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Abstract

Most research on machine learning has focused on sce-
nariosin which alearner faces asingle, isolated learning
task. The lifelong learning framework assumes that the
learner encounters a multitude of related learning tasks
over itslifetime, providing the opportunity for the trans-
fer of knowledgeamong these. Thispaper studieslifelong
learninginthe context of binary classification. It presents
the invariance approach, in which knowledge is trans-
ferred via a learned model of the invariances of the do-
main. Resultson learning to recognize objectsfrom color
images demonstrate superior generalization capabilities
if invariances are learned and used to bias subsequent
learning.

1 Introduction

Supervised learning is concerned with learning an unknown
target function from a finite collection of input-output exam-
ples of that function. Formally, the framework of supervised
learning can be characterized asfollows. Let /' denote the set
of dl target functions. For example, in a robot arm domain,
F might be the set of all kinematic functions for robots with
threejoints. Every function f € F' maps vaues from an input
space, denoted by 1, into values in an output space, denoted
by O. Thelearner has a set of hypothesesthat it can consider,
denoted by H, which might or might not be different from .
For example, the set H could be the set of al artificial neural
networks with 20 hidden units, or, aternatively, the set of all
decision trees with depth less than 10. Throughout this paper,
we makethe simplifying assumptionthat al functionsin F" are
binary classfiers, i.e, O = {0,1}. We will refer to instances
that fal into class 1 as positive instances, and to thosethat fall
into class 0 as negative instances.

To learn an unknown target function f* € F, the learner
is given afinite collection of input-output examples (training
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which are possibly distorted by noise. Thegoal of thelearneris
to generate ahypothesish € H, such that the deviation (error)
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between thetarget function f* and z onfutureexamples will be
as small as possible. Here Prob isthe probability distribution
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according to which the training examples are generated. Prob
is generdly unknown to the learner, asis f*.

Standard supervised learning focuses on learning a single
target function f*, and training data is assumed to be avail-
able only for this one function. However, if functionsin F’
are appropriately related, it can be helpful to have access to
training examples of other functions f in ¥ as well. For ex-
ample, consider arobot whose task isto find and fetch various
objects, using its camera for object recognition. Let I be the
set of recognition (i.e., classification) functionsfor al objects,
one for each potential target object, and let the target function
f* € F correspond to an object the robot must learn to recog-
nize. X, thetraining set, will consist of positive and negative
examples of this object. The task of the learner isto find an
h which minimizes £. In particular, the robot should learn
to recognize the target object invariant of rotation, trandation,
scaling in size, change of lightingand so on. Intuitively speak-
ing, the more profound the learner’s initial understanding of
these invariances, the fewer training examples it will require
for reliablelearning. Because theseinvariances are common to
all functionsin 7', images showing other objects can provide
additional information and hence support learning f*.

This example illustrates the idea of lifelong learning. In
lifelong learning, a collection of related learning problemsis
encountered over the lifetime of the learner. When learning
the n-th task, the learner may employ knowledge gathered in
the previous n — 1 tasks to improve its performance [Thrun
and Mitchell, to appear].

This paper considers a particular form of lifelong learning
in which the learning tasks correspond to learning boolean
classifications (concepts), and in which previous experience
consists of training examples of other classification functions
from the same family #'. More formaly, in addition to the set
of training examples X for the target function f*, the learner
isalso provided n — 1 sets of examples

X = {@ @)} (b€ bk knoa}

with k; € {1,2,...,|F|}

Vie{l,2,...,n—1}) (3
of other functions { f%,, ft,, - - -, fx,_,} C F taken from the
same functionfamily F'. Sincethisadditional data can support
learning f*, we shall call each X asupport set for X. The set
of avallable support sets for X, {X¢|k = k1, k2, ..., kn_1},
will be denoted by Y. Noticethat theinput-output examplesin
the support sets Y may have been drawn from n — 1 different
probability distributions.



e aspace of hypotheses H : | — O
e aset of training examples X = {{¢, f*(¢))} of some un-
known target function /* € I, drawn with probability dis-
tribution Prob.
¢ inlifelong supervised learning: a collection of support sets
Y = {X}, which characterize other functions f, € F.
Here X, = {{4, fx(¢)}}.
Determine:
ahypothesish € H that minimizes
> Prob(i) [1f*(i) — h(d)l|
iel
Table 1: Standard and lifelong supervised learning.

