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1 Introduction

Sensor technology plays a critical role in the operation of the Automated Highway System (AHS). The
proposed concepts depend on a variety of sensors for positioning, lane-tracking, range and vehicle
proximity. Since large subsystems of the AHS will be designed and evaluated in simulation before
deployment, it is important that simulators make realistic sensor assumptions.

The sensor models presented here are part of the functional sensor hierarchy, incorporating geometric
models, abstract noise characteristics, and can be used directly with current AHS tools. These models
capture the aspects of sensing technology that are important to AHS concept design such as occlusion,
and field of view restrictions, while ignoring physical-level details such as electromagnetic sensor
reflections. Since the functional sensor models operate at the same level of granularity as the
simulation platform, complete integration is assured. The hierarchy classifies sensors into functional
groups. The models at a particular level incorporate characteristics that are common to all sensors in its
subgroups. For example, range sensors have a parameter corresponding to a maximum effective range
while lane-trackers will include information pertaining to lateral accuracy.

Sensor models described in this document are implemented using SHIFT programming language [1].
The characteristics and general input/output structure of the sensors are compatible with Smart-AHS
[2] simulation platform defined in [3], and therefore can be used with Smart-AHS package (current
version 1.1).

Each of the classes described in the following sections is represented in the microsimulator by a
functional sensor model. The functional sensor model contains three important parts. First, it
implements algorithms that access the microsimulator's internal state to create the appropriate outputs
(e.g., a range sensor should return the distance to the appropriate target). Second, it is responsible for
realistically corrupting the sensor measurements. Parameters such as maximum range or field of view
are represented explicitly when the microsimulator's fidelity can support them. In other cases, the
characteristics will be captured in a more abstract manner (e.g., expected accuracy of lane tracking).
Initial results obtained with the following sensor models as well as the initial sensor hierarchy
envisioned for AHS applications are presented in [4].

The computer implementation of a functional sensor is a module that processes information from the
simulation environment (“real world”) to create inputs suitable for the cognition system (“perceived
world”). Additionally, the functional sensors are used to “corrupt” the actual state of the world, as
represented in the microsimulator internals, into realistic sensor readings, useful for evaluating control
methodologies.

The general structure of a range sensor is given in Figure 1 to illustrate our sensor implementation
approach. The environment conditions are used to evaluate noise characteristics fort a specific sensor,
although the initial noise model is defined at the setup phase with other sensor characteristics such as
the level of detail and pertaining parameters. The information about the vehicles is preprocessed in
order to extract necessary information, such as current sensor and vehicle positions and orientations,
and the set of vehicle in the field of view. The preprocessing is followed by the computation of the
desired sensor outputs. Fault modes of the sensors are defined as discrete states, and the paramete
characterizing the sensor capabilities are updated while transitioning between these states.
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Figure 1. Implementation structure for a functional range sensor.

2 Range Sensors

There are currently four different implementations for on-board range sensors. These are described in
the following sections. All sensors are implemented in two-dimensional space, although the simulation
platform supports three-dimensional definitions. The extension of the models to 3-D will be carried
out, as it becomes necessary.

Figure 2 illustrates the levels of detail considered for range sensor implementation. The simplest
model for range sensing uses the position information on all vehicles to compute the distance to the
closest vehicle (Figure 2a). This approach treats the vehicles as particles; therefore, the error in sensed
distance can be large for shorter ranges. Furthermore, the exact position of the vehicle with respect to
the sensor is not known.

(@) (©

e

(b) (d)

Figure 2. Four different levels of detail for generic range sensor: (a) point vehicles, (b) addition of sensor position and
orientation, (c) pseudo-vertex calculations for vehicle orientation, (d) ray definitions.

A natural extension of the first sensor model is the addition of the sensor position and orientation in
vehicle coordinate frame (Figure 2b). This enables the user to define more realistic sensors such as
side-looking proximity sensors. The addition of the position and orientation information slightly
increases the computational burden. The global position and orientation of the sensor must be
computed at every time step using the vehicle information provided by simulation platform. For the
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first two sensor models, it is possible to define a horizontal field of view by simply filtering the
vehicles with azimuth readings beyond a predefined value. The definition of field of view is
implemented for the second model.

The next two levels of detail for range sensor model are designed to provide additional information
about the orientation of the sensed objects as well as more accurate information about the position and
the range of the sensed vehicle. The model which employs “pseudo-vertex” definitions enables the
user to define points on the rectangles describing the vehicles, and uses these points to evaluate the
range and azimuth angle (Figure 2c). This approach is useful in long range sensor implementations or
in platoon simulations where the road curvature is small; the returned azimuth angle may be drastically
different from the actual value in close range.

