Presented at:

SPIE International Symposium on Intelligent Systems & Advanced Manufacturing
Technical Conference on Intelligent Transportation Systems

13-17 October 1997, Pittsburgh, PA, USA

Functional sensor modeling for Automated Highway Systems simulations

Cem Unsal*, Rahul Sukthankar'?, and Chuck Thorpe*

'Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213-3890
2Justsystem Pittsburgh Research Center, 4616 Henry Street, Pittsburgh, PA 15213

ABSTRACT

Sensor technology plays a critical role in the operation of the Automated Highway System (AHS). The proposed concepts
depend on a variety of sensors for positioning, lane-tracking, range and vehicle proximity. Since large subsystems of the
AHS will be designed and evaluated in ssimulation before deployment, it is important that simulators make realistic sensor
assumptions. Unfortunately, the current physical sensor models are inadequate for this task since they require detailed world
state information that is unavailable in a simulated environment.

In this paper, we present an open-ended, functional sensor hierarchy, incorporating geometric models and abstract
noise characteristics, which can be used directly with current AHS tools. These models capture the aspects of sensing
technology that are important to AHS concept design such as occlusion, and field of view restrictions, while ignoring
physical-level details such as electromagnetic sensor reflections. Since the functional sensor models operate at the same level
of granularity as the smulation platform, complete integration is assured. The hierarchy classifies sensors into functional
groups. The models at a particular level incorporate characteristics that are common to all sensors in its subgroups. For
example, range sensors have a parameter corresponding to a maximum effective range, while lane-trackers include
information pertaining to lateral accuracy.

Keywords: sensor models, vehicle simulations, automated highway systems

1. INTRODUCTION

The Automated Highway System (AHS)}, a solution prescribed by the USDOT to the problem of traffic congestion and
accidents is an ambitious project incorporating new advances in sensor design, vehicle control, and robotics. Simulation has
emerged as an important tool for studying and evaluation the merits of different choices in this design space for several
reasons:

- The complex nature of phenomena such as congestion, accidents, and driver behavior eludes most analytic approaches.

- Prototyping systems in real traffic is potentially dangerous and expensive. Furthermore, many of the important
components (such as reliable vehicle tracking systems) are still under devel opment.

- Simulations enable researchers to explore rare and critical situations safely and repeatably. This is particularly
valuable during the devel opment of intelligent vehicle reasoning systems.

Tools that explicitly model the behavior of individual vehicles are known as microsimulators®®*. Since these vehicles
must realistically respond to the conditions in the simulated environment, they should be able to sense their surroundingsin a
realistic manner. The sensor models discussed in this paper act as a filter between the internal representation of the
microsimulator and the driver model of the smulated vehicle (See Figure 1).

Further author information:

CU: E-mail: unsal @ri.cmu.edu, WWW: hitp://www.cs.cmu.edu/~unsal, Telephone: (412) 268-5594, (412) 268-5571 (fax).
RS: E-mail: rahuls@cs.cmu.edu, WWW: http://www.cs.cmu.edu/~rahuls, Telephone: (412) 683-8046, (412) 683-4175 (fax).
CT: E-mail: cet@ri.cmu.edu, WWW: http://www.cs.cmu.edu/~cet, Telephone: (412) 268-3612, (412) 268-5571 (fax).

Most traffic simulators ignore the problem of sensor modeling entirely. The driver models which control the behavior of
simulated vehicles are typicaly expected to traverse the internal data structures of the smulator and extract attributes about
the environment such as the speed of the preceding vehicle or the distance to the next exit. While such systems may be
straightforward to implement, it is clear that the vehicles in these simulators are operating under radically different perceptual
assumptions from real cars on the highway. For example, these “omniscient” simulated vehicles are equipped with error-free
sensors that are unaffected by problems of occlusion or finite range, and can easily react to events before they would be
“realigtically” perceivable. Some simulators even permit vehicles to directly access the internal states of other vehicles' driver
modelsCallowing one vehicle to react to the intentions of another vehicle before any actions have been taken. It is therefore
unsurprising that, given the shortcomings of such microscopic models, optimistic results from simulations are often met with
skepticism.

On the other hand, creating a simulator that perfectly models every aspect of the problem is an impossible task. Even if
such a complex model were feasible, issues of efficiency and development cost could render such an effort impractical. The
alternative is to build several models at appropriate levels of abstraction, each of which focuses on a selected aspect of the
problem. Most aspects of the world are only coarsely modeled (or left unmodeled) in any particular such simulator. For
example, a simulator that focuses on determining optimal platooning distance would be unlikely to model weather effects—
even though icy roads can drastically affect the braking ability of a vehicle, and therefore impact its platooning capability.
Similarly, a detailed sensor model may depend on characteristics that are unmodeled in the smulator. For instance, a radar
model® requires information about the material and pose of the target patch, yet we know of no traffic microsimulator that
models vehicles at this level of detail.