Support sets can be useful in a variety of real-world sce-
narios. For example, in [Lando and Edelman, 1995] an ap-
proach is proposed that improves the recognition rate of hu-
man faces based on knowledge learned by analyzing different
viewsof other, related faces. |n speaker-dependent approaches
to speech recognition, learning to recogni ze personal speechis
often done by speaker adaptation methods. Speaker adaptation
simplifies the learning task by using knowledge learned from
other, similar speakers (eg., see [Hild and Waibel, 1993)).
Other approaches that use related functionsto change the bias
of an inductive learner can be found in [Utgoff, 1986], [Ren-
dell et al., 1987], [Suddarth and Kergosien, 1990], [Moore et
al., 1992], [Sutton, 1992], [Caruana, 1993], [Pratt, 1993], and
[Baxter, 1995].

Table 1 summarizes the problem definitions of the standard
and the lifelong supervised learning problem. In lifelong su-
pervised learning, thelearner isgivenacollection Y of support
sets, in addition to thetraining set X and the hypothesis space
H. Thisraises two fundamental questions:

1. How can alearner use support sets to generalize more accu-
rately?

2. Under what conditions will a learner benefit from support
sets?

This paper does not provide general answers to these ques-
tions. Instead, it proposes one particular approach, namely
learning invariance functions, which relies on certain assump-
tions regarding the function set #'. It also presents empirical
evidence that this approach to using support sets can signifi-
cantly improve generalization accuracy when learning to rec-
ogni ze objects based on visua data.

2 Thelnvariance Approach

The invariance approach first learns an invariance function o
from the support setsin Y. This function isthen used to bias
thelearner asit selects ahypothesisto fit the training examples
X of thetarget function f*.

2.1 Invariance Functions

Let Y = {X;} be a collection of support sets for learning
f*. Recall our assumption that al functionsin /' have binary
output values. Hence, each example in a support set is either
positive (i.e., output 1) or negative (i.e., output 0). Consider a
target function, f;, € F withk € {1,... |F|}, and apar of

EXdITIPICS, >dy @ € £ AU 7 & L. A 10CA Tival arlce Oper alor
7, - I x I — {0, 1} isamapping from apair of input vectors
defined as follows:

1 if fr (i) = fr(4) =1
{ 0 if fr(i) # fr(4)
not defined if f(i) = fi(j) =0

The local invariance operator indicates whether both instances
are members of class 1 (positive examples) relative to f;,. If
(4, 7) = 1, then f; isinvariant with respect to the difference
between i and j. Noticethat positive and negative instances of
fr arenot treated symmetrically in the definition of .

Thelocal invariance operators 7, (k = 1,...,|F]|) definea
(global) invariance function for /', denotedby ¢ : I x | —
{0, 1}. For two examples, i and j, o(¢, j) is1if thereexistsa
k for which 7 (7, j) = 1. Likewise, o(i, j) iSO if there exists
ak forwhich (4, j) = 0

{ 1, if 3k e {1,... |F|} withr(i, /)

Tk(iaj) =

1
0

0, if 3k e{1,...,|F|}with7(4,j)
not defined, otherwise

o(i,j) =

Theinvariance function o behaves like an invariance operator,
but it does not depend on k. It isimportant to notice that the
invariance function can be ill-defined. Thisisthe case if there
exist two examples which both belong to class 1 under one
target function, but which belong to different classes under a
second target function:

di,je Lk kel .. |F|}:m(i,j) =1 Am(i,j) =0

In such cases the invariance mapping is ambiguous and is not
even amathematical function. A classof functions /' issaid to
obey the invariance property if itsinvariance function is non-
ambiguous'. The invariance property is a central assumption
for the invariance approach to lifelong classification learning.
The concept of invariance functionsis quite powerful. Sup-
pose F' holds the invariance property. If o is known, every
training instance : for an arbitrary function f;, € F' can be cor-
rectly classified, given thereisat least one positiveinstance of
[ available. To see, assume ipos € 1 isknownto be apositive
instance for f;. Then for any instancei € I, (i, ipos) Will be
1if and only if f;(¢) = 1. Although the invariance property
imposes a restriction on the function family #7, it holds true
for quite a few rea-world problems, such as those typically
studied in character recognition, speech understanding, and
various other domains. For example, a function family obeys
the invariance property if all positive classes (of all functions
fr) are digoint. One such function family is the family of
object recognition functions defined over distinct objects.