The sensor module created for pseudo-vertices approach can return the range and azimuth angle of all
defined points in the sensor range (with minor changes in the current external function), thus providing
additional information about the orientation of the vehicle/obstacle surface. The price for this
additional information is of course the complexity of computation: The length and width of all the
vehicles, as well as their current orientation, must be fed to the sensor modules, since they are required
for calculating the position of multiple pseudo-vertex points. An additional computation loop for all
these points is needed for each vehicle in range (See external functions given in Section 13 for details).

The most complex range sensor definition includes ray definitions where the number of scanning rays
are parameterized in addition to previous definitions of horizontal field of view, sensor position and
orientation. In this model, the functional sensor computes the intersection of defined rays (for which
the maximum range and the azimuth angle are known) and the lines defining the sensed vehicle. For
each ray of the sensor, and for each line of all vehicles in range, the intersections are computed.
Intersection points outside of the segments that constitute the vehicle (“diamonds” in Figure 2d) are
discarded as well as those that are in the opposing side of the vehicle (“white circles” in Figure 2d).
The closest intersection point is returned as the range.

All sensor models presented here use periodical updates where the sampling frequency is a user-
defined parameter that can be as small as the simulation time step. Gaussian measurement noise can b
injected into range and/or azimuth readings; the mean and variance of the noise are also user-defined
parameters.

Furthermore, it is possible to define different operating modes with minor changes in the program
code. For example, the noise characteristics of a range sensor may depend on the weather conditions
on the road segment that the vehicle travels, or the user may want to introduce operating modes that
emulate faults in the system. Examples of such sensors are given in later sections.

2.1 Simple Range Sensor

This functional sensor type uses the global set of vehicles to obtain the position of all vehicles in the
global reference frame. The sensor is assumed to be located at the center of gravity of the vehicle
(Figure 2a). The sensor detects the position of other vehicles in 2-D space. It returns the distance to the
center of gravity of the sensed vehicle and the azimuth angle from vehicle x-axis that is directed
toward the front of the vehicle. This evaluation does not take the shapes of vehicles into account.

As seen in Figure 3, range sensor’s main axis is assumed to be aligned with the x-axis of the vehicle
coordinate frame. The rotation of the two-dimensional vehicle coordinate frame with respect to global
coordinate frame is shown &g, The orientation of the line connecting to vehicles with respect to the
global coordinate frame 8s,. The first angle can be evaluated using the vehicle-to-global alignment
matrix available from Smart-AHS implementatifmr vehicle roadway environment proces$dREP
in SHIFT (For detailed information, see [3], and Section 12). The second value is calculated using the
atan2 function with vehicle coordinates. The azimuth angle can then be calculated as the difference
between these two values:
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6,, = atan2(vgani2,vganil)

(Eq. 1) 6, = atan2(gyp(av) — gyp gxp(av) — gxp)
a=-(6,, -6,)

vg sv

wherevgamlland vgaml2are the first and second elements of the “vehicle-to-global alignment
matrix” VGAM, and gxp and gyp indicates the global positions of the vehicles. The negative sign in

(Eq. 1) is required due to the right-handed definition of the vehicle coordinate frame while the global
frame is right-handed.

Yv

Sensor

eSV

Xv

Vehicle in range (av)

Figure 3. Alignment of sensor main axis with global and vehicle coordinate frames.

2.1.1 1/O Structure and Parameters

The typeRangeSensdras the following inputs:

« OXp, gyp Global position of the vehicle/sensor (m)
. vgamllvgam12 First to elements of the vehicle orientation ma&AM

The following values are returned as outputs:

. distance Distance from the center of gravity of the sensed vehicle to the sensor. (m)

. angle Azimuth angle defined between the sensor main axis (i.e., vehicle x-axis)
and the line connecting the sensor and the COG of the sensed vehicle (deg).

. Closest Identification number of the closest vehicle in sensor range.

The following are user-defined parameters or state variables (evaluated during processing) for the
range sensor type:

. vehicle Vehicle associated with the sensor.
« maxrange Maximum range (m).
. procspd Processing speed for the sensor (sec).

. inrange Set of the vehicles in range.
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. t Time (sec).
The set of vehicles is defined globally as shown in Section 11.

2.1.2 Source Code
The SHIFT code for the simplest range sensor is given below:

<rangesensor.hs>

The function that evaluates the distance to the vehicle in range is implemented as an external C
subroutine, and is linked as shown in the first few lines of the program code above. For the description
of the external function, see Section 13 on page 39.