Sensor models for AHS simulation must therefore satisfy two constraints. First, they must make sufficiently realistic
perceptual assumptions, from the perspective of the driver model. Second, they must only rely on inputs that are available
from the typical microsimulation environment. This paper discusses our solution: functional sensor models. The following
section introduces our approach to the problem. Design issues and sensor implementation are discussed in Section 3. Section
4 presents several simulation results, followed by our concluding remarksin Section 5.

2. APPROACH

Intelligent vehicles in the Automated Highway System may be equipped with a variety of sensors, each with its own
particular characteristics (See Table 1). The behavior of each of these sensors has been extensively studied®’®°. While
implementing these models in an AHS simulator is not difficult, acquiring many of the inputs and parameters required by
these models (from a simulated environment) is impossible. Furthermore, since many of these sensor models are
computationally intensive, simultaneously simulating several of these models for each of the vehicles in a AHS micro-
simulation could prove to be impractical.

The only choiceisto create lower-fidelity sensor models, suitable for this application. However, to do this, one must first
understand the relationship between the various sensors, as applied to the intelligent vehicle domain. Table 1 shows a sensor
hierarchy that classifies sensors by function (from an intelligent vehicle's perspective). While this sensor hierarchy is also
generally applicable to mobile robots, specific environments such as underwater or space applications, may demand a
different classification. As suggested by this hierarchy, sensors can be classified into the following classes:

- Long-range sensors that measure the distance to an obstacle or vehicle in the environment: These include both active
sensors such as laser and radar, as well as passive ones such as stereo vision.

- Short-range sensors that detect objects in the immediate vicinity of the ego-vehicle: Again, these include both active
sensors such as sonar, and passive ones such as capaciflexor. These sensors are typically used to check blind spots or
parking spaces before attempting lateral maneuvers.

- Sensors that measure the relative velocity of a sensed vehicle: Some range sensors (such as Doppler radar) do this
automatically. For other sensors, this may involve sophisticated processing (such as optical flow), or require
differential range measurements.

- Positioning sensors that enable estimation of current ego-vehicle location: These include on-board systems such as
encoders, in addition to the Global Positioning System (GPS).

- Sensors that measure the ego-vehicle's current velocity: This may be done through odometry, by sensing relative
motion with the ground using various techniques, or by using GPS.

- Lateral lane-tracking systems: This includes direct measurement of lane deviation through infrastructure-assisted
methods such as magnetic nails as well as sophisticated software for vision-based lane-trackers.

- Clocks: Since modern clocks do not lose an appreciable amount of time over the duration of an traffic scenario,
modeling atime sensor for AHS simulationsistrivial. Thisis certainly not true for all applications.

- Environment sensors: This category includes sensors that detect dangerous road conditions such as ice or wet
pavement, or weather conditions such as fog and snow (which can adversely affect other sensors). Since these
phenomena are typically unmodeled in microsimulations, environment sensor models do little more than reporting the
initial conditions as specified by the user.

Note that some entries, such as vision-based lane-trackers, may not traditionally be classified as sensors (since the actual
“sensor” is just a video camera); however, from the perspective of an intelligent vehicle's cognition system, a vision-based
lane-tracker is an abstract sensor that returns some information about the ego-vehicle's current pose relative to the road.
Similarly, much of the perceptual processing involved with certain sensor (such as tracking objects over time) can be
considered to be part of the sensor model. Depending on the fidelity of the underlying microsimulation and the needs of the
driver models, the list above could be expanded to include sensors to measure engine-state, tire pressure, etc.

Each of the classes described above is represented in the microsimulator by a functional sensor model. The functional
sensor model contains three important parts. First, it implements algorithms that access the microsimulator's internal state to
create the appropriate outputs (e.g., a range sensor should return the distance to the appropriate target). Second, it is
responsible for redlistically corrupting the sensor measurements. Parameters such as maximum range or field of view are
represented explicitly when the microsimulator's fidelity can support them. In other cases, the characteristics are captured in a
more abstract manner (e.g., expected accuracy of lane-tracking). Third, the sensor model should document the unmodeled
features of the sensor that may be relevant to the AHS domain. For instance, GPS sensors do not work in tunnels because the
satellites are occluded; the GPS sensor model (which is an instance of the Positioning Sensor class) should note this fact even
though the AHS microsimulator models neither GPS satellites nor tunnels. This reduces the likelihood that an AHS system
will rely on assumptions that may become invalid in real situations.