2.2 Learning thelnvariants

In the lifelong learning regime studied in this paper, o is not
given. However, an approximation to «, denoted by & can
be learned. Since o does not depend upon the specific target
function f*, every support set X, € Y can be used to train
&, aslong as there is at least one positive instance available
in Xj. Foral k € {1,...,|Y]}, training examples for & are
congtructed from examples i, j € X:

<(i’j)’ Tk(la]»

LItisgenerally acceptablefor theinvariance function to beambigu-
ous, as long as the probability for generating ambiguously classified
pairs of examplesis zero.



Figure 1: Fitting values and dlopes: Let f* be the target
function for which three examples (z1, f*(z1)), (22, f*(22)),
and (z3, f*(x3)) areknown. Based on these pointsthe learner
might generate the hypothesish;. If theslopesare a so known,
thelearner can do much better: h,.

Herer;, must bedefined, i.e., at least oneof theexamplesi and j
must be positiveunder f;. Intheexperiments described bel ow,
o isapproximated by training an artificial neural network using
the Backpropagation a gorithm.

The invariance network, once learned, can be used in con-
junction with a training set X to infer values for f*. Let
Xpos C X bethe set of positivetraining examplesin X. Then
for any ipos IN Xpos, 64, 7pos) €Stimates £~ (i) for s € I. If this
estimate is interpreted as a probability (of the event that i is
positiveunder f*), Bayes' rule can be applied

o€ Xoce 1-5(4, ipos)
Notice that in this approach, ¢ is similar to a distance metric
that is obtained from the support sets [Moore et al., 1992
Baxter, 1995]. Theinvariancenetwork & generalizesthenotion
of a distance metric, because the triangle inequality need not
hold, and because an instance ipes Can provide evidence that ¢
is member of the opposite class (iff &(7, ipes) < 0.5).

In general & might not be accurate enough to describe f*
correctly. Thismay be because of modeling limitations, noise,
or lack of training data. We will therefore describe an alter-
native approach to the lifelong learning problem that employs
the invariance network, which has been found empirically to
generalize more accurately.

Prob(f*(i)=1) =

2.3 Extracting Sopesto Guide Generalization

Theremainder of thissection describesahybrid neural network
learning algorithmfor learning . Thisagorithmisaspecia
case of both the Tangent-Prop algorithm [Simard et al., 1992]
and the explanation-based neural network learning (EBNN)
agorithm [Mitchell and Thrun, 1993]. Here we will refer to it
as EBNN.

Suppose we are given a training set X, and an invariance
network & that has been trained using a collection of support
sets Y. We are now interested in learning f*. One could, of
course, ignoretheinvariance network and the support setsalto-
gether and train aneural network purely based on the training
data X . Thetraining set X imposesacollection of constraints
ontheoutput valuesfor thehypothesish. If h isrepresented by
an artificial neural network, as is the case in the experiments
reported below, the Backpropagation (BP) agorithm can be
used to fit X.

EBNN does this, but it also derives additiona constraints
using the invariance network. More precisdly, in addition to
the value constraintsin X, EBNN derives constraints on the
dopes (tangents) for the hypothesis ~. To see how this is

1. Let Xpos C X Detheset of positivetraining examplesin X .

2. LeX' =10

3. For each training example (i, f*(i)) € Xpos dO:

_ 1 Z 06(1)(ipos)
|Xp08| .

(8 ComputeV ;5 (i) 5
%pos€ X pos t

using

the invariance network &.
(b) Let X' = X'+ (i, f(i), Vid(i))
4. Fit X'.

