To appear in: Robotics And Autonomous Systems
special issue on Robot Learning, 1995.

An Approach to Learning
Mobile Robot Navigation

Sebastian Thrun

Universitat Bonn
Institut fir Informatik 11
Romerstr. 164, 53117 Bonn, Germany
E-mail: thrun@carbon.informatik.uni-bonn.de, thrun@cs.cmu.edu

Abstract

This paper describes an approach to learning a simple indoor robot navigation
task through trial-and-error. A mobile robot, equipped with visual, ultrasonic
and laser sensors, learns to servo to a designated target object. In less than ten
minutes of operation time, the robot is able to navigate to a marked target ob-
ject in an office environment. The central learning mechanism is the explanation-
based neural network learning algorithm (EBNN). EBNN initially learns function
purely inductively using neural network representations. With increasing experi-
ence, EBNN employs domain knowledge to explain and to analyze training data
in order to generalize in a more knowledgeable way. Here EBNN is applied in the
context of reinforcement learning, which allows the robot to learn control using
dynamic programming.

Keywords: explanation-based learning, mobile robots, machine learning, navigation,
neural networks, perception

1 Introduction

Throughout the last decades, the field of robotics has produced a large variety of ap-
proaches for the control of complex physical manipulators. Despite significant progress
in virtually all aspects of robotics science, most of today’s robots are specialized to
perform a narrow set of tasks in a very particular kind of environment. Most robots
employ specialized controllers that are carefully designed by hand, using extensive

S. Thrun An Approach to Learning Mobile Robot Navigation 2

knowledge of the robot, its environment and the task is shall perform. If one is inter-
ested in building autonomous multi-purpose robots, such approaches face some serious
bottlenecks.

e Knowledge bottleneck. Designing a robot controller requires prior knowledge
about the robot, its environment and the tasks it is to perform. Some of the
knowledge is usually easy to obtain (like the kinematic properties of the robot),
but other knowledge might be very hard to obtain (like certain aspects of the
robot dynamics, or the characteristics of the robot’s sensors). Moreover, certain
knowledge (like the particular configuration of the environment or the particular
task one wants a robot to do) might not be accessible at all at the design-time
of the robot.

e Engineering bottleneck. Making domain knowledge computer-accessible, i.e.,
hand-coding explicit models of robot hardware, sensors and environments, has of-
ten been found to require tremendous amounts of programming time. As robotic
hardware becomes increasingly more complex, and robots are to become more
reactive in more complex and less predictable environments, the task of hand-
coding a robot controller will become more and more a cost-dominating factor in
the design of robots.

e Tractability bottleneck. Even if the robot, its environment and its goals can
be modeled in sufficient detail, generating control for a general-purpose device has
often been found to be of enormous computational complexity (see for example
[13, 31]). Moreover, the computational complexity often increases drastically
with the complexity of the mechanical device.

Machine learning aims to overcome these limitations, by enabling a robot to collect
its knowledge on-the-fly, through real-world experimentation. If a robot is placed in
an unknown environment, or faced with a novel task for which no a priori solution
is available, a robot that learns shall collect new experiences, acquire new skills, and
eventually perform new tasks all by itself. For example, in [9] a robot manipulator is
described which learns to insert a peg into a hole without prior knowledge regarding
the manipulator or the hole. Maes and Brooks [15] have successfully applied learning
techniques to coordinating leg motion for an insect-like robot. Their approach, too,
operates in the absence of a model of the dynamics of the system. Learning techniques
have frequently come to bear in situations where the physical world is extremely hard
to model by hand. For example, Pomerleau describes a computer system that learns
to steer a vehicle driving at 55mph on public highways, based on sensor data from a
video camera [26]. Learning techniques have also successfully been applied to speed-
up robot control, by observing the statistical regularities of “typical” situations (like
typical robot and environment configurations), and compiling more compact controllers

S. Thrun An Approach to Learning Mobile Robot Navigation 3

for the frequently encountered. For example, Mitchell [19] describes an approach in
which a mobile robot becomes increasingly reactive, by using observations to compile
fast rules out of a database of domain knowledge.

Generally speaking, approaches to machine learning can be divided into two major cat-
egories: inductive learning and analytical learning. Inductive learning techniques, like
decision tree learning [27], spline interpolation [7] or artificial neural network learning
[29], generalize sets of training examples via a built-in, domain-independent inductive
bias. They typically can learn functions from scratch, based purely on observation.
Analytical approaches to learning, like explanation-based learning [5, 18, 20], gener-
alize training examples based on domain-specific knowledge. They employ a built-in
theory of the domain of the target function for analyzing and generalizing individual
training examples. Both families of approaches are characterized by opposite strengths
and weaknesses. Inductive learning mechanisms are more general in that they can
learn in the absence of prior knowledge. In order to do so, however, they require large
amounts of training data. Analytical learning techniques learn from much less training
data, relying instead on the learner’s internal domain theory. They hence require the
availability of an appropriate domain theory.

In mobile robot domains, large amounts of training data is typically hard to obtain
due to the slowness of actual robot hardware. Therefore, analytical learning tech-
niques seem to have a clear advantage. Their strong requirement for accurate domain
knowledge, however, has found to be a severe obstacle in applying analytical learning
to realistic robotics domains [12, 19]. In this paper we present the explanation-based
neural network (EBNN) learning algorithm [22, 37] which integrates both analytical
and inductive learning. It smoothly blends both learning principles depending on the
quality of the available domain knowledge. This paper also reports experimental results
for learning robot navigation in an office environment.

2 Integrating Inductive and Analytical Learning

EBNN is a hybrid learning mechanism, which integrates inductive and analytical learn-
ing. Before explaining EBNN, let us briefly consider its components: (inductive) neural
network learning and (analytical) explanation-based learning.