Table 1. Sensor Hierarchy and Its Possible |mplementations

Classes Sensors Characteristics, Problems, Implementation
Long Range - Laser Ranging - All except the visua sensor are implemented at three
- Radar different levels of detail. The definitionsin Section 3 cannot
- Ultrasonic be used for vision. Visual sensor implementations are very
- Stereo Vision complex.
Short Range - Ultrasonic - Similar to long range sensors; time delays for arrays.
(Proximity) - Infrared - Singleray definition
Object Velocity - Doppler radar - Interference, incidence angle, filtering problems
- Optical flow - Difficult to implement
- Differentia Range Radar - Similar to range sensor implementation
Positioning - GPS, differential GPS - Gaussian noise characteristics
- Dead reckoning (Encoders) | - Error accumulation must be modeled
- Triangulation (Beacons) - Simple noise injection sufficient
- Inertial Navigation Systems | - Error accumulation due to integration must be modeled
Persona Velocity - Odometry - Slippage, tire condition must be modeled
- Ground Speed Radar - Interference, incidence angle, filtering problems
- Carrie Phased GPS - Same as GPS
- Optical flow - Represent as abstract lane-tracker
Lateral Lane- - Magnetic Nails - Constant distance sampling
Tracking - Magnetic bands - Constant time sampling
- Vision - Difficult to implement
Time & - Clock - A single global clock is sufficient
Environment - lce, rain detectors - Report initial conditionsin simulator.

3. DESIGN ISSUES AND IMPLEMENTATION

The computer implementation of a functional sensor is a module that processes information from the simulation environment
(“real world”) to create inputs suitable for the cognition system (“perceived world”). Additionally, the functional sensors are
used to “corrupt” the actual state of the world, as represented in the microsimulator internals, into realistic sensor readings,
useful for evaluating control methodologies.

If the simulation assumes perfect knowledge of the world, the control loop for an automated vehicle model is similar to
the one given in Figure 1, without the additional sensor block. A vehicle model reacts to its input and affects the simulated
environment in return. In general terms, the changes in the environment are compared to the desired conditions/parametersin
the cognition model (e.g., human driver or intelligent vehicle controller model), and a control input to the vehicle is created.
The sensor models we add are modules that “filter” the perfect knowledge, thus creating realistic measurement values to be
used in design and analysis of vehicle controllers and/or AHS scenarios.

Simulation Environment (“Real world™)
Desired Cognition))
— — —> >
Parameters Model = Controller Vehicle Environment
Vehicle velocity &

Perception position S
Model ge; position;

i |ateral :
(“Percieved L Sensors ¢ . _ _ al_er postl.on :

orldn) “Measurements” Information from simulation platform object vdggny; time;

. road conditions

Figure 1. The control loop for AHS simulations with functional sensors.

The functional sensor models discussed in this paper do not include detailed sensors for measuring ego-vehicle status,
such as engine or suspension state. Such sensor models are usually developed in conjunction with the low-level controllers.
Therefore, the focus of this paper is on sensors that interact with other objects in the simulation environment. As mentioned
above, the functional sensors are designed at the same level of granularity as the simulation platform to ensure complete
integration. Consider a generic range sensor used for vehicle and/or obstacle detection. The definition of the sensor may
include just a few parameters describing a very simple functional model returning only the distance to the object in range.
Alternatively, multiple parameters can be used in order to describe a complicated model capable of capturing the shape of the
sensed objects. Intermediate levels of detail are also possible. Of course, the more capable the model, the more intensive the
computation. Again, severa real-life parameters that are not compatible with the simulation platform, e.g. the reflection
characteristics of the vehicle surfaces are not modeled. Inclusion of such characteristics is well beyond what an AHS
microsimulator can implement.

Let us consider severa functional models for a two-dimensional generic range sensor. We have defined several levels of
detail for a sensor that can return the distance and/or azimuth angle to the vehicle(s) in range. Figure 2 illustrates the four
levels of detail we considered for implementation of range sensors. The simplest model for range sensing uses the position
information on all the vehicles to compute the distance to the closest vehicle (Figure 2a). This approach treats the vehicles as
particles, therefore the error is sensed distance can be large for shorter ranges. Furthermore, the exact position of the vehicle
with respect to the sensor/ego-vehicle is not known. The implementation however is very simple, and the calculations are
minimal. If the sizes of the vehicles, and their relative orientations are known for a specific scenario (e.g., a simulation for
platooning on a straight road), necessary adjustmentsin sensed values can be made.