Table 2: Application of EBNN to learning with invariance
networks.

done, consider a training example 4, taken from the training
set X. Let ipos be an arbitrary positive example in X. Then,
(4, ipos) determines whether ¢ and ips belong to the same
class—information that isreadily avail able, since we are given
the classes of 7 and ipes. However, predicting the class using
the invariance network also alows us to determine the output-
input slopes of the invariance network. These slopes measure
the sensitivity of class membership with respect to the input
featuresin i. Thisisdone by computing the partial derivative
of & with respect to 7 at (4, ipes) (Making use of the fact that
artificial neural networks are differentiable):

96 (i, ipos)

oi
V;6 (%) measures how infinitesimal changesin ¢ will affect the
classification of i. Since &(-, ipes) IS 8N @pproximation to f*,
V;6(%) approximates the sope V; f*(¢). Consequently, in-
stead of fitting training examples of thetype (¢, f*(¢)}, EBNN
fits training exampl es of the type

{6, (1), Vi [7(8))-

Gradient descent can be used to fit training examples of this
type, asexplainedin[Simard et al., 1992]. Fig. 1illustratesthe
utility of thisadditional slope information in function fitting.

Notice if multiple positive instances are available in X,
slopes can be derived from each one. In this case, averaged
dopes are used to constrain the target function:

1 96 (i, pos)
di

Via(i) =

Vio(i) = (5)

| X pos| pon€ X pos

Here X,0s C X denotesthe set of positiveexamplesin X. The
application of the EBNN agorithmto learning with invariance
networksis summarized in Table 2.

Generdly speaking, dope information extracted from the
invariance network is a linear approximation to the variances
and invariances of F' at aspecific pointin /. Along theinvari-
ant directions slopes will be approximately zero, while along
others they will be large. For example, in the aforementioned
find-and-fetch tasks, suppose color is an important feature for
classification while brightnessisnot. Thisistypically the case
in situations with changing illumination. In this case, thein-
variance network could learn to ignore brightness, and hence
the dlopes of its classification with respect to brightnesswould
be approximately zero. The slopes for color, however, would



Figure 2: Objects (left) and corresponding network inputs
(right). A hundred images of a bottle, a hat, a hammer, a
coke can, and abook were used to train and test theinvariance
network. Afterwards, the classification network was trained to
distinguish the shoe from the glasses.

be large, given that dight color changes imply that the object
would belong to a different class.

When training the classification network, slopes provide ad-
ditiona information about the sensitivity of the target func-
tion with respect to its input festures. Hence, the invariance
network can be said to bias the learning of the classification
network. However, since EBNN trains on both slopes and
values simultaneoudly, errorsin this bias (incorrect slopes due
to approximations in the learned invariance network) can be
overturned by the observed training example valuesin X. The
robustness of EBNN to errors in estimated slopes has been
verified empiricaly in robot navigation [Mitchell and Thrun,
1993] and robot perception [O’ Sullivan et al., 1995] domains.

3 Example

3.1 TheDomain: Object Recognition

To illustrate the transfer of knowledge via the invariance net-
work, we collected a database of 700 color camera images of
seven different objects (100 images per object), as depicted in
Fig. 2 (Ieft columns).

Object color size

bottle green medium

hat blue and white large

hammer | brown and black medium

can red medium

book yellow depending on perspective
shoe brown medium

glasses | black small

The objectswere chosen so as to provide color and size cues
helpful to their discrimination. The background of all images
consisted of plain, white cardboard. Different images of the
same object varied by the relative location and orientation of
the object within the image. In 50% of al snapshots, the
location of the light source was al so changed, producing bright

Figure 3: Images, along with the corresponding network in-
puts, of the objects shoe and glasses. These examplesillustrate
some of the invariancesin the object recognition domain.

reflections at random locationsin variouscases. 1nsome of the
images the objects were back-lit, in which case they appeared
to be black. Fig. 3 shows examples of two of the objects, the
shoe and the glasses.

Images were encoded by a 300-dimensional vector, provid-
ing color, brightness and saturation information for a down-
scaled image of size 10 by 10. Examples for the down-scaled
imagesare shown in Figures2 (right columns) and 3. Although
each object appears to be easy to recognize from the original
image, in many cases we found it difficult to visually classify
objects from the subsampled images. However, subsampling
was necessary to keep the networksto areasonable size.

The set of target functions, /', was the set of functions
that recognize objects, one for each object. For example, the
indicator function for the bottle, fyoe, Was 1, if the image
showed a bottle, and 0 otherwise. Since we only presented
distinct objects, al sets of positive instances were digoint.
Consequently, /' obeyed the invariance property. The set of
hypotheses H wasthe set of al artificial neural networkswith
300 input units, 6 hidden units, and 1 output unit, as such a
network was employed to represent the target function.