2.2 Range Sensor Type 2

This type is similar to the previous one except the fact that the location and the orientation of the
sensor with respect to the vehicle coordinate frame can be defined. Again, all vehicle positions in
global vehicle frame are obtained from the global set of vehicles.

The sensor detects the positions of other vehicles in 2-D space. It evaluates the distance from the
sensor location to and the azimuth angle from the main sensor axis for the closest vehicle in range. The
shape of the vehicle is not taken into account. A set of vehicles that are in the sensing range and in the
field of view is generated before selecting the closest vehicle.

As seen in Figure 4, the sensor’'s main axis deviates from the vehicle coordinate frame by a rotation
of 6,s degrees, a user-defined parameter. Again, the rotation of the of the vehicle coordinate frame with
respect to the global coordinate frame (in 2-D) is given by the &gglehose value is obtained from
VREP. These values are used to calculgiethe orientation of the sensor main axis with respect to
the global coordinate frame. Furthermore, the ariglebetween the global x-axis and the line
connecting the locations of the sensor and detected vehicle can be calculated using the position
information provided by VREP. Therefore, azimuth argfeom the sensor axis can be evaluated as:

(Eq 2) a= esv - esg = esv - (va - evs) = esv - evg + evs
It is important to remember that the an@lg is subtracted from the anglgy although the figure

indicates a summation. This is due to the right-handed definition of the vehicle coordinate frame; the
value of the angle must be negated.
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Yv

Ovg Vehicle in range (av)

Xv

v | Osv

) - Oﬂ

Ovs

Figure 4. Alignment of sensor axis with global and vehicle coordinate frames.

Using the vehicle-to-global alignment matWiGAM, the position of the sensor can be evaluated as:

vgamil vgani?
J J }[gxp ayp|

Eq. - '
( q 3) [ng ysg] [st ysv] {vganﬂl VgaITQZ

wherexsg andysg are the global position of the sensor whigandys, denote the position of the sensor
in vehicle coordinate frame. The vectors are given in row format for clarity since the alignment matrix
is given in transpose form in the code (See SHIFTvfgp.hsin Smart-AHS package for details).

For the evaluation of the closest vehicle in range and in the field of view, a set of vehicles in range
(inrange is created first from the set of all vehicles except the self-vehicle. Then, a subset of vehicle in
the horizontal field of viewiffield) is evaluated from the sgtrange.The vehicle returning the closest
distance in the senfield is indicated as thelosestvehicle.

2.2.1 1/O Structure and Parameters

The typeRangeSensoras the following inputs:
« OXp, gyp Global position of the vehicle/sensor (m)
. vgamllvgam12 Elements of the vehicle orientation matvissAM.
vgam2lvgam?22

The following values are returned as outputs:

. distance Distance from the center of gravity of the sensed vehicle to the sensor (m).

. angle Azimuth angle defined between the sensor main axis (i.e., vehicle x-axis)
and the line connecting the sensor and the COG of the sensed vehicle (deg).

. Closest Identification number of the closest vehicle in sensor range.
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The following are user-defined parameters or state variables (evaluated during processing) for the
range sensor type:

. vehicle Vehicle associated with the sensor.

« maxrange Maximum range (m).

. fov. Angle defining the horizontal field of view (degrees).

. procspd Processing speed for the sensor (sec).

« XS yS Sensor position in vehicle coordinate frame (m).

. SOr. Sensor orientation in vehicle coordinate frame (degrees).
. infield: Set of vehicle in the field of view.

. inrange Set of the vehicles in range.

.t Time (sec)

The set of vehicles is defined globally as shown in Section 11.

2.2.2 Source Code
The SHIFT code for the second range sensor type is given below:

<rangesensor2.hs>

The function that evaluates the distance to the vehicle in range is implemented as an external C
subroutine, and is linked to as shown in the first few lines of the program code above. For the
description of the external function, see Section 13 on page 39.

2.3 Range Sensor with Pseudo-vertex Definitions

Range sensor with pseudo-vertex definitions uses the information from the global set of vehicles to
obtain the position of all vehicles in the global reference frame. The position and the orientation of the
sensor can also be defined with respect to the vehicle coordinate frame. The method used for distance
and angle measurements is based on the definitions of multiple points on the edges of the rectangular
space occupied by the (sensed) vehicle. For vehicle detection, range sensor checks these points instea
of the center of gravity as in the previous sections. For each vehicle in range, the distance and the angle
to these (currently six) points are calculated; values associated with the vehicle pseudo-vertex point
with shortest range are returned (Figure 2d).