2.1 Neural Network Backpropagation

Artificial neural networks (see [10, 30, 40] for an introduction) consist of a set of simple,
densely interconnected processing units. These units transform signals in a non-linear

S. Thrun An Approach to Learning Mobile Robot Navigation 4

a) Training examples
(a) g p

18 has made of | upward open flat 18
light | handle | Styrofoam | concave | color | vessel | bottom | expensive || ts_cup?

yes yes no no blue yes yes yes yes
no no yes yes red no yes no no
yes no yes yes red yes no no no
no no yes yes green | yes yes no yes

(b) Target concept

1s_cup? - is_liftable, holds_liguid

ws_liftable - as_light, has_handle

1s_liftable - made_of_Styrofoam, upward_concave
holds_liguid - open_vessel, flat_bottom

Figure 1: The cup example. (a) Some training examples, (b) the unknown target
concept.

way. Neural networks are nonparametric estimators which can fit smooth functions
based on input-output examples. The internal parameters of a neural network, which
are adapted in the process of function fitting (learning), are called weights and bi-
ases. The Backpropagation algorithm [29], which is the currently most widely used
supervised neural network learning algorithm, learns purely inductively, by observing
statistical regularities in the training patterns.

Consider the example depicted in Fig. 1. Suppose we are facing the problem of learn-
ing to classify cups. More specifically, imagine we want to train an artificial neural
network, denoted by f, which can determine the cupness of an object based on the
features is_light, has_handle, made_of Styrofoam, color, upward_concave, open_vessel,
flat_bottom, and is_expensive. One way to learn the new concept is to collect train-
ing examples of cups and non-cups, and employ the Backpropagation procedure to
iteratively refine the weights of the target network. Such a learning scheme is purely
inductive. It can learn functions from scratch, in the absence of any domain knowledge.
The generalization accuracy of the trained neural network depends on the number of
training examples, and typically a large set of training examples is required to fit a
target function accurately.

S. Thrun An Approach to Learning Mobile Robot Navigation 5

2.2 Explanation-Based Learning

To illustrate explanation-based learning (EBL) [5, 20], which is the most widely studied
analytical approach to machine learning, imagine one were given a theory of the domain.
In the symbolic regime, in which analytical approaches have been studied the most,
such a domain theory typically consists of a set of rules, which can explain why training
examples are members of the target function. EBL generalizes training examples via
the following three-step procedure:

1. Explain. Explain the training example by chaining together domain theory
rules.

2. Analyze. Analyze the explanation in order to find the weakest precondition
under which this explanation leads to the same result. Features that play no part
in an explanation are not included in this weakest precondition. The generalized
explanation forms a rule, which generalizes the training example.

3. Refine. Add this generalized explanation to the rule memory.
To illustrate this procedure, consider the cup example depicted in Table 1. Let us

assume the learner is given a domain theory which contains the following rules (cf.

Fig. 2):

is_liftable is_light, has_handle

is_liftable - made_of_Styrofoam, upward_concave
holds_liquid :- open_vessel, flat_bottom
is_cup? - s liftable, holds_liquid

This domain theory can explain every positive example in the training set. For example,
the explanation of the first training example in Table 1 reads: The object is light and
has a handle. Hence is is liftable. It also has an open vessel and a flat bottom, and
therefore can hold a liqguid. Consequently it is a cup. As the reader may notice, the
color of the cup does not play a part in this explanation. Therefore, any object with a
different color but otherwise identical features will also be a cup. This reasoning step
illustrates the weakest precondition operator in symbolic EBL, which basically analyzes
the explanation to find the weakest precondition under which this very explanation
still applies. The complete analysis of the example explanation leads to the following
generalized rule:

is_cup? — s light N has_handle N\ open_vessel N flat_bottom

Figure 2: A Symbolic domain theory for explaining cups. Notice that only the
grey shaded features are relevant, since only those occur in a domain theory rule. EBL
benefits from rules with sparse dependencies.

Explaining and analyzing the second positive example Table 1 yields the rule
is_ccup? - — made_of Styrofoam A upward_concave N open_vessel A flat_bottom

which, together with the first rule, describes already the target concept correctly. The
drastically improved generalization rate, when compared with pure inductive tech-
niques, follows from the fact that the learner has been provided with a complete and
correct theory of the domain. In its most pure form, EBL can acquire only rules that
follow from the initial domain theory — it does not learn at the knowledge level [6].
Therefore, EBL methods have often been applied to speed-up learning [18]. Recent work
has produced EBL methods can learn from domain knowledge that is only partially
correct [3, 24, 25, 28].

2.3 The Explanation-Based Neural Network Learning Algo-
rithm

Most approaches to EBL require that the domain theory be represented by symbolic
rules, and, moreover, be correct and complete. In EBNN, the domain theory is repre-
sented by artificial neural networks which are learned from training data, hence might
be incorrect. To illustrate EBNN, let us assume one had already learned a neural
network domain theory for the cup example considered here. As in other approaches

S. Thrun An Approach to Learning Mobile Robot Navigation 7

to EBL, the domain theory shall allow the learner to reason about training examples.
Thus, an appropriate domain theory could, for example, represent each individual in-
ference step in the logical derivation of the target concept by a separate neural network.
In our cup example, a collection of three networks for predicting whether an object
is liftable (denoted by f1), for determining if an object can hold a liquid (f), and
for predicting the cupness of an object as a function of the two intermediate concepts
is_liftable and holds_liquid (fs) forms an appropriate domain theory (c¢f. Fig. 3), as
it suffices to reason about the cupness of an object. It is, however, not necessarily
correct, as the domain theory networks themselves may have been learned through
previous observations.

Recall the goal of learning is to learn an artificial neural network f, shown in Fig.
4, which shall directly determine if an object is a cup based on the observed object
features. How can the neural network domain theory be employed to refine the target
network f?7 EBNN learns analytically by explaining and analyzing training examples
via the following three-step procedure:

1. Explanation. In EBNN the domain theory is used to explain training examples
by chaining together multiple steps of neural network inferences. An explanation
is a post-facto prediction of the training example in terms of the domain theory.
In our example, the domain theory network f; is used to predict the degree to
which the object is liftable, network f, is employed to predict if the object can
hold a liquid, and finally the cupness of an object is evaluated via network fs.
This neural network inference, which forms the explanation of a training example,
explains why a training example is a member of its class in terms of the domain
theory. The explanation sets up the inference structure necessary for analyzing
and generalizing this training example.

2. Analysis. The explanation is analyzed in order to generalize the training ex-
ample in feature space. Unlike symbolic approaches to EBL, which employ the
weakest precondition operator, EBNN generalizes by extracting slopes of the tar-
get function. More specifically, EBNN extracts the output-input slopes of the
target concept by computing the first derivative of the neural network explana-
tion. These slopes measure, according to the domain theory, how for a given
training example infinitesimal small changes in feature space will change the
output of the target function. Since neural network functions are differentiable,
these slopes can easily be obtained by computing the first derivative of the neural
network explanation.