A natural extension of the first sensor model is the addition of sensor position and orientation relative to the vehicle
center of gravity to the sensor parameters (Figure 2b). This enables a range sensor to return the orientation of the closest
vehicle in range as well as its distance. The computational burden for this sensor is again minimal. This approach also
provides a horizontal field of view definition for the sensor by simply filtering the azimuth readings beyond a predefined
value.

The next two levels of detail for the range sensor model are designed to provide additiona information about the
orientation of the sensed objects as well as more accurate information about the position and the range of the sensed vehicle.

The model which employs “pseudo-vertex” definitions enables the user to define points on the rectangles describing the
vehicles, and uses these to evaluate the range and azimuth angle (Figure 2c). This approach is useful in relatively long range
sensor implementations; the returned azimuth angle may be drastically different than the actual value in close range as
illustrated in Section 4. The sensor module created for pseudo-vertices approach can return the range and azimuth angle of all
the defined points that are in sensor range, thus providing additional information about the orientation of the vehicle/obstacle
surface. The price for this additional information is of course the complexity of computation: the length and width of al the
vehicles, as well their current orientation, must be fed to the sensors, since they are required for calculating the positions of
multiple pseudo-vertex points. An additional computation loop for al these points are needed for each vehicle in range.

@ ©

(b) (d)

Figure 2. Four different levels of detail for generic range sensor: (&) point vehicles, (b) addition of sensor position and
orientation as well as azimuth angle, (c) pseudo-vertex calculations for vehicle orientation, (d) ray definitions.

The most complex range sensor definition includes ray definitions where the number of scanning rays are parameterized
in addition to previous definitions of horizontal field of view, sensor position and orientation. In this model, the functional
model computes the intersection of the defined rays (for which the maximum range and the azimuth angle are known) and the
lines defining the vehicles. For each ray of the sensor and for each line of all vehicles in range, the intersections are
computed. Intersection points outside of the segments that constitute the vehicle (indicated by “diamonds’ in Figure 2d) are
discarded as well as those that are in the opposing side of the vehicle (white circles in Figure 2d). The closest intersection
point is returned as the range; it is also possible to return a vector of sensed values (a 1-D range scan) for more complex
driver models.

All sensor models discussed here use periodical updates where the sampling frequency is a user-defined parameter that
can be as small as the smulation time step. Gaussian measurement noise is injected into the range and azimuth readings; the
mean and variance of the noise are user-defined. Furthermore, the models are designed so that different modes of operation
may be defined. For example, the noise characteristics of a range sensor may depend on the weather conditions on the road
segment that the vehicle travels, or the user may introduce operation modes that emulate faults in the system. It is aso
possible to represent sensor failure modes abstractly by failure rates, ghost targets, and fal se positives.

As seen from the definitions above, different types of functional sensor models at different levels of detail bring
complexity to the computational task due to the added information. The last two models can provide a very clear “picture” of
the obstacle/vehicle in range with multiple pseudo-vertex points or a large number of ray, but the computational burden will
increase with the added number of vehicles.

The implementations of the range sensors discussed above have many common points except the computationa
subroutines and the level of complexity. The information source for vehicle positions and orientation, noise characteristics,
main sensor modules and preprocessing of the data (such as filtering the vehicles in sensor range from the set of all vehicles)

are common to all range sensors. The general structure of a range sensor is illustrated in Figure 3. The environment
conditions are used to evaluate noise characteristics for a specific sensor, although the initial noise model is defined at the
setup phase with other sensor characteristics such as level of detail and pertaining parameters. The information about the
vehicles is preprocessed in order to extract necessary information, such as current sensor and vehicle positions and
orientations, and the set of vehicles in the field of view. The preprocessing is followed by the computation of the desired
sensor outputs. Fault modes of the sensors are defined as discrete states, and the parameters characterizing the sensor
capabilities are updated while transitioning between these states.

Range Sensor

Environment .
" > Noise Fault Modes

conditions Characteristics
Information on —

ego-vehicle Preprocessor _ Range Distﬁnce

for range -
Information on > sensorgs Sensor Azimuth
other vehicles
Sensor .
Characterigtics [Setup Computation

Figure 3. Implementation structure for a functional range sensor.

A second type of sensor class we present here is for positioning. We will only consider two simple implementations
using global positioning systems and dead-reckoning. The implementation structure of a positioning sensor is very similar to
the one given in Figure 3, except for the preprocessing phase. The position of the vehicle provided by the smulation
environment is “corrupted” with the defined noise model based on the sensor characteristics, and the desired output is
generated. A positioning system using a satellite network can be implemented by simply adding Gaussian measurement noise
to the actual position of the vehicle. The data provided™ for GPS (and GLONASS), and the data for differential global
positioning systems obtained by Navlab vehicles'™ suggest that the longitude and latitude readings from a global satellite
system can be characterized by independent Gaussian distributions. While the errors in individual encoder readings for dead-
reckoning may be assumed to be Gaussian distributions (with a relatively small variance as compared with differential GPS),
the dead-reckoning errors grow as the measurement error accumulates over time.