At present, the sensor position, and orientation, as well as the position and orientation of all vehicles
are passed to an external function, which calculates the distance and the angle to six pseudo-vertex
points for each vehicle. The distance and the azimuth angle to the closest pseudo-vertex point in the
horizontal field of view are returned. Several parameters such as vehicle length, vehicle width,
maximum sensor range, and field of view are also sent to external subroutine since these values may
change from vehicle to vehicle. If the values for multiple points for a specific vehicle are needed,
minor changes are required in the subroutine.

The position with respect to the center of gravity and the number of the pseudo-vertex points are
defined in the external C function (See functdist6in Section 13). Depending on the application at
hand, these values can be changed. For example, in a platooning simulation, 3 or more points can be
defined on the “rear edge” of the vehicles for sensor readings close to actual values.

2.3.1 1/O Structure and Parameters

The typeRangeSensor_PNas the following inputs:
« OXp, gyp Global position of the vehicle center of gravity (m)
. vgamllvgam12 Elements of the vehicle orientation matvicAM
vgam2lvgam?22
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The following are returned as outputs:
. distance Distance from the closest pseudo-vertex point to the sensor (m)
. angle Azimuth angle defined between the sensor main axis and the line
connecting the sensor and the pseudo-vertex point on the sensed vehicle (deg).

The following are user-defined parameters or state variables (evaluated during processing) for the
range sensor type:

. Maxrange Maximum range (m)

. hfov. Half of the horizontal field of view (degrees)

« XS YS Sensor position in vehicle coordinate frame (m)

. SOr. Sensor orientation in vehicle coordinate frame (degrees)
. procspd Processing speed for the sensor (sec)

. inrange Set of the vehicles in range

. t Time (sec)

o VI, vw. Vehicle length and width (m)

The set of vehicle is defined globally as shown in Section 11.

2.3.2 Source Code
The SHIFT code for the range sensor with pseudo-vertex definitions is given below:

<rangesensor_pv.hs>

The function that evaluates the distance and the azimuth angle to the closest pseudo-vertex point is
implemented as an external C subroutine, and is linked as shown in the first few lines of the program
code above. For the description of the external function, see Section 13 on page 39.

2.4 Range Sensor with Ray Definitions

Range sensor with ray definitions uses the information from the global set of vehicles to obtain the
position of all vehicles in the global reference frame. The position and the orientation of the sensor can
be defined with respect to vehicle coordinate frame. The method used for this sensor model is based on
a subroutine that calculates the intersection of two straight lines in two-dimensional space.

The user defines the resolution of the range sensor by the number of scanning rays and the maximum
horizontal field of view. Since the position and orientation of the sensor with respect to the vehicle
coordinate frame, and the position and orientation of the vehicle with respect to global coordinate
frame are known, the equation of the lines representing the rays can be evaluated. The same is true for
the line segments defining the sensed vehicles (Figure 5).

Using the definitions of Figure 5 and (Eq. 1), the slope/orient&ioha scanning ray is given as:

slope = sensorientation + ray orientation

(Ea-4) 6,=(6,, - HVS)J{hfov— 2-hfov —1)}

' r-1

where 8,4 is the orientation of the vehicle with respect to the global coordinate frames the
orientation of the sensor with respect to the vehicle coordinate frame (the minus sign is required since
the vehicle coordinate frame is right-handedpv is the angle defining half of the horizontal field of

view, r is the number of scanning rays, anslthe index of the ray.
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At present, the sensor position, and orientation, as well as the position and orientation of all vehicles
and the deviation of the rays from the sensor main axis, are passed to an external function. This
function calculates the intersection points (four for each vehicle— before discarding the points outside
the segments defining the sensed vehicle) of the scanning rays with the vehicles, and evaluates the
distance to the closest intersection point for each ray. A vector of ranges is then returned.

The minimum value in this vector is taken as the range, and the index of the minimum is used to
calculate the azimuth angle. Of course, there may be a slight deviation from the actual range and
azimuth angle values due to low resolution of the scanning rays.

The model employs a second external subroutine for calculating the minimum of an array and its
index. This additional subroutine is chosen due to complexity of realizing the same in SHIFT
language. This subroutine will be replaced with its SHIFT counterpart in the future.

The vertex points for the segments representing the vehicles are defined in the external C function
(See Functiordist5 in Section 13.1.3). The vertex points are currently chosen to define rectangular
vehicle shapes. With the addition of more vertex points, defining other vehicle shapes is possible
though computationally tasking.
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yv
. Xg>
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Returned solution

Vehicle in range

Solution
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Figure 5. Definition of the sensor and scanning rays.