In the cup example, EBNN extracts slopes from the explanation composed of
the three domain theory networks fi, fi, and f3. The output-input derivative
of fi predicts, how infinitesimally small changes in the input space of f; will
change the degree as to which f; predicts an object to be liftable. Likewise, the

Figure 4: The target network. The target network maps input features directly to
the target concept.

derivatives of f; and f3 predict the effect of small changes in their input spaces on
their vote. Chaining these derivatives together results in slopes which measure
how infinitesimal small changes of the individual example features will change
the cupness of the object.

Slopes guide the generalization of training examples in feature space. For exam-
ple, irrelevant features, i.e., features whose values are irrelevant for the cupness
of an object (e.g., the features color and is_expensive in the cup example above)

S. Thrun An Approach to Learning Mobile Robot Navigation 9

will have approximately zero slopes. On the other hand, large slopes indicate im-
portant features, since small changes of the feature value will have a large effect
on the target concept according to the neural network domain theory. Hence, if
the domain theory is sufficiently accurate, the extracted slopes provide a knowl-
edgeable means to generalize a training example in feature space.

3. Refinement. Finally, EBNN refines the weights and biases of the target network.
Fig. 5 summarizes the information obtained by the inductive and the analytical
component. Inductive learning yields a target value for each individual training
example. The analytical extraction of slopes returns estimates of the slopes of the
target function. When updating the weights of the network, EBNN minimizes a
combined error function which takes both value error and slope error into account,
denoted by Eyaes, and FEggpes, respectively:

£ = Evalues + aEslopes

Here « is a gain parameter trading off value fit versus slope fit. Thus, weight
updates in EBNN seek to fit both the inductively derived target values, as well
as the analytically derived target slopes. Gradient descent in weight space is
employed to iteratively minimize F. Notice that in our implementation we used
a modified version of the Tangent-Prog algorithm [32] to refine the weights and
biases of the target network [17].

2.4 Accommodating Imperfect Domain Theories

Thus far, we have not addressed the potential damage arising from poor domain theo-
ries. Because the domain theory itself is learned from training data and thus might be
erroneous, the analytically extracted slopes will only be approximately correct. Espe-
cially in the early phase of learning the domain theory will be close to random, and as
a consequence the extracted slopes may be misleading. EBNN provides a mechanism
to prevent from the damaging effects arising from inaccurate slopes. The accuracy of
slopes is estimated by the prediction accuracy of the domain theory: The more accu-
rate a domain theory predicts the target value of the training example, the allegedly
more accurate are the slopes extracted from this domain theory. Here the accuracy
is the root-mean square deviation of the true target value and the prediction by the
domain theory, denoted by 6.

When refining the weights and biases of the target network, 6 determines the weight
of the target slopes «

e
o = max (0,1 — =

, 1f 6 < dmax

(1)

5max

Ormax 0, otherwise

Figure 5: Fitting values and slopes in EBNN: Assume f is an unknown target
function for which three examples (x1, f(x1)), (22, f(22)), and (a3, f(x3)) are given.
Based on these points the learner might generate the hypothesis g. If the slopes are
also known, the learner can do much better: h.

The constant 6.« denotes the maximum anticipated prediction error, which is used
for normalization and which must be set by hand. This weighting scheme ensures
that accurate slopes will have a large weight in training, whereas inaccurate slopes will
be gradually ignored. We consistently found in our experiments that the arbitration
scheme, called LOB* [22], is crucial for successful learning in cases where the domain
theory is poor and misleading, since it diminishes the damaging effect arising from
misleadingly wrong domain theories [22, 23].

This completes the description of the EBNN learning mechanism. To summarize,
EBNN refines the target network using a combined inductive-analytical mechanism.
Inductive training information is obtained through observation, and analytical training
information is obtained by explaining and analyzing these observations in terms of the
learner’s prior knowledge. Inductive and analytical learning are traded off dynamically
by an arbitration scheme LOB* which estimates the current accuracy of the domain
theory.

Both methods of learning, inductive and analytical, play an important role in EBNN.
Once a reasonable domain theory is available, EBNN benefits from its analytical com-
ponent, since it replaces the pure syntactical bias of neural networks gradually by a
more knowledgeable, domain-specific bias. The result is an improved generalization
accuracy from less training data. Of course, analytical learning requires the availabil-
ity of a domain theory which can explain the target function. If such a domain theory
is weak or not available, EBNN degrades to a purely inductive neural network learner.
It is the inductive component of EBNN which ensures that learning is possible even in
the total absence of domain knowledge.

S. Thrun An Approach to Learning Mobile Robot Navigation 11

3 Reinforcement Learning

In order to learn sequences of actions, as required for controlling a robot, we applied
EBNN in the context of Q-Learning [41, 42]. Recently, Q-Learning and other related
reinforcement learning and dynamic programming algorithms [2, 34] have been applied
successfully to robot manipulation [8], robot control [16] and games [35].

In essence, Q-Learning learns control policies for partially controllable Markov chains
with delayed pay-off (penalty/reward) [1, 2]. It does this by constructing a value
function Q(s, a), which maps perceptual sensations, denoted by s, and actions, denoted
by a, to task-specific utility values. Such a value function, once learned, ranks actions
according to their goodness: The larger the future pay-off for picking an action ¢ when
s is observed, the larger its value Q(s,a).

Formally, the value function approximates the sum of discounted future penalty /reward
one is expected to receive upon executing action @ when s is observed, and acting
optimally thereafter

Sesa) = B[S0 o)

Here v (0<~<1) is a discount factor that, if y<1, favors reward reaped sooner in
time. The value r(7) denotes the pay-off at time 7. Throughout this paper, we will
make the restrictive assumption that the goal of learning is to achieve a certain goal
configuration. The pay-off r is zero, except for the end of an episode, where it is 4100,
if the robot achieved its goal, and —100 if it failed. Notice that the framework of
partially controllable Markov chains implies that the state of the environment is fully
observable. Hence, knowing the most recent observation is sufficient to predict the
effect of actions on future states and pay-offs.