The objective was to learn to recognize shoes, i.e, f* =
fenoe- Five other objects, namely the bottle, the hat, the ham-
mer, the can and the book, were used to construct the support
sets Y. To avoid any overlap inthetraining set X and the sup-
portsetsinY’, weexclusively used pictures of aseventh object,
glasses, as counterexamples for faoe. Each of the five support
setsin Y, Xoottles Xhats X hammer, Xcan and Xpook, contained
100 images of the corresponding object (positive examples)
and 100 randomly selected images of other objects (negative
examples). When constructing training examples for the in-
variance network, we randomly sel ected asubset of 1,000 pairs
of images, 800 of which were used for training and 200 for
cross-validation. 50% of thefinal training and cross-validation
examples were positive examples for the invariance network
(i.e., both images showed the same object), and the other 50%
were negative examples. The invariance network was trained
using the Back-Propagation algorithm? After training, the in-

2The classification accuracy of the invariance network was sig-
nificantly improved using a technique described in [Suddarth and
Kergosien, 1990]. See[Thrun and Mitchell, 1994] for details.
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Figure 4: Generdization accuracy, with (solid black curve) and without (gray curve) the invariance network and EBNN,
measured on an independent test set and averaged over 100 runs: (a) neura network training curves, one training example per
class, and (b) generalization curves with 95% confidence intervals, as afunction of the number of training examples.

variance network managed to determine whether or not two
objects belong to the same class with 79.5% generalization
accuracy. It aso exhibited 67.0% accuracy when tested with
images of shoes and glasses.

3.2 Learning to Recognize Shoes

Having trained the invariance network, we were now inter-
ested in training the classification network, feoe. The network
employed in our experiments consisted of 300 input units, 6
hidden units, and 1 output unit—no effort was made to opti-
mize the network topology. A total of 200 examples of images
showing the shoe and the glasses were available for training
and testing the shoe classification network. In our first exper-
iment, we trained the classification network using only two of
these: arandomly selected image of the shoe (positive exam-
ple), and a randomly selected image of the glasses (negative
example). Slopeswere computed using the previoudy learned
invariance network.®

Our experiments mainly addressed the following two ques-
tions, which are central to thelifelong learning framework and
theinvariance approach:

1. How important are the support sets, i.e., to what extent does
theinvariance network improve the generalization accuracy
when compared to standard supervised learning?

2. How effectively can EBNN overcome errors in the invari-
ance network? How does EBNN compare to using the in-
variance network as a learned, generaized distance metric
(cf. Eq. (4))?

Fig. 4a showsthe average generalization curve as afunction
of training epochs with and without the invariance network.
The curve shows the generalization accuracy of the classifica-
tion network, each trained using one positive and one negative
example. Without the invariance network and EBNN, the av-
erage generalization accuracy for Backpropagation is 59.7%.
However, EBNN increases the accuracy to 74.8%. Thein-
variance network alone, when used as generalized distance
metric, classifies 75.2% of unseen images correctly. Notice
the accuracy of random guessing would be 50.0%.

3Sincein our experiment the negative class, i.e., the glasses, forms
itself a digjoint class of images, those images are also used to de-
rive slopes (the slopes of & were simply multiplied by —1). This
effectively doubles the number of slopes considered in Eg. (5). The
corresponding probabilities 1 — & (1, ineg) Can also be incorporated
into Eq. (4). See[Thrun and Mitchell, 1994] for details.

The difference between the performance with and without
support sets, which is statistically significant at the 95% level,
can be assessed in several ways. In terms of residual error,
Backpropagati on exhibits amisclassification rate that is60.1%
larger than that of EBNN. A second interpretation is to look
at the performance increase, which is defined as the difference
in classification accuracy after learning and before learning,
assuming that the accuracy before learning is 50%. EBNN's
performance increase is 24.8%, which is 2.6 times better than
Backpropagation's 9.7%. On the other hand, the difference
between EBNN and the invariance network is not statistically
significant (at the 95% confidence level).

Each of these numbers has been obtained by averaging 100
experiments. Examining a single experiment provides addi-
tional insight. For example, when the neural network istrained
using the single image of the shoe and the single image of
the glasses depicted in Fig. 2, plain Backpropagation classifies
only 52.5% of thetest imagescorrectly. Herethegeneralization
rateis particularly poor, sincethelocation of the objectswithin
the image differs, and Backpropagation mistakenly considers
location the crucia feature for object recognition. EBNN pro-
duces a network that is much less sensitive to object location,
resulting in a 85.5% generalization accuracy in this particular
experiment.