2.4.1 1/0O Structure and Parameters

The typeRangeSensor_Ras the following inputs:
« OXp, gYp Global position of the vehicle/sensor (m)
. vgamllvgam12 Elements of the vehicle orientation matvissAM.
vgam2lvgam?22

The following values are returned as outputs:
. distance Distance from the edge of the sensed vehicle to the sensor (m)
. angle Azimuth anglei(e., the angle associated with the intersecting ray; degrees).
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The following are user-defined parameters or state variables (evaluated during processing) for the
range sensor type:

. vehicle Vehicle associated with the sensor.

. Maxrange Maximum range (m)

. hfov. Angle defining_half the horizontal field of view (degrees).
. nray. Number of scanning rays.

. procspd Processing speed for the sensor (sec).

« XS YS Sensor position in vehicle coordinate frame (m).

. SO Sensor orientation in vehicle coordinate frame (degrees).
. rayvec Array of ray slopes/orientations

. inrange Set of the vehicles in range.

. range Returned readings for all rays (m).

. t Time (sec)

« VI, vw: Vehicle length and width (m).

The set of vehicles is defined globally as shown in Section 11.

2.4.2 Source Code
The SHIFT code for the range sensor with scanning ray definitions is given below:

<rangesensor_r.hs>

The function that evaluates the distance to the closest intersection point is implemented as an external
C subroutine, and is linked as shown in the first few lines of the program code above. Another function
for finding the minimum valued element of an array and its index is also implemented. For the
description of these functions, see Section 13 on page 39.

2.5 Addition and Subtraction of Angles: Problems around + I1

All sensor models (and/or their external C functions) include the following line of codes or similar
lines:

number diff := atan2(vgam12,vgam11)-sor;
number sen_or := if abs(diff) < 2*Pl-abs(diff)
then diff
else -(2*Pl-abs(diff))*signum(diff);

The reason for this is the definition of the variable indicating angles and/or slopes. All such variables
are defined in the intervdl-IT,TT]. When two such values are added or subtracted, the result may be
outside of the predefined intervéf-then condition given above is actually implementing a function
mapping the resulting values back to the interval when there is a need for such an adjustment (Figure 6
on page 14).

2.6 Preprocessing for Range Sensors

Initially, all sensor modules are designed to take the global set of vehicles as input for evaluating
vehicles in range. This approach results in extensive computational effort —especially for large number
of vehicles—, and needs to be eliminated. Instead of checking the whole set of existing vehicle on the
simulation platform, it is sufficient to consider a subset of vehicles that are in the sensor range of the
vehicle in question. The limiting area for a “sensor sweep” is illustrated in Figure 7. The size of the
rectangular filtering area is thér +2mr)x (vl + 2mr) wherevl is the vehicle length, anchr is the

maximum sensor range. Two approaches currently used in Smart-AHS projects are:
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. Grids with user-defined sizes (part of the communications project).
. Definition of cellsin road segments for use wigknsor environment processor SEP.

For detailed description of these methods, see the latest Smart-AHS distribution. As of December
1997, a global grid definition is added to this sensor suite. The details of the grid, and its cell structure,
as well as the sensor environment processor associated with these definitions are given in Section 9.

f(x)A

I1

X
2H.>

b I'¢

Figure 6. Function mapping resulting values back into the defined interval
after summation and/or subtraction.

 field of view

maximum range

‘\ sensor

maximum range

possible sensor__
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____________________________________________________________________

Figure 7. Sensor range definitions for filtering the vehicle set.
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3 Range Sensors for Human Driver Models

There are currently four different implementations of functional range sensors specifically used for
human driver models in SHIFT (See [5] for details of human driver models). These are actually two
different models: same lane detection, and adjacent lane detection. The first model is used for front-
and rear-looking sensors while the second approach is needed for side sensors.

The main difference between these sensors and the sensors described in Section 2 is the identification
procedure for vehicles in range. Sensors in Section 2 can also be used for other applications such as
multiple autonomous robot simulations while those described in this section are implemented as
human perception modules, and require specific Smart-AHS definitions sMREA3 and highway
components.

Instead of “filtering” the vehicles in sensor range and/or field of view, these sensors use the Smart-
AHS highway definitions in SHIFT, and consider only the vehicles in a specific lane and its up and
down connecting lanes. Sinaehicle roadway environmentprocessor(VREB provides the lane,
segment and section information [3], the evaluation of the adjacent lanes is straightforward.

Sensor range is still a user-defined variable for these sensor models, and indicates the longitudinal
distance from the sensor/vehicle location. As seen in Figure 8, “longitudinal” distances are calculated
using the information about the position of the vehicles on a road section, and therefore indicate the
distance between vehicle COGs on the circular curve representing the left edge of the road section.