The functional sensor models are implemented using Shift, a hybrid system simulation programming language. The Shift
simulation platform®™*? is suitable for abstraction of complex applications such as automated highway systems, air traffic
control systems, and other systems whose operation cannot be captured easily by conventional models. This language enables
the user to define his’her own simulation domain for a particular application such as Automated Highway Systems™. The
Shift programming language is chosen because of its ability to simulate discrete and continuous models, and the existence of
a simulation environment for AHS applications. The sensor models in this paper are designed using part of the existing
simulation environment definitions in Shift'. The structure given in Figure 3 is implemented as state transitions between
fault modes and periodic sampling of vehicle positions and orientations for range calculations. Tables 2 and 3 show
simplified examples of Shift code for range and position sensors.

Table 2. Simplified Shift* code for range sensor with ray definitions.

/* External functions */
function dist5 (number sen_x; nunber sen_y; nunber sen_or;
-1
array(nunber) out distvec) -> nunber;
function mn_of _array (array(nunmber) vec; nunber vecsi ze;
array(nunber) out result) -> nunber;

/* Rangesensor with ray definitions
type RangeSensor_R
{

i nput nunber gxp, gyp, gzp; /1 Position of the vehicle
nurmber vganill, vganl2, /1l Orientation of the vehicle
out put continuous nunber distance; // D stance
conti nuous number angl e; /1 and angle to the closest vehicle
state Aut omat edVehi cl e vehicl e; /1 Vehicle associated with the sensor
nurmber maxrange; /1 Maxi mumrange in neters
nurmber hfov, nray; /1 Half of the horizontal field of view, n. of
rays
nurmber xs, ys, sor; /1 Sensor position and orientation
nurmber procspd; /'l Processing speed for the sensor
array(nunber) rayvec; /1 Definition of ray angles
set (Aut onat edVehicle) inrange; // set of the vehicles in range
array(nunber) range; /! Returned readings for all rays
nurmber vl :=5, vw :=2; /1 Vehicle length and width
(-1
di screte sense;
set up
do{
t :=0;
/'l Slopes of the lines defining the rays (vehicle coord. frane)
rayvec := [(hfov-2*hfov/(nray-1)*i)/180*PI : | in [0 .. nray-1]];
flow default {t' = 1; };

transition
sense -> sense {} when t >= procspd

define
{/* Set of the vehicles in range
set (Aut onat edVehicle) inRange := {z : z in AutonatedVehicles | z /= vehicle };

/* Create arrays (pos. and orientation) for all vhicles in range */
array(nunber) vehx := [gxp(x) : x in inRange];

-
/* Sensor position and orientation in global coordinate frane */
nurmber sen_x := gxp+xs*vgamll+ys*vganRl;
[-]
/* Evaluate the array for range readi ngs */
nurmber dum : = di st 5(sen_x, sen_y, sen_or, vehx, vehy, vehll, vehl12,

si ze(i nRange), vl, vw, rayvec, raydi st);

/* Find mnimmvalue and its index */

nurmber dunm? := min_of _array(raydist,nray,result);
}
do
{t :=0;

/* NOTE: |If noise to be added to range readings, this can be done here;
an alternative nethod is to add noise in the c-function */

(.1

di stance := result[O0]; /1 M ni num di st ance

angle : = hfov-2*hfov/(nray-1)*result[1]; // Azimuth for the ray with nini mum
readin

}s
}

Table 3. Simplified Shift* code for positioning sensor (GPS).
Type PositionSensor_GPS

out put continuous number pos_X, poOS_y; /1 Sensor readings
conti nuous number s; /1 Measurenent signal:
/1 "exists" [1] or "not" [O]
conti nuous nunber err_x, err_y; /1 Measurenent errors;
i nput continuous nunber gxp, gyp; /1 Actual position and
conti nuous nurber precip; /1 Precipitation
state AutomatedVehicle vehicle; /'l Vehicle associated with sensor
conti nuous nunber nean, var; /1 Measurenment noi se paraneters