Noticethat the results summarized above refer to the classi-
fication accuracy after 10,000 training epochs, using just one
positive and one negative training example. Ascan beseenin
Fig. 4a, Backpropagation suffersfrom some over-fitting, asthe
accuracy dropsafter apeak at about 2,050 training epochs. The
average classification accuracy at this pointin timeis 61.3%.
However, duetolack of data, itisimpossiblein thisdomain to
use early stopping methodsthat rely on cross validation, and it
isnot clear that such methods would have improved the results
for Backpropagation significantly.

These results illustrate that support sets can significantly
boost generalization accuracy when training datafor the target
function is scarce. They aso illustrate that EBNN manages
to make very effective use of the invariance knowledge cap-
tured in 6. Results for experiments with larger training set
sizes are depicted in Fig. 4b. Asthe number of training exam-
ples increases, Backpropagation approaches the performance
of EBNN. After presenting 10 randomly drawn training ex-
amples of each class, EBNN classifies 90.8% and Backprop-
agation classifies 88.4% of the testing data correctly. This
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edge decreases as the number of training examples increases.
The invariance network alone using Eq. (4) (dashed curve)
performs dightly worse than both of these methods. Its gener-
alization accuracy is 87.3%, which is significantly worse than
that of EBNN (at the 95% confidence level).

3.3 TheRoleof thelnvariance Network

Theimproved classification ratesof EBNN, whichillustratethe
successful transfer of knowledge from the support sets viathe
invariance network, raise the question of what exactly are the
invariancesrepresented inthisnetwork. What typeinformation
do the slopes convey?

A plausible (but only approximate) measure of the impor-
tance of a feature is the magnitude of its slopes. The larger
the dopes, the larger the effect of small changesin the feature
on the classification, hence the more relevant the feature. In
order to empirically assess theimportance of features, average
s ope magnitudes were computed for al input pixels, averaged
over dl 100 pairs of training instances. The largest average
dope magnitude was found for color information: 0.11. In
comparison, saturation slopes were, on average, only 0.063
(thisis 57% of the average for color slopes), and brightness
slopes only 0.056 (51%).

These numbersindicatethat, according to theinvariance net-
work, color information was most important for classification.
To verify this hypothesis, we repeated our experiments omit-
ting some of the image information. More specifically, in one
experiment color information was omitted from theimages, in
a second saturation, and in athird brightness. The results

| withoutinv. net  withinv. net

no color 52.4% 57.9%
no saturation 59.0% 72.9%
no brightness 58.7% 76.3%
full information 59.7% 74.8%

confirmed our belief that color information indeed dominates
classification. Itisclear that without color the generalization
accuracy over thetest set ispoor, although EBNN still general-
izes better. If saturation or brightnessis omitted, however, the
generaization rate is approximately equivalent to the results
obtai ned for thefull imagesreported above. However, learning
required significantly more training epochs in the absence of
brightness information (not shown here).

Fig. 5 shows average slope matrices for the target category
(shoes) with respect to the three input feature classes, measur-
ing color, brightness and saturation. Grey colorsindicate that
the average slope for an input pixel is zero. Bright and dark
colors indicate strongly positive and strongly negative slopes,
respectively. Noticethat these slopes are averaged over al 100
explanations used for training.

As is easily seen, average color slopes vary over the im-
age, showing a dight positive tendency on average. Average
saturation slopes are approximately zero. Brightness slopes,
however, exhibit a strong negative tendency which is strongest
inthe center of theimage. One possibleexplanationfor thelat-
ter observationisthefollowing: Both the shoe and the glasses
are dark compared to the background. Shoes are, on average,
larger than glasses, and hence fill more pixels. In addition,
in the majority of images the object was somewhere near the
center of the image, whereas the border pixels showed signif-
icantly more noise. Lack of brightness in the image center

i

o

Figure 5. Slopes of the target concept (glasses) with respect
to (a) color, (b) saturation, and (c) brightness. White (black)
color represents positive (negative) values.

is therefore a good indicator for the presence of the shoe, as
is clearly reflected in the brightness slopes derived from the
invariance network. Theless obviousresultsfor color and sat-
uration might be attributed to the fact that optimal classifiers
are non-linear in color and saturation. To discriminate objects
by color, for example, the network has to spot a specific in-
terval in color space. Hence, the correct slopes can be either
positiveor negative dependingintheparticular color of apixel,
cancelling each other out in this plot.