Section beginning detected vehicle

sensors’ location

Xp
- . i :
1 L |
| |
i e
1
| Lane 2 ! - - ! front sensor range
: back sensor range :
5 ’ -
| |

side sensor ranges

Figure 8. Definition of the sensor ranges for front, back, left and right sensors.

The detection subroutine is slightly different for four sensor types described in detail below. First, up
and/or down stream connecting lanes to the lane in question are evaluated depending on the sensor
type. For example, the left-sensor module checks fangdown stream lanes connected the lane on
the left side of the current vehicle lane. Then, the vehicles, which occupy the lane in question or its
connected lanes, are filtered based on the maximum sensor range(s) defined by the user.

Since vehicle positions in the road section, namely the variapleis used for evaluations, the
connecting up and/or down stream sections must also be considered: the sensor range may extend
beyond the limits of the current section. For example, front sensor module looks for vehicles that
satisfy range conditions and are (a) in the same section and in the same lane or (b) in the section
connected downstream to the current section and in the lane connected down stream to the current
lane. For the second case, the vehicle road poskjprcannot be used directly for calculating the
distance between vehicles due to its definition (See source codes in Section 3.1.2 and the figure above
for details).

The sensors are designed to provide data at user-defined frequencies. However, due to drastic
changes in the sensor environment during lane changes, they are forced to “sample” range information
when the vehicle moves over the adjacent lane. This “forced sampling” is obtained by synchronizing
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the sampling state transition of the sensor(s) to the extBradr eventnew_lanewhich is in turn
synchronized to the exported evenislateLaneRighand updateLanelLefof type VREP See source
codes given below for details.

Sensor models described here use the highway descriptions of Smart-AHS in SHIFT (See [2, 3] for
details). Currently, we assume that there is only one element in doapSectiormndupSection The
Smart-AHS platform is capable of supporting multiple definitions in these arrays; if multiple sections
are connected, the source code needs to be changed. See source codes given below for details.

3.1 Front and Back Sensors

Range sensors for human driver models use the roadway information provided by the simulation
platform and the vehicle position information from the set of vehicles. Distance calculations are based
on the road (section) coordinates of the vehicles providing their relative positions from the beginning
of road section that they are traveling. Euclidean distance and azimuth angle are not computed; only
the “longitudinal” difference between the vehicle COGs is returned.

The vehicles that are in the same lane or in the up/downstream lane connected to the self-vehicle’'s
lane are filtered as theehicles in range The calculation of the distance is slightly different for
vehicles on a connected section; the length of the section must also be taken into account because of
the definition of the parametekp. The vehicle with closest distance to the sensor/self-vehicle is
chosen from the set of vehicles in range. Vehicle ID as well as its longitudinal distance are returned. If
there are no vehicles in the current lane and/or up/downstream lane satisfying the range condition, a
sensor reading of —1 is returned.

3.1.1 1/O Structure and Parameters
The typedrontSensomandBackSensohave the following inputs:

. IXp: Longitudinal position of the vehicle with respect to the beginning of the road
. section (m).

« OXp, gYp Global position of the vehicle/sensor (m)

. lane Current lane.

. section Current section.

The following values are returned as outputs in both types:
. Closest Identification number of the closest vehicle in sensor range.
. distance COG-to-COG distance from the closest vehicle in range to the self-vehicle (m)

The following are user-defined parameters or state variables (evaluated during processing) for both
range sensor types:

. vehicle Vehicle associated with the sensor.

. range Maximum range of the sensor (m)

. SI Sampling rate (processing speed) for the sensor (sec).

. t Time (sec)

. lanesDown Set of downstream lanes connected to the current lanErotSensor;
the parameter kienesUpfor BackSensQr

. inrange Set of vehicles in range.

. Vir: Temporary variable for closest vehicle.

The set of vehicles is defined globally as shown in Section 11.
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3.1.2 Source Codes
The SHIFT code for the front-looking range sensor is given below:

<frontsensor.hs>
The SHIFT code for the rear-looking range sensor is given below:
<backsensor.hs>

3.2 Left and Right Sensors

Left and right range sensors for human driver models use the roadway information provided by the
simulation platform and the vehicle position information from the set of vehicles. Distance calculations
are based on the road (section) coordinates of the vehicles providing their relative positions from the
beginning of the road section that they are traveling. Euclidean distance and azimuth angle are not
computed; only the longitudinal distance between the vehicle COGs is returned.