Initially, all values Q(s,a) are set to zero. Q-Learning approximates Q(S,a) on-line,
through real-world experimentation. Suppose, in the course of learning, the learner
executes action a; when s; is observed, which leads to a new sensation s;y; and, if
a; terminates the learning episode, a penalty of —100 or a reward of +100. This
observation is used to update Q(s,a):

+100 if a; final action, robot reached its goal
—100 if a; final action, robot failed
Qtarget(st7 at) - (3)

max Q(s;11,a) otherwise
a Is action

The scalar o (0<a<1) is a learning rate, which is typically set to a small value that is
decayed over time. This simple update rule has been shown—under certain conditions

Figure 6: Q-Learning. The goal of Q-Learning is to learn a value function which
ranks actions according to their goodness. This value function is learned recursively:
Q(s1,ay1) is updated based on later values Q(sq,az), Q(s3,as), ... in the episode.

concerning the exploration scheme, the environment, the learning rate and the repre-
sentation of Q—to converge to the optimal value function Q, and hence to produce
optimal policies that maximize the future, discounted pay-off [11, 41].

Q-Learning propagates knowledge in the value function from the end of an episode
gradually to the beginning. This is because at the end of an episode, Q is learned
directly based on the final pay-off. In between, Q is updated based on later Q-values.
This process of backing up values can be slow, since they are propagated in the reverse
order of the robot’s operation. For this and other reasons, Q-Learning has often been
combined with Sutton’s temporal difference learning [33], which basically mixes multi-
ple value estimates. The extended Q-Learning rule, which was used in all experiments
reported in this paper, reads:

+100 if a; final action, robot reached its goal
—100 if a; final action, robot failed

Qtarget(st7 at) - (4)
v |(1=A) - max Q(spr,a) + A+ QW (sp41, apy1)

a is action

otherwise

Here A (0<A<1) is a gain parameter which trades off the recursive component and the
non-recursive component in the update equation. This extended update rule propa-
gates values faster, but the target values may be inaccurate due to non-optimal action
choices within the episode. Fig. 6 illustrates a Q-Learning episode.

The application of EBNN to Q-Learning is straightforward. The target function in
Q-Learning is @, and training examples in the standard, inductive regime are of the
form

((sevar), QY(si,ar)) (5)

S. Thrun An Approach to Learning Mobile Robot Navigation 13

(¢f. Egs. (3) and (4)). To explain such training examples, the learner has to have a
neural network domain theory which allows to post-facto predict episodes. In our im-
plementation, this domain theory consists of a collection of predictive action models, de-
noted by f, (one for each action a), which predict the sensation and the penalty/reward
value at time t+1 based on the sensations at time ¢. To simplify the notation, predic-
tions of sensations will be denoted by f;**, and predictions of pay-off values will be
denoted by fpav—off,

To see how training examples are explained, consider the first two cases in the plain
Q-Learning rule (3). Since the final penalty/reward can directly be predicted by the
action models, a single prediction constitutes already the full explanation:

= (se)

To explain the third case in Eq. (3), the action model and the Q-network are chained
together. Recall the action model f,, predicts the sensation s;y; based on s;, and the
value function Q estimates the target value Q'*'8(s;, a;) based on the sensation s;41.
Hence, the explanation of the third case in Eq. (3) is:

Qfz™(s0).) with & = argmax Qfsu, o)

a is action

Notice that the value function is both the target function and part of the domain
theory, as it is required for explaining its own training examples.

The analysis of this explanation, which involves computing the first derivative of neural
network functions, is straightforward:

9 fpay—off
M if a; final action
Js o
VstQtarget(Sm ay) — “
~ - % B . af‘“ais(s)) otherwise

Here an expression of the type 95z} denotes the first derivative of a function g with
o

ox
respect to the input variable x, taken at xg. The target slope, Vs, Q"8 (s;, a;), is an n-
dimensional vector with n being the dimension of the perceptual space (i.e., the input
space of the action model networks f,). The second case in (6) involves multiplying a
n X n-dimensional matrix with an n-dimensional vector.

Explaining training examples constructed according to the combined Q-Learning and

Figure 7: EBNN and reinforcement learning. General-purpose action models are
used to derive slope information for training examples.

temporal difference learning rule (4) is analogous:

a pay—off
M if @, final action

Js N
V@ s) — {1 [<1—A>- Rl g
St4+1
a sens
A VstHQtarget(StHaatH)] . fatai(s) otherwise
s

Eq. (7) can be understood as the first derivative of the learning rule (4), in which
unknown, missing derivatives are replaced by neural network domain theory derivatives.
A neural network explanation of an episode is graphically depicted in Fig. 7. As in
the cup example, the process of explaining and analyzing individual training episodes
produces target slopes for the value function Q. EBNN'’s training examples for Q are
hence of the type

< (St7at)7 Qtarget(shat)7 vst Qtarget(8t7at) >

(¢f. (5)) which are obtained via Eqgs. (4) and (7). As described in the previous section,
when updating the Q-network, its weights and biases are refined such as to fit both
the target values Q" (s,, a;) and the target slopes V;, Q'%(s;, a;). The arbitration
factor a (¢f. Eq. (1)) is adjusted according to LOB*, using the prediction accuracy of
the action models as a measure for the accuracy of the slopes.

S. Thrun An Approach to Learning Mobile Robot Navigation 15

4 Results

4.1 Experimental Setup

In this section we will present some empirical results obtained in a mobile robot nav-
igation domain. Xawvier, the robot at hand, is shown in Fig. 8. It is equipped with
a ring of 24 sonar sensors, a laser light-stripper (range finder), and a color camera
mounted on a pan/tilt unit. Sonar sensors return approximate echo distances, along
with noise. Xavier’s 24 sonar sensors provide a full 360 degree range of view. The laser
light-stripper measures distances more accurately, but its perceptual field is limited to
a small range in front of the robot.

In the experiments reported here, the task of the robot was to learn to navigate to a
specifically marked target location in a laboratory environment. In some experiments,
the location of the marker (a green soda can) was fixed throughout the course of learn-
ing, in others it was moved across the laboratory and only kept fixed for the duration
of a single training episode. Sometimes parts of the environment were blocked by ob-
stacles. The marker was detected using a visual object tracking routine that recognized
and tracked the marker in real-time, making heavily use of the robot’s pan/tilt unit.
Every 3 seconds the robot could chose one of seven applicable actions, ranging from
sharp turns to straight forward motion. In order to avoid collisions, the robot employed
a pre-coded obstacle avoidance routine. Whenever the projected path of the robot was
blocked by an obstacle, the robot decelerated and, if necessary, changed its motion
direction (regardless of the commanded action). Xavier was operated continuously in
real-time. Each learning episode corresponded to a sequence of actions which started
at a random initial position and terminated either when the robot lost sight of the
target object, for which it was penalized, or when it halted in front of the marker, in
which case it was rewarded. Penalty/reward was only given at the end of an episode,
and Q-Learning with EBNN was employed to learn action policies.

In our implementation, percepts were mapped into a 46-dimensional perceptual space,
comprising 24 logarithmically scaled sonar distance measurements, 10 locally averaged
laser distance scans, and an array of 12 camera values that indicated the horizontal
angle of the marker position relative to the robot. Hence, each action model mapped
46 sensor values to 46 sensor predictions (15 hidden units), plus a prediction of the
immediate penalty /reward value. The models were learned beforehand with the Back-
propagation training procedure, using cross-validation to prevent from over-fitting.
Initially, we used a training corpus of approximately 800 randomly generated training
examples for training the action models, which was gradually increased through the
course of this research to 3,000 examples, taken from some 700 episodes. These training
examples were distributed roughly equally among the seven action model networks.

S. Thrun An Approach to Learning Mobile Robot Navigation 16

color camera
pan/tilt head
‘Q

range finder ‘6 &T by radio link

sonar ring

computers

structured light

bump detectors

Figure 8: The Xavier robot. Xavier has been built by and is property of Carnegie
Mellon University, Pittsburgh, USA.

Of course, Xavier’s predictive action models face highly stochastic variables. There
are many unknown factors which influence the actual sensations. Firstly, sensors are
generally noisy, i.e., there is a certain probability that a sensor returns corrupted values.
Secondly, the obstacle avoidance routine was very sensitive to small and subtle details
in the real world. For example, if the robot faces an obstacle, it is often very hard to
predict whether its obstacle avoidance behavior will make it turn left or right. Thirdly,
the delay in communication, imposed by the tetherless Ethernet link, turned out to
be rather unpredictable. These delays, which extended the duration of actions, were
anywhere in the range of 0.1 up to 3 seconds. For all those reasons, the domain theory
functions f, captured only typical aspects of the world by modeling the average outcome
of actions, but were clearly unable to predict the details accurately. Empirically we
found, however, that they were well-suited for extracting appropriate slopes. Fig. 9
gives an example for a slope array extracted from a domain theory network.

In all our experiments the action models were trained first, prior to learning Q, and
frozen during learning control. When training the Q@ networks (46 input, eight hidden
and one output unit), we explicitly memorized all training data, and used a replay
technique similar to “experience replay” described in [14]. This procedure memorizes
all past experiences explicitly. After each learning episode, it re-estimates the target
values of the Q function by recursively replaying past episodes, as if they had just

S. Thrun An Approach to Learning Mobile Robot Navigation 17

next sensation—— | O (1 LI A 111M
. 4. | sonar laser \ camera ipl ayoff
prediction (output) — : (1] TEEEN

sensation (input)

wm @ [. S - . . sERENEE
m | s mmEoas N | e . [B N
|| T I .. 8 | | I
n . [1 1 L
. . . TR T
o= nCO0D00C0G0O0Gao50ao0anoa T T ..
camera | | |\ | YT []
I - - - oa 1]
H @\ I . . [1 LR
|| R R I R P R . allm - - []
_m (] mEEa == alnnm - oo LI |
EEEEE = EEEES= (I (1 | I | [[[L]
..... I . . .
S . 1 B
. EE N | | - omom
............. D I] - EEEE-NH
laser B : e e emmn
........ . . EEE . .
. oW
all= EEE ..
B (1 1 . .
Hm = EEE
............ - s m u
...... (N1 Nl | K .
n [
amm 1T E
...... - o [] [|
....... mmn
[B N
............ .
Ly] L[]
sonar || | [... .. L -
...... .. -mEn
----- L]
] HE= L]
...... . - mm s “mm
'y N | [
B R ..
5 . om -
RN N e | | i -HEE -
[N -Hm
Cam . - m . .
U 1 I 1 LI u

Figure 9: Prediction and slopes. A neural network action model predicts sensations
and penalty /reward for the next time step. The large matrix displays the output-input
slopes of the network. White boxes refer to positive and black boxes to negative values.
Box sizes indicate absolute magnitudes. Notice the bulk of positive gradients along the
main diagonal, and the cross-dependencies between different sensors.

been observed. Experience replay makes extensive use of the training examples, hence
allowing for more accurate evaluations of the minimum requirements on data volume.
In all our experiments the update parameter v was set to 0.9, and A was set to 0.7,
which was empirically found to work best. We performed a total of seven complete
learning experiments, each consisting of 25-40 episodes.

S. Thrun An Approach to Learning Mobile Robot Navigation 18

4.2 Experimental Results

To evaluate the importance of the action models for rapid learning, we ran two sets of
experiments: one in which no prior knowledge was available, and one where Xavier had
access to the pre-trained action models. One of the latter experiments is summarized
in Fig. 10. In this figure, we visualized several learning episodes seen from a bird
eye’s view, using a sonar-based technique for building occupancy maps described in
[4, 38]. In all cases Xavier learned to navigate to a static target location in less than 19
episodes (with action models) and 24 episodes (without action models). Each episode
lasted for between two and eleven actions. Xavier consistently learned to navigate
to arbitrary target locations (which was required in five out of seven experiments)
always in less than 25 (35, respectively) episodes. The reader should notice the small
number of training examples required to learn this task. Although the robot faced a
high-dimensional sensation space, it always managed to learn the task in less than 10
minutes of robot operation time, and, on average, less than 20 training examples per
Q-network. Of course, the training time does not include the time for collecting the
training data of the action models. Almost all training examples for the action models,
however, were obtained as a side effect when experimenting with the robot.

When testing our approach, we also confronted Xavier with situations which were not
part of its training experience, as shown in Fig. 11. In one case, we kept the location
of the marker fixed and moved it only in the testing phase. In a second experiment,
we blocked the robot’s path by large obstacles, even though it had not experienced
obstacles during training. It was here that the presence of appropriate action models
was most important. While without prior knowledge the robot consistently failed to
approach the marker under these new conditions, it reliably (>90%) managed this
task when it was trained with the help of the action model networks. Obviously, this is
because in EBNN the action models provides a knowledgeable bias for generalization
to unseen situations.

4.3 Simulation Results

In order to investigate EBNN more thoroughly, and in particular to study the robust-
ness of EBNN to errors in the domain theory, we ran a more systematic study in a
simulated robot domain. Simulation has the advantage that large sets of experiments
are easy to perform, under repeatable and well-controlled conditions.

The task, which bears close resemblance to the navigation task described above, is
depicted in Fig. 12a. The robot agent, indicated by the small circle, has to navigate to
the fixed goal location (large circle) while avoiding collisions with the obstacle and the
surrounding walls. Its sensors measure the distances and the angles to both the center

S. Thrun An Approach to Learning Mobile Robot Navigation 19

episode 18 episode 19 episode 20

Figure 10: Learning navigation. Traces of three early and three late episodes are
shown. Each diagram shows a two-dimensional occupancy maps of the world, which
have been constructed based on sonar information. Bright regions indicate free-space
and dark regions indicate the presence of obstacles. Note that the location of the target
object (marked by a cross) is held constant in this experiment.

Figure 11: Testing navigation. After training, the location of the target object was
moved. In some experiments, the path of the robot was also blocked by obstacles.
Unlike plain inductive neural network learning, EBNN almost always manages these
cases successfully.

of the obstacle and the center of the goal, relative to the agent’s view. Five different
actions are available to the robot, as depicted in Fig. 12b. Note that this learning task

S. Thrun An Approach to Learning Mobile Robot Navigation 20

as
a2 a4

ay as

obstacle robot

Figure 12: The simulated robot world. (a) The agent has to learn a function which
maneuvers the robot to the goal location starting at arbitrary initial location, without
colliding with walls or the obstacle. The sensations S are the distance and relative
angle to goal and obstacle, respectively. The thin lines indicate the 1-step predictions
of the sensations by well-trained neural action models. (b) shows the action space.

is completely deterministic, lacking any noise in the agent’s percepts or control. This
task also differed from the task described above in that only 4 perceptual values were
provided, instead of 46, making the learning problem slightly harder.

The learning setup was analogous to the robot experiments described in the previous
section. Before learning a value function, we trained 5 neural network action models,
one for each individual action. Subsequently, 5 Q-functions were trained to evaluate
the values of each action. In this implementation we used a real-valued approximation
scheme using nearest-neighbor generalization for the Q-functions [22]. This scheme was
empirically found to outperform Backpropagation. Parameters were otherwise identical
to the navigation task described above.

Experiment 1: The role of analysis. In a first experiment, we were interested
in the overall merit of the analytical learning component of EBNN. Thus, the action
models were trained in advance, using 8192 randomly generated training examples per
network. Fig. 13 shows results for learning control with and without explanation-based
learning. The overall-performance is measured by the cumulative probability of success,
averaged on an independent, randomly drawn testing set of 20 starting locations, and

S. Thrun An Approach to Learning Mobile Robot Navigation 21

Prob(success)
tr with |
analytical
learning
0.8 without
analytical
learning
0.6
0.4
0.2
0 !)) \ , number of
20 40 60 80 100 episodes

Figure 13: Performance. Performance curves for EBNN with (black) and without
(gray) analytical training information (slope fitting) for three examples each, measured
on an independent set of problem instances. The dashed lines indicate average perfor-
mance. In this experiment, the agent used well-trained predictive action models as its
domain theory.

summed over the first 100 episodes. Both techniques exhibit asymptotically the same
performance and learn the desired control function successfully. However, there is a
significant improvement in generalization accuracy using EBNN when training data is
scarce, similar to the effect noted in the previous sections.

Experiment 2: Weak domain theories. Obviously, EBNN outperformed pure in-
ductive learning because it was given a domain theory trained with a large number
of training examples. But how does EBNN perform if the domain theory is weak,
and the extracted slopes are misleading? In order to test the impact of weak domain
theories, we conducted a series of experiments in which we trained the domain theory
networks using 5, 10, 20, 35, 50, 75, 100, 150, and 8192 training examples per action
network. Obviously, the less training data, the less accurate the domain theory. Fig. 14
shows the overall accuracy of the individual domain theories as a function of number
of training patterns supplied. Fig. 15 displays the learning performance resulting from
EBNN when it used these different domain theories. As can be seen, EBNN degraded
gracefully to the performance of a pure inductive learner as the accuracy of the do-
main theory decreases. Even if the domain theory was close-to-random and therefore
delivered misleading slopes, the overall performance of EBNN did not drop beyond
that of the purely inductive approach. This finding illustrates that EBNN can operate

S. Thrun An Approach to Learning Mobile Robot Navigation 22

robustly over a broad range of domain theories, from strong to random. The reader
may notice that this effect was also observed in other experiments involving mobile
robot perception, described in [23].

An interesting scaling benchmark of EBNN is the reduction in the number of training
examples required to achieve a certain level of performance. Fig. 16 displays this
average speed-up factor for EBNN relative to plain, inductive Backpropagation. The
speed-up factor is the quotient of the average number of training examples required
by EBNN with and without the analytical learning component. This is shown for the
varying target performance accuracies 20%), 30%, ...,80%. As is easily seen, this speed-
up increases with the accuracy of the domain theory. For the strongest domain theories
here, the speed-up factor is approximately 3.4, which compares well to what we would
expect given that EBNN produces 5 times as many constraint on the target function
as plain Backpropagation.

Experiment 3: The role of LOB*. As pointed out above, EBNN has been found
to degrade gracefully to pure inductive learning, as the quality of its domain theory
decreases. This finding can be attributed to the LOB* mechanism, which heuristically
weights the analytical and inductive learning components based on the observed ac-
curacy of explanations. In order to evaluate the importance of this mechanism, we
repeated the previous experiment, replacing the dynamic weighting scheme for trading
off values and slopes (¢f. Eq. (1)) with a single, static value for a. Fig. 17 shows the
resulting performance graphs.

By comparing Fig. 17 with Fig. 15, one can see that for well-trained domain theories
the performance of EBNN without LOB* approximately equals its performance with
LOB*. When the domain theory is poor, however, performance degrades much more
dramatically when LOB* is not used. In some cases (when domain theories were trained
with 5 or 10 training examples), performance was even much worse than that of plain
inductive learning. These results indicate the importance of effective mechanisms which
mediate the effects of severe domain theory errors. They also illustrate that in cases
where the domain knowledge is poor, a pure analytical learner would be hopelessly
lost. EBNN recovers from poor domain theories because of its inductive component,
which enables it to overturn misleading bias extracted from inaccurate prior knowledge.
These findings match our experimental results reported in [23].

5 Conclusion

In this paper we have reported results obtained for applying the explanation-based
neural network learning algorithm to problems of indoor robot navigation. Despite
the high-dimensional sensor spaces faced by the Xavier robot, it consistently managed

S. Thrun An Approach to Learning Mobile Robot Navigation 23

RMS-error

number of
training examples

5 10 20 35 50 75 100 150 8192

Figure 14: Accuracy of different domain theories. The root mean square error of
the domain theory networks, measured on a large, independent testing set, is shown as
a function of training set size.

Prob(success)
1 -
150

— ~—— 8192
=Nesete—— 10,20,35,75,100

o E)))) . number of

20 40 60 80 100 episodes

Figure 15: Scaling. How does domain knowledge improve generalization? Averaged
results for EBNN domain theories of differing accuracies, pre-trained with 5 to 8,192
training examples. In contrast, the bold gray line reflects the learning curve for pure
inductive Q-Learning. (b) Same experiments, but without dynamically weighting the
analytical component of EBNN by its accuracy. All curves are averaged over 3 runs
and are also locally window-averaged. The performance (vertical axis) is measured on
an independent test set of starting positions.

S. Thrun An Approach to Learning Mobile Robot Navigation 24

speed-up factor
4

performance without
analytical learning component

number of
training examples

Figure 16: Speed-up due to learning analytically. Speed-up factor as a function
of the different domain theories described in the text. The speed-up factor is computed
relative to pure inductive learning in the same domain.

75

8192

DU)

relative success
l -

o8t TN NS TS e \
\ 50
100
without anal.
0.6 y e TN learning
. 7 ~\)<:’\/_ L \\
N I
’ 35
0.4 e
/__// \+— 5
. -
TN
0.2
~— 10
0 . , number of
20 40 60 80 100 episodes

Figure 17: EBNN without LOB¥*. If inductive and analytical learning are always
weighted equally, weak domain theories hurt the performance, dropping well below
that of pure inductive learning.

S. Thrun An Approach to Learning Mobile Robot Navigation 25

to learn to navigate to a designated target object in less than 10 minutes operation
time. More elaborate simulation studies illustrate the scaling properties of the EBNN
learning algorithm, and the importance of the previously learned domain theory for
successful generalization.

There are many open questions that warrant future research, the most important of
which are: How does EBNN scale to more complex tasks, involving much longer se-
quences of actions? Will EBNN be able to effectively transfer large chunks of knowl-
edge across robot control learning tasks? How stable and robust is control learned by
EBNN? Can we effectively employ action models with variable temporal resolution in
robot control learning problems? How can EBNN utilize domain knowledge provided
by human designers?

A key advantage of the approach taken is its generality. No Xavier-specific domain
knowledge (like knowledge of specific sensors, the motion dynamics, or the environ-
ment) has been encoded manually. Rather, the robot has the ability to collect its
domain knowledge by itself. As a consequence, the program can adapt to unforeseen
changes, and can adapt to a whole variety of tasks. Tabula-rasa learning approaches,
which lack any domain-specific knowledge, seem to be little likely to scale to complex
robotic tasks. EBNN| thus, allows to collect domain knowledge on-the-fly, and to em-
ploy it for biasing generalization in future control learning tasks. The experimental
results reported here indicate that an appropriate domain theory can reduce training
time significantly—an effect which has also been demonstrated in different studies in
computer perception [21, 23] and vision [39] domains, and chess [36].

Acknowledgment

The author thanks Tom Mitchell, Ryusuke Masuoka, Joseph O’Sullivan, Reid Simmons,
and the CMU mobile robot group for their invaluable advice and support. This work

was supported in part by grant IRI-9313367 from the US National Science Foundation
to Tom Mitchell.

References

[1] Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. Real-time learning
and control using asynchronous dynamic programming. Technical Report COINS

91-57, Department of Computer Science, University of Massachusetts, MA, August
1991.

S. Thrun An Approach to Learning Mobile Robot Navigation 26

2]

[5]

[10]

[11]

[12]

[13]

[14]

Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. Learning to act using
real-time dynamic programming. Artificial Intelligence, to appear.

Francesco Bergadano and Aiello Giordana. Guiding Induction with Domain The-
ories, pages 474-492. Morgan Kautmann, San Mateo, CA, 1990.

Joachim Buhmann, Wolfram Burgard, Armin B. Cremers, Dieter Fox, Thomas
Hofmann, Frank Schneider, Jiannis Strikos, and Sebastian Thrun. The mobile
robot Rhino. Al Magazine, 16(1), to appear.

Gerald DeJong and Raymond Mooney. Explanation-based learning: An alterna-
tive view. Machine Learning, 1(2):145-176, 1986.

Thomas G. Dietterich. Learning at the knowledge level. Machine Learning, 1:287—
316, 1986.

Jerome H. Friedman. Multivariate adaptive regression splines. Annals of Statistics,

19(1):1-141, March 1991.

Vijaykumar Gullapalli. Reinforcement Learning and its Application to Control.
PhD thesis, Department of Computer and Information Science, University of Mas-
sachusetts, 1992.

Vijaykumar Gullapalli, Judy A. Franklin, and Hamid Benbrahim. Acquiring robot
skills via reinforcement learning. IEEE Control Systems, 272(1708):13-24, Febru-
ary 1994.

John Hertz, Anders Krogh, and Richard G. Palmer. Introduction to the theory of
neural computation. Addison-Wesley Pub. Co., Redwood City, California, 1991.

Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the convergence of
stochastic iterative dynamic programming algorithms. Technical Report 9307, De-
partment of Brain and Cognitive Sciences, Massachusetts Institut of Technology,

July 1993.

J. Laird, E. Yager, C. Tuck, and M. Hucka. Learning in tele-autonomous systems
using Soar. In Proceedings of the 1989 NASA Conference of Space Telerobotics,
1989.

Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers,
Boston, MA, 1991.

Long-Ji Lin. Self-supervised Learning by Reinforcement and Artificial Neural Net-
works. PhD thesis, Carnegie Mellon University, School of Computer Science, Pitts-
burgh, PA, 1992.

S. Thrun An Approach to Learning Mobile Robot Navigation 27

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

Pattie Maes and Rodney A. Brooks. Learning to coordinate behaviors. In Proceed-
ings Fighth National Conference on Artificial Intelligence, pages 796-802, Cam-
bridge, MA, 1990. AAAI, The MIT Press.

Sridhar Mahadevan and Jonathan Connell. Automatic programming of behavior-
based robots using reinforcement learning. December 1990.

Ryusuke Masuoka. Noise robustness of EBNN learning. In Proceedings of the
International Joint Conference on Neural Networks, October 1993.

Steven Minton. Learning Search Control Knowledge: An Explanation-Based Ap-
proach. Kluwer Academic Publishers, 1988.

Tom M. Mitchell. Becoming increasingly reactive. In Proceedings of 1990 AAAT
Conference, Menlo Park, CA, August 1990. AAAI, AAAI Press / The MIT Press.

Tom M. Mitchell, Rich Keller, and Smadar Kedar-Cabelli. Explanation-based
generalization: A unifying view. Machine Learning, 1(1):47-80, 1986.

Tom M. Mitchell, Joseph O’Sullivan, and Sebastian Thrun. Explanation-based
learning for mobile robot perception. In Workshop on Robot Learning, Fleventh
Conference on Machine Learning, 1994.

Tom M. Mitchell and Sebastian Thrun. Explanation-based neural network learning
for robot control. In S. J. Hanson, J. Cowan, and C. L. Giles, editors, Advances in
Neural Information Processing Systems 5, pages 287-294, San Mateo, CA, 1993.
Morgan Kaufmann.

Joseph O’Sullivan, Tom M. Mitchell, and Sebastian Thrun. Explanation-based
neural network learning from mobile robot perception. In Katsushi Tkeuchi and
Manuela Veloso, editors, Symbolic Visual Learning. Oxtord University Press, to
appear.

Dirk Ourston and Raymond J. Mooney. Theory refinement with noisy data. Tech-
nical Report Al 91-153, Artificial Intelligence Lab, University of Texas at Austin,
March 1991.

Michael J. Pazzani, Clifford A. Brunk, and Glenn Silverstein. A knowledge-
intensive approach to learning relational concepts. In Proceedings of the FEighth
International Workshop on Machine Learning, pages 432-436, Evanston, IL, June
1991.

Dean A. Pomerleau. ALVINN: an autonomous land vehicle in a neural network.
Technical Report CMU-CS-89-107, Computer Science Dept. Carnegie Mellon Uni-
versity, Pittsburgh PA, 1989.

S. Thrun An Approach to Learning Mobile Robot Navigation 28

[27] J. Ross Quinlan. Induction of decision trees. Machine Learning, 1:31-106, 1986.

[28] Paul S. Rosenbloom and Jans Aasman. Knowledge level and inductive uses of
chunking (EBL). In Proceedings of the Eighth National Conference on Artificial
Intelligence, pages 821-827, Boston, 1990. AAAI, MIT Press.

[29] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning inter-
nal representations by error propagation. In D. E. Rumelhart and J. L.. McClelland,
editors, Parallel Distributed Processing. Vol. I + II. MIT Press, 1986.

[30] David E. Rumelhart, Bernard Widrow, and Michael A. Lehr. The basic ideas in
neural networks. Communications of the ACM, 37(3):87-92, March 1994.

[31] Jacob T. Schwartz, Micha Scharir, and John Hopcroft. Planning, Geometry and
Complexity of Robot Motion. Ablex Publishing Corporation, Norwood, NJ, 1987.

[32] Patrice Simard, Bernard Victorri, Yann LeCun, and John Denker. Tangent prop
— a formalism for specifying selected invariances in an adaptive network. In J. E.
Moody, S. J. Hanson, and R. P. Lippmann, editors, Advances in Neural Informa-
tion Processing Systems 4, pages 895-903, San Mateo, CA, 1992. Morgan Kautf-

mani.

[33] Richard S. Sutton. Learning to predict by the methods of temporal differences.
Machine Learning, 3, 1988.

[34] Richard S. Sutton. Integrated modeling and control based on reinforcement learn-
ing and dynamic programming. In R. P. Lippmann, J. E. Moody, and D. S.
Touretzky, editors, Advances in Neural Information Processing Systems 3, pages

471-478, San Mateo, 1991. Morgan Kaufmann.

[35] Gerald J. Tesauro. Practical issues in temporal difference learning. In J. E. Moody,
S. J. Hanson, and R. P. Lippmann, editors, Advances in Neural Information Pro-
cessing Systems /, pages 259-266, San Mateo, CA, 1992. Morgan Kautmann.

[36] Sebastian Thrun. Learning to play the game of chess. In G. Tesauro, D. Touretzky,
and T. Leen, editors, Advances in Neural Information Processing Systems 7, San
Mateo, CA, 1995. Morgan Kaufmann. (to appear).

[37] Sebastian Thrun and Tom M. Mitchell. Integrating inductive neural network
learning and explanation-based learning. In Proceedings of IJCAI-93, Chamberry,
France, July 1993. IJCAI, Inc.

[38] Sebastian Thrun and Tom M. Mitchell. Lifelong robot learning. Robotics and
Autonomous Systems, 1993. (to appear). Also appeared as Technical Report TAI-
TR-93-7, University of Bonn, Dept. of Computer Science III.

S. Thrun An Approach to Learning Mobile Robot Navigation 29

[39] Sebastian Thrun and Tom M. Mitchell. Learning one more thing. Technical Report
CMU-CS-94-184, Carnegie Mellon University, Pittsburgh, PA 15213, September
1994.

[40] Philip D. Wasserman. Neural computing: theory and practice. Von Nostrand
Reinhold, New York, 1989.

[41] Christopher J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s
College, Cambridge, England, 1989.

[42] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning,
8:279-292, 1992.