Gaussi an err_signal s;

di screte normal {neasure;}, /] discrete states for operation nodes
probl en{ measure;},
nodat af{ nomreasure; };

setup
defi ne{Gaussi an tnoi se : = create(Gaussian);}
do{
err_signals := tnoise;
nmean : = 0; /1 both measurenents are characterized as
var := 0.3*0.3; /] Gaussian distributions};
flow
measur ef
err_x = sqrt(var) * sgl(err_signals) + mean;
err_y = sqrt(var) * sg2(err_signals) + mean;
pOS_X = gXp + err_x; pos_y = gyp + err_y;},
nomeasur e{

pos_x = 0.0; pos_y = 0.0; err_x =0; err_y = 0;};
transition
normal -> problem {} when precip >= 10 and precip < 60
do {var := 0.9*0.9; s := 1;},
normal -> nodata {} when precip >= 60
do {s :=0;},
problem -> normal {} when precip <= 10
do {var :=0.3*0.3; s := 1;},
probl em -> nodata {} when precip > 60
do {s := 0;},
nodata -> normal {} when precip <= 10
do {var :=0.3*0.3; s := 1;},
nodata -> problem {} when precip <= 60
do {var :=0.9*0.9; s := 1;};

4. SIMULATION EXAMPLES

In this section, we will present the simulation results for the two sensor types we discussed in the previous section: range
sensing and vehicle positioning. First, let us consider the scenario given in Figure 4: a vehicle equipped with a sidesensor is
travelling in the left lane; two other vehicles travelling in the right lane with speeds greater than the equipped vehicle are
dowly entering the side sensor’s range. For this scenario, the vehicle lengths and widths are assumed to be 5m and 2m
respectively. The sensor’s maximum range is taken as 10m, while the number of rays is defined as 7 with a field of view of
40 degrees. The vehicles are travelling at the middle of 4-m wide lanes. The sampling rate for the sensor is 0.2sec (5Hz). The
speed of the vehicles on the right is 1.5m/s faster than the equipped vehicle, and the distance between them is 7.5m. There are
six pseudo-vertex points defined. We have assumed perfect sensor samples (without noise) in order to present the results
clearly.

Figure 5 shows the results of the simulation runs for three different types of sensors we discussed earlier. The plots show
the changes in the sensor range and azimuth readings for the time interval between t = 0.5sec and t = 12.5sec. At the
beginning of this time interval, vehicle 2 approaching vehicle 1 enters the side sensor’s field of view. Around t = 6.0 sec,
vehicle 2 dowly moves out of the field of view, while vehicle 3 is enters it. As seen in Figures 5(a) and 5(b), vehicle
detection with the ssmple model occurs later than in other cases, since the computations are based on the vehicle center of
gravity. The closest distance returned by the sensor is 3m, the minimum possible distance between the sensor and the center
of gravity of the detected vehicle, instead of 2m— the minimal distance between two vehicles travelling in adjacent lanes (al

according to the parameters given above). The maximum possible range reading, and the zero azimuth angle are returned by
the sensors if there are no vehiclesin the field of view. For this simplest case, the returned value of the angle is continuous to
the resolution of the sensor sampling frequency.

V3i=Vz2 >V1

[] A% /p \ 2
y/adii
Range/ «\X%\ \ Psaudo-vertices
Ray definitions— Field of view

Figure 4. Simulation scenario for range sensor tests: two passing vehicles
are detected by the right side sensor.

Figures 5(c) and 5(d) illustrate the effect of pseudo-vertex approach in close range readings. Although this approach
returns better results than previous case, and is computationally less intensive than the ray-definitions approach, it may fail to
capture the shape of the detected vehicle. In some situations, such as the one discussed here, the returned values are not
always realistic. As seen in Figure 5(c), the distance to the vehicle in range “jumps’ from approximately 2m to approximately
4m erroneoudly. Thisis due to the fact that the pseudo-vertex points in the closer side of the vehicle in range falls out of the
field of view (See Figure 4). Furthermore, as indicated in Figure 5(d), the azimuth readings include large errors even if the
vertex points on the correct side are tracked. This sensor type must be used only when the problem described here can be
avoided.

The most complex model we currently implement uses the ray definitions. Note that the plots in Figure 5 give the values
for the closest intersection point between the rays and the edges of the rectangular vehicle definition. As seen in Figure 5(e),
the range calculations are very realistic. The notch around t = 6.5sec indicates the moment where vehicle 2 started moving
out of the sensor filed of view while vehicle 3 is entering. This can be seen more clearly from Figure 5(f) where the returned
value of the azimuth angle to the closest point changes from —20 degrees to 20 degrees. Because the resolution for the sensor
is defined by 7 rays, the azimuth angle is approximate for close ranges.

For the last two approaches, using more points/rays increases the accuracy of the sensor model while creating
computational difficulty. The trade-off between resolution and computational effort is afunction of the specific AHS scenario
at hand. There will be applications where even the simplest sensor model is sufficient for design and/or analysis of a traffic,
driver or vehicle controller model.

Our second simulation example is given in order to distinguish between different types of sensors used for the same
purpose, and to indicate the similarities between their simulation models. Assume that a vehicle is equipped with a
(differential) global positioning system, and an on-board sensor such as an encoder for dead reckoning. As mentioned above
the same noise structure is used for both sensors by setting the mean and variance of the noise model according to empirical
data. Although the real implementation is much more different, we use the same simple functional model with minor
differences for both sensors. The main difference between the GPS and the encoder system is the noise characteristics; the
rest of the information is provided by the simulation environment. Minor additions in the code given in Table 2 enables the
user to emulate error accumulations for the dead-reckoning sensor. Assume that a vehicle is travelling along a straight
segment of road. We assume that the position data can be sampled at arate of 0.1sec (10Hz). The mean and variance for the
measurement noise in the encoder is taken as 10°m and 4’ 10°m respectively, while these values for a differential GPS is
approximately Om and 9" 10°m. We have also assumed that the variance of the GPS readings increase to 0.81m when there is
a 10% or greater precipitation in the segment currently traveled by the vehicle. (The precipitation is defined as a percentage
in current Smart-AHS platform™.) The same fault-model descriptions can be used for other sensors as well.

Side sensor range reading Side sensor azimuth angle reading

20 —

Distance {m)
o
1
Angle (degrees)
=
|

Time (sec) Time (sec)

@ (b)

Side sensor range reading Side sensor azimuth angle reading
20 —

Distance (m)
o
1
Angle (degrees)
=
1

E
I

T T T T 1 T T T 1
Time (sec) Time (sec)

(© (d)

Side sensor range reading Side sensor azimuth angle reading

20 —

Distance {im)
@
1
Angle (degrees)
=
1

] Ay

g
|

—20 —
T T T T T T T T
5 o 5 10

Time (sec) Time(sec)
(® ()
Figure 5. Distance and azimuth angle readings for different types of side sensors: (a-b) point vehicles with sensor field of
view and orientation definitions, (c-d) pseudo-vertex approach, (e-f) ray definition approach (See text for details).

Figure 6 shows the data generated by the simulation runs in Shift. The plots show the sensor readings for an interval
where the vehicle travels between 50m and 150 m down the road. The precipitation is 15% on the road segment between x =
50 and x = 100m. As seen from Figure 6a, the error in position reading with the encoder is accumulating while the sasmpled
readings contain little deviations from the actual value. On the other hand, the GPS system returns independent readings that
can be characterized as a Gaussian distribution around the actual position. The deviations from the actual value change with

10

the transition of the sensor state to a different mode of operation due to the vehicle position on the road segment. The basic
ideas described here will be extended to more complicated error models, and to other sensors.

Position measurements using on-board sensors Position measurement with GP8

=
N
1

R
1

Error in GPS reading (m)

|
b
1

Meas. & cumulative errors (im)

%

50 20 100 120 140 50 80 100 120 140
X-position (m}) X-position {m})
(€) (b)

Vehicle position and position measurements

g
|

£
|

Position and measurements (m)
g
g
|

@
2
|

Time (sec)

©
Figure 6. Vehicle position readings with (a) on-board sensors and (b) GPS.

6. CONCLUDING REMARKS

Functional sensor models, unlike most existing sensor models, are designed to bridge the gap between a driver model and its
underlying simulation environment— providing several benefits. First, since functional sensors provide realistic sensor
problems for simulated vehicles, algorithm designers are forced to recognize that perception should not be taken for granted
in the real world. Thus, it is hoped that algorithms developed in simulations employing functional sensor models will require
less modification when implemented on real intelligent vehicles. Second, functional sensors enable researchers to recreate
existing sensor systems in simulation. For example, an intelligent vehicle driver model may be stated as using the ALVINN
lane-tracking system™. By encapsulating the entire perception system as a functional sensor, the driver model can operate as
if it were connected to areal ALVINN. The sensor model takes responsibility for providing the same interface as ALVINN
without modeling details about its vision subsystem, underlying neural network, or training procedure™®. Third, these sensor
models can be used to develop intelligent vehicle algorithms that cannot currently be implemented on real robots due to the
limitations of today's sensor technology. For instance, many tactical driving systems require accurate, long-term tracking of
all the surrounding vehicles, with accurate estimates of their relative positions and velocities. Obvioudy, the functional
sensor of this type is much easier to build than its real counterpart. By testing the driving systems in simulation using
functional sensors, researchers gain a better understanding of their sensor requirements, and can thus focus sensor-building
goasin aparticular direction with more confidence.

This research is by definition quite open-ended. Functional sensors are refined as the needs of the driver models change,
and as the underlying simulators mature. Our plans for future work in this area include:

11

- Extending existing functional sensors in response to developments in AHS microsimulator technology: For example,
the current functional range sensors perform geometric calculationsin 2-D. As full 3-D microsimulators become more
common, the functional sensors will be updated. Similarly, more complex noise models will become practical with
increases in processor speed. The implementation of different sensor types will be continued in conjunction with the
sensor requirements and capabilities of the Navlab vehicles™.

- Developing more detailed fault-modes for functional sensors: In some cases, this can require extensions to the
simulation environment. For example, if a functional GPS is designed to fail inside tunnels, the microsimulator must
explicitly model tunnels.

- Applying functional simulated sensors to other mobile robot domains: The current implementations of functional
sensors have been restricted to highway simulators. However, functional sensors can be easily be applied to other
simulated environments such as underwater robotics or space exploration.

Simulated runs and real-life testing are both essential in the development of a practical Automated Highway System. While
realistic functional sensor models cannot eliminate the need for real sensors, our framework facilitates the productive
investigation of AHS concepts and scenarios in simulation.

ACKNOWLEDGEMENTS

The authors would like to thank Alex Galli, Jim Misener, and other members of the SHIFT Team at UC Berkeley/PATH for
their valuable insights on sensor modeling and efforts in providing the smulation platform. This work was supported by
USDOT under Cooperative Agreement Number DTFH61-94-X-00001 as part of the National Automated Highway System
Consortium.

REFERENCES

1. P.Varaiya, “Smart Cars on Smart Roads: Problems of Control,” IEEE Transactions on Automatic Control, Vol. 38, No. 2,
pp. 195-207, Feb. 1993.

2. R. Sukthankar, Situation Awareness for Tactical Driving, Ph.D. Dissertation, CMU-RI-TR-97-08, Robotics Institute,
Carnegie Méellon University, Pittsburgh, PA, 1997.

3. F. Eskafi, D. Khorramabadi, “SmartPath: An Automated Highway System simulator,” Technical Report UCB-1TS-94-3,
University of California-Berkeley, 1994.

4. A. Golld, Object Management Systems, Ph.D. Dissertation, University of California-Berkeley, CA, 1995.

5. R.C. Colgin, Description and Analysis of a Bayesian CFAR Processor in a Nonhomogeneous Clutter Background, Ph.D.
Dissertation, Oakland University, Rochester, M1, 1995.

6. H.R. Everett, Sensors for Mobile Robots: Theory and Application, A.K. Peters, Wellesley, MA, 1995.

7. M.L. O'Connor, G.H. Elkaim, B.W. Parkinson, “ Carrier-phase DGPS for Closed-loop Control of Farm and Construction
Vehicles,” Navigation, Vol. 43, No. 2, pp. 168-178, Summer 1996.

8. U, Ozgiiner, “Radar-based Convoying Using a Frequency Selective Surface Path,” Proceedings of the 6™ Annual Meeting
of ITS America, Vol. 2., pp. 750-755, 1996.

9. A. Andrews, “Theoretical and Empirical Analysis of PATH Magnetic Lane Tracking for the Intelligent Vehicle Highway
System,” PATH Research Report UCB-ITS-PRR-92- 9, University of California-Berkeley, 1992.

10.P.N. Misra, M. Pratt, R. Muchnik, B. Burke, and T. Hall, “GLONASS Performance: Measurement Data Quality and
System Upkeep,” Proceedings of ION GPS-96, pp. 261-270, The Institute of Navigation, 1996.

11.T. Jochem, D. Pomerleau, B. Kumar, and J. Armstrong, “PANS: A Portable Navigation Platform,” IEEE Symposium on
Intelligent Vehicles, Detroit, M1, USA, September 25-26, 1995.
12.A. Deshpande, A. Gollt, and L. Semenzato, “The SHIFT Programming Language and Run-time System Dynamic
Networks of Hybrid Automata,” PATH Research Report UCB-ITS-PRR-97-7, University of California-Berkeley, 1997.
13.SHIFT Team, “SHIFT, the Hybrid System Simulation Programming Language,” http://www.path.berkeley.edu/shift/
(September 9, 1997).

14.A. Deshpande, “AHS Components in SHIFT (Draft),” PATH Report, http://www.path.berkeley.edu/publications.html,
(September 9, 1997).

15.D. Pomerlau, Neural Network Perception for Mobile Robot Guidance, Ph.D. Dissertation, Carnegie Mellon University,
Pittsburgh, PA, 1992.

16.R. Sukthankar, J. Hancock, C. Thorpe, “Tactical-level Simulation for Intelligent Transportation Systems,” Journal on
Mathematical and Computer Modeling, Special Issue on ITS, 1997.

12