The vehicles that are in the adjacent left/right left or in the up and downstream lane connected to the
left/right lane are filtered as theshicles in rangeThe calculation of the distance is slightly different
for vehicles on a connected section; the length of the section must also be taken into account because
of the definition of the parametexp. The vehicles with closest longitudinal distance on the front and
at the back are chosen from the set of vehicles in range. Vehicle Ids as well as their longitudinal
distances to the sensor location are returned. If there are no vehicles in the current left lane and/or up
and downstream lanes satisfying the range condition, a sensor reading of —1 is returned. Sensor output
is -2 if there is no adjacent lane on the left/right.

3.2.1 1/O Structure and Parameters
The typed_eftSensoandRightSensohave the following inputs:

. IXp: Longitudinal position of the vehicle with respect to the beginning of the road
. section (m).

« OXp, gyp Global position of the vehicle/sensor (m)

. lane Current lane.

. section Current section.

The following values are returned as outputs in both types:

. fclosest Identification numbers of the closest vehicles in sensor range (front and
bclosest back).

. fdistance COG-to-COG distances from the closest vehicles in range to the self-vehicle.
bdistance

The following are user-defined parameters or state variables (evaluated during processing) for both
range sensor types:

. vehicle Vehicle associated with the sensor.

. frange, brange Maximum range of the sensor in meters (front and back).
. SI Sampling rate (processing speed) for the sensor (sec).

. t Time (sec)

. lanesDownLeft Set of downstream lanes connected to the current lankdft8ensor;
lanesUpLeft the parameters al@nesDownRighéndlanesUpRighfor RightSensgr
. inrangef Sets of vehicles in range (front and back).
inrangeb
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« virf, virb: Temporary variables for closest vehicles (redundant).

The set of vehicles is defined globally as shown in Section 11.

3.2.2 Source Codes
The SHIFT code for the left-side range sensor is given below:

<leftsensor.hs>
The SHIFT code for the right-side range sensor is given below:
<rightsensor.hs>

3.3 Possible Extensions to HDM Range Sensor Models

There are three possible extensions to the range sensors that use roadway information from the Smatrt-
AHS platform. These are:

. Extension of the side sensor capabilities to the second lane on the right/left:
In order to provide information for more complex path decisions, the sensors (human perception
models) can be assumed to detect vehicles beyond the adjacent lane. The implementation of this
addition is straightforward.

« Addition of rate information to sensor outputs:
Besides the distance and vehicle ID, the rate of change of the measured distance can be useful to
human driver models in making intelligent path decisions. If this capability is not implemented in
the associated HDM model (see examples in [5] for a straightforward implementation), the rate of
change can be provided by the range sensor. An example is given in Section 3.3.1.

. Addition of the second closest vehicle to sensor outputs:
Since human drivers try to and can look beyond the vehicle in front, the second closest vehicle
must be returned by the sensor module in order to implement human perception more accurately.
Implementation of this capability is slightly difficult then the previous one, though feasible. A
simple approach would be deleting the vehicle returned as closest vehicle from the set of vehicles
in range, and repeat the detection subroutine on the resulting set. An example if this is given in
Section 3.3.2.

3.3.1 Providing Rate of Change in Headway: FrontSensor Rate

The sensor typ€rontSensorRateis a direct extension of the typeontSensar The only addition is
the evaluation of the rate of change in measured distance by comparing two consecutive readings. The
source code dfrontSensorRateis given below:

<frontsensor_rate.hs>

3.3.2 Providing Information on Second Closest Vehicle: FrontSensor2

The sensor typ&rontSensords a direct extension of the typ@ontSensor The only addition is the
definition of another subset of vehicles in range in adjacent lane in question by eliminating closest
vehicle from the initial set of vehicles. By applying the same detection condition to this new set,
second closest vehicle is obtained. The SHIFT codErtamtSensords given below:

<frontsensor2.hs>
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4 Roadside Range Sensors

Two roadside sensor models given in this section are similar to previous sensor models except the fact
that there are associated with road segments instead of vehicles. Their position and/or orientation are
defined at the beginning of the simulation run based on the parameters given by the user. Input/output
structure and evaluation of vehicles in range is adapted from previous sensor models given in Section
2.

The first sensor model can return the Euclidean distance to the vehicles in range. The orientation of
the sensor is not important. The second sensor model can also return the azimuth angle from the main
sensor axis, which is defined with respect to xkexis of the road coordinate frame at the sensor
position.

4.1 Roadside Sensor

This functional sensor type uses the information from the global set of vehicles to obtain the position
of all vehicles in the global reference frame. The sensor position on a road segment is given by its
distance from the beginning of the road segment along the arc defining the left edge of the road, and its
lateral deviation from the left edge of the road segment. Associating sensor position with a road
segment enables the user to define sensor positions easily and more clearly. The transformation of
these definitions into global coordinates requires additional computations based on the road segment’s
global position, orientation, and curvature.

If the position of a sensor with respect to a road segment is definedwaitidsy in two-dimensional
space, then the global positioyf ygg" of the sensor is given by:

o[22 SR

where gxa, gya are the global position of the left edge of the road segment at its beginning when
looking downstream? is the global orientation of the road segment, ancnd ys are given as:

s
X} if p=0
L SY

XS 1 . . .
(Eq. 6) {X_S} - ﬂ-sm(sx- |p|)+ sy- sin(sx: |p|) sign(- p)
¥ P otherwise

-1 -codox o) siart- o)+ sy-codox o)

wherep is the curvature of the road segment. Its sign is positive for left turns, and negative for right
turns. Figure 9 illustrates the parameters described above for a generic case. Multiple negative signs in
the equations are kept in order to facilitate the understanding of the evaluation equations, and
debugging in later stages.

Once the global position of the sensor is calculated, the evaluation of the distance to the vehicle in
range is straightforward. The evaluation of the closest vehicle in the sensor range is the same as in the
sensors described in Section 2.
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Figure 9. The global position of the roadside sensor relative to the road segment.

4.1.1 1/O Structure and Parameters
The typeRoadSideSensdras no inputs.

The following values are returned as outputs:
. distance Distance from the center of gravity of the sensed vehicle to the sensor (m).
. Closest Identification number of the closest vehicle in sensor range.

The following user-defined parameters or state variables (evaluated during processing) for the
roadside sensor type:

. segment Segment associated with the sensor

« SX SY. Sensor position on the segment (m)

« maxrange Maximum range (m)

. procspd Processing speed for the sensor (sec)
. inrange Set of the vehicles in range.

.t Time (sec)

« X0S Ygs Global position of the sensor (m)

. rho: Curvature of the road segment (1/m)

. R Radius of curvature of the segment (m)
. beta Orientation of the segment (rad)

. sxbar, sybar Sensor position relative to the road segment (in global coordinate frame; m)
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The set of vehicles is defined globally as shown in Section 11.

4.1.2 Source Code
The SHIFT code for the simplest roadside sensor is given below:

<roadsidesensor.hs>

The function that evaluates the distance to the vehicle in range is implemented as an external C
subroutine, and is linked as shown in the first few lines of the program code above. For the description
of the external function, see Section 13 on page 39.

4.2 Roadside Sensor Type 2

This type is similar to the previous type except the fact that the orientation of the sensor as well as its
position is a user-defined parameter. However, there is no field of view definition for this sensor. The
orientation of the sensed vehicle with respect to the main sensor axis (defined with respect to the road
coordinate frame at the sensor position) is returned in degrees.

The position of the sensor is again defined on the associated road segment, the global position is
evaluated at the setup phase of the simulation. Orientation of the sensor is defined with respect to the
road segment; it is the difference between the main sensor axis axdxiseof the road coordinate
frame at the position of the sensor. Clockwise direction is positive for azimuth angle calculations.
Figure 10 illustrates the parameters related to sensor orientation.

As seen from Figure 10, global orientatibof the roadside sensor can be calculated using:

Sensoprientatio gy, = Segmentrientation s

(Eq. 7) + Orientationduetoroad psoition
| +Sensoprientation g,
O=fF+a+o

- . 1 . .
For the sensor shown in Figure 10, a road orlentatlogdhdlans will cause the sensor to return an

azimuth angle of zero for a vehicle that is positionesixaeters from the beginning of the segment.
For the same vehicle the closest possible distance reading wawylot(Gsy) = ryp+sy

Once the global orientation of the sensor is known, the calculation of the azimuth angle to the vehicle
center of gravity is straightforward: the evaluation is the same as in the sensors described in Section 2.
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Figure 10. Global proentation of the roadside sensor locatesiady) on the road segment.

4.2.1 1/O Structure and Parameters
The typeRoadSideSensotzas no inputs.

The following values are returned as outputs:

. distance Distance from the center of gravity of the sensed vehicle to the sensor (m).

. angle: Azimuth angle defined between the sensor main axis and the line connecting
the sensor and the COG of sensed vehicle (degrees).

. Closest Identification number of the closest vehicle in sensor range.

The following user-defined parameters or state variables (evaluated during processing) for the
roadside sensor type:

. segment Segment associated with the sensor.

.« SX SY. Sensor position on the segment (m)

. Sorseg Sensor orientation with respect to the road coordinate frame at the sensor
position (rad)

. Maxrange Maximum range (m)

. procspd Processing speed for the sensor (sec)

. inrange Set of the vehicles in range.

. t Time (sec)

« XgS ygs Global position of the sensor (m)

. Senