The curve shows the generalization accuracy of the classifica-
tion network, each trained using one positive and one negative
example. Without the invariance network and EBNN, the av-
erage generalization accuracy for Backpropagation is 59.7%.
However, EBNN increases the accuracy to 74.8%. The in-
variance network alone, when used as generalized distance
metric, classifies 75.2% of unseen images correctly. Notice
the accuracy of random guessing would be 50.0%.

3Since in our experiment the negative class, i.e., the glasses, forms
itself a disjoint class of images, those images are also used to de-
rive slopes (the slopes of �̂ were simply multiplied by �1). This
effectively doubles the number of slopes considered in Eq. (5). The
corresponding probabilities 1 � �̂(i; ineg) can also be incorporated
into Eq. (4). See [Thrun and Mitchell, 1994] for details.

The difference between the performance with and without
support sets, which is statistically significant at the 95% level,
can be assessed in several ways. In terms of residual error,
Backpropagation exhibits a misclassification rate that is 60.1%
larger than that of EBNN. A second interpretation is to look
at the performance increase, which is defined as the difference
in classification accuracy after learning and before learning,
assuming that the accuracy before learning is 50%. EBNN’s
performance increase is 24.8%, which is 2.6 times better than
Backpropagation’s 9.7%. On the other hand, the difference
between EBNN and the invariance network is not statistically
significant (at the 95% confidence level).

Each of these numbers has been obtained by averaging 100
experiments. Examining a single experiment provides addi-
tional insight. For example, when the neural network is trained
using the single image of the shoe and the single image of
the glasses depicted in Fig. 2, plain Backpropagation classifies
only 52.5% of the test images correctly. Here the generalization
rate is particularly poor, since the location of the objects within
the image differs, and Backpropagation mistakenly considers
location the crucial feature for object recognition. EBNN pro-
duces a network that is much less sensitive to object location,
resulting in a 85.5% generalization accuracy in this particular
experiment.

Notice that the results summarized above refer to the classi-
fication accuracy after 10,000 training epochs, using just one
positive and one negative training example. As can be seen in
Fig. 4a, Backpropagation suffers from some over-fitting, as the
accuracy drops after a peak at about 2,050 training epochs. The
average classification accuracy at this point in time is 61.3%.
However, due to lack of data, it is impossible in this domain to
use early stopping methods that rely on cross validation, and it
is not clear that such methods would have improved the results
for Backpropagation significantly.

These results illustrate that support sets can significantly
boost generalization accuracy when training data for the target
function is scarce. They also illustrate that EBNN manages
to make very effective use of the invariance knowledge cap-
tured in �̂. Results for experiments with larger training set
sizes are depicted in Fig. 4b. As the number of training exam-
ples increases, Backpropagation approaches the performance
of EBNN. After presenting 10 randomly drawn training ex-
amples of each class, EBNN classifies 90.8% and Backprop-
agation classifies 88.4% of the testing data correctly. This



matches our expectations, as the need for background knowl-
edge decreases as the number of training examples increases.
The invariance network alone using Eq. (4) (dashed curve)
performs slightly worse than both of these methods. Its gener-
alization accuracy is 87.3%, which is significantly worse than
that of EBNN (at the 95% confidence level).

3.3 The Role of the Invariance Network
The improved classification rates of EBNN, which illustrate the
successful transfer of knowledge from the support sets via the
invariance network, raise the question of what exactly are the
invariances represented in this network. What type information
do the slopes convey?

A plausible (but only approximate) measure of the impor-
tance of a feature is the magnitude of its slopes. The larger
the slopes, the larger the effect of small changes in the feature
on the classification, hence the more relevant the feature. In
order to empirically assess the importance of features, average
slope magnitudes were computed for all input pixels, averaged
over all 100 pairs of training instances. The largest average
slope magnitude was found for color information: 0.11. In
comparison, saturation slopes were, on average, only 0.063
(this is 57% of the average for color slopes), and brightness
slopes only 0.056 (51%).

These numbers indicate that, according to the invariance net-
work, color information was most important for classification.
To verify this hypothesis, we repeated our experiments omit-
ting some of the image information. More specifically, in one
experiment color information was omitted from the images, in
a second saturation, and in a third brightness. The results

without inv. net with inv. net
no color 52.4% 57.9%
no saturation 59.0% 72.9%
no brightness 58.7% 76.3%
full information 59.7% 74.8%

confirmed our belief that color information indeed dominates
classification. It is clear that without color the generalization
accuracy over the test set is poor, although EBNN still general-
izes better. If saturation or brightness is omitted, however, the
generalization rate is approximately equivalent to the results
obtained for the full images reported above. However, learning
required significantly more training epochs in the absence of
brightness information (not shown here).

Fig. 5 shows average slope matrices for the target category
(shoes) with respect to the three input feature classes, measur-
ing color, brightness and saturation. Grey colors indicate that
the average slope for an input pixel is zero. Bright and dark
colors indicate strongly positive and strongly negative slopes,
respectively. Notice that these slopes are averaged over all 100
explanations used for training.

As is easily seen, average color slopes vary over the im-
age, showing a slight positive tendency on average. Average
saturation slopes are approximately zero. Brightness slopes,
however, exhibit a strong negative tendency which is strongest
in the center of the image. One possible explanation for the lat-
ter observation is the following: Both the shoe and the glasses
are dark compared to the background. Shoes are, on average,
larger than glasses, and hence fill more pixels. In addition,
in the majority of images the object was somewhere near the
center of the image, whereas the border pixels showed signif-
icantly more noise. Lack of brightness in the image center

Figure 5: Slopes of the target concept (glasses) with respect
to (a) color, (b) saturation, and (c) brightness. White (black)
color represents positive (negative) values.

is therefore a good indicator for the presence of the shoe, as
is clearly reflected in the brightness slopes derived from the
invariance network. The less obvious results for color and sat-
uration might be attributed to the fact that optimal classifiers
are non-linear in color and saturation. To discriminate objects
by color, for example, the network has to spot a specific in-
terval in color space. Hence, the correct slopes can be either
positive or negative depending in the particular color of a pixel,
cancelling each other out in this plot.

As pointed out earlier, slopes provide first-order information,
and invariances may well be hidden in higher-order deriva-
tives. However, both the superior performance of EBNN and
the clear correlation of slope magnitudes and generalization
accuracy show that EBNN manages to extract useful invari-
ance information in this domain, even if these invariances defy
simple interpretation.

3.4 Using Support Sets as Hints

A related family of methods for the transfer of knowledge
across learning tasks are proposed in [Suddarth and Kergosien,
1990], [Pratt, 1993], [Caruana, 1993]. In a nutshell, these ap-
proaches develop improved internal representations by consid-
ering multiple functions inF (sequentially, or simultaneously).
Following these ideas, we trained a single classification net-
work providing the support data as “hints” for the development
of more appropriate internal representations. This approach re-
sulted in 62.1% (20 hidden units), or 59.8% (5 hidden units)
generalization accuracy when only a single pair of training in-
stances was used. These numbers can directly be compared
to the experiments reported above. However, we observed
significant overfitting when using this architecture. The peak
generalization rate of 70.6% (20 hidden units), or 69.8% (5
hidden units), respectively, occurred after approximately 450
training epochs. This generalization accuracy is significantly
higher than that of standard Backpropagation, though not as
high as that of the invariance approach with EBNN.

4 Discussion
In the lifelong learning framework, the learner faces a collec-
tion of related learning tasks. The challenge of this framework
is to transfer knowledge across tasks, in order to generalize
better from fewer training examples of the target function it-
self.

This paper investigates a particular type of lifelong learning,
in which binary classifiers are learned in a supervised manner.
In the approach taken here, invariances are learned and trans-
ferred using the EBNN learning algorithm. The experimental
results provide clear evidence of superior generalization in the



object recognition domain, when invariances learned from re-
lated tasks are used to guide generalization when learning to
recognize a new object. However, the the invariance approach
relies on several critical assumptions:

1. Well-defined invariance functions rest on the assumption that
F obeys the invariance property. Note even if the invariance
property is not satisfied by F , the support sets can be used
to train an invariance network. Even the object recogni-
tion domain presented above provides an example in which
the invariance property may hold only approximately. This
is because different objects may look alike in sufficiently
coarse-grained, noisy images.

2. It is also assumed that functions in F possess certain in-
variances which can actually be learned by the invariance
network. This does not follow from the invariance property.
The exact invariances that will be learned depend crucially
on the input representation and function approximator used
for �̂.

3. We also assumed that the output space O of functions in F
is binary. However, this assumption is not essential for the
invariance approach. In principle, invariance functions may
be defined for arbitrary, high-dimensional output spaces,
given that a notion of difference between output vectors is
available, as demonstrated in [Thrun and Mitchell, 1994].

In the experiments reported above, all three assumptions were
at least approximately fulfilled. We conjecture that the real
world offers a variety of tasks where learned invariances can
boost generalization. Problems such as face recognition, cur-
sive handwriting recognition, stock market prediction and
speech recognition, possess non-trivial but important invari-
ances. For example, consider the problem of learning to rec-
ognize faces of various individuals. Here certain aspects are
important for successful recognition (e.g., the distance between
the eyes), whereas others are less important (e.g., the direction
in which the person is looking). After training on a num-
ber of individuals, we conjecture that an invariance network
might grasp some of these invariances, reducing the difficulty
of learning faces of new individuals.

The central question raised in this paper is whether learn-
ing can be made easier when the learner has already learned
other related tasks. Will a system that is “trained” to learn
generalize better than a novice learner? This paper provides
encouraging results in an object recognitiondomain. However,
most questions that arise in the context of lifelong learning still
lack satisfactory, more general answers. We expect that future
research in this direction will be important to going beyond
the intrinsic bounds associated with learning single isolated
functions.
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