Aspointed out earlier, d opesprovidefirst-order information,
and invariances may well be hidden in higher-order derive-
tives. However, both the superior performance of EBNN and
the clear correlation of slope magnitudes and generalization
accuracy show that EBNN manages to extract useful invari-
ance informationin thisdomain, even if these invariances defy
simple interpretation.

3.4 Using Support SetsasHints

A related family of methods for the transfer of knowledge
across learning tasks are proposed in [ Suddarth and Kergosien,
1990], [Pratt, 1993], [Caruana, 1993]. In anutshell, these ap-
proaches develop improved internal representations by consid-
ering multiplefunctionsin F' (sequentialy, or simultaneoudly).
Following these ideas, we trained a single classification net-
work providingthe support dataas “hints’ for the devel opment
of moreappropriateinternal representations. Thisapproach re-
sulted in 62.1% (20 hidden units), or 59.8% (5 hidden units)
generalization accuracy when only asingle pair of trainingin-
stances was used. These numbers can directly be compared
to the experiments reported above. However, we observed
significant overfitting when using this architecture. The peak
generdization rate of 70.6% (20 hidden units), or 69.8% (5
hidden units), respectively, occurred after approximately 450
training epochs. This generalization accuracy is significantly
higher than that of standard Backpropagation, though not as
high as that of the invariance approach with EBNN.

4 Discussion

In the lifedlong learning framework, the learner faces a collec-
tion of related learning tasks. The challenge of thisframework
is to transfer knowledge across tasks, in order to generaize
better from fewer training examples of the target function it-
sf.

This paper investigatesa particular typeof lifelong learning,
inwhich binary classifiers are learned in a supervised manner.
In the approach taken here, invariances are learned and trans-
ferred using the EBNN learning algorithm. The experimental
results provide clear evidence of superior generalizationin the
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lated tasks are used to guide generalization when learning to
recognize a new object. However, the the invariance approach
relies on severd critical assumptions:

1. Wdl-definedinvariancefunctionsrest ontheassumptionthat
I obeystheinvariance property. Note even if theinvariance
property is not satisfied by ', the support sets can be used
to train an invariance network. Even the object recogni-
tion domain presented above provides an example in which
the invariance property may hold only approximately. This
is because different objects may look dike in sufficiently
coarse-grained, noisy images.

2. It isaso assumed that functions in [ possess certain in-
variances which can actualy be learned by the invariance
network. Thisdoes not follow from the invariance property.
The exact invariances that will be learned depend crucially
on the input representation and function approximator used
foro.

3. We aso assumed that the output space O of functionsin F
is binary. However, thisassumption is not essential for the
invariance approach. In principle, invariance functions may
be defined for arbitrary, high-dimensional output spaces,
given that a notion of difference between output vectorsis
available, as demonstrated in [Thrun and Mitchell, 1994].

In the experiments reported above, al three assumptions were
at least approximately fulfilled. We conjecture that the resl
world offers a variety of tasks where learned invariances can
boost generdization. Problems such as face recognition, cur-
sive handwriting recognition, stock market prediction and
speech recognition, possess non-trivia but important invari-
ances. For example, consider the problem of learning to rec-
ognize faces of various individuals. Here certain aspects are
important for successful recognition (e.g., the distance between
the eyes), whereas othersare less important (e.g., thedirection
in which the person is looking). After training on a num-
ber of individuas, we conjecture that an invariance network
might grasp some of these invariances, reducing the difficulty
of learning faces of new individuals.

The central question raised in this paper is whether learn-
ing can be made easier when the learner has already learned
other related tasks. Will a system that is “trained” to learn
generalize better than a novice learner? This paper provides
encouraging resultsin an object recognitiondomain. However,
most questionsthat arisein the context of lifelong learning still
lack satisfactory, more general answers. We expect that future
research in this direction will be important to going beyond
the intrinsic bounds associated with learning single isolated
functions.
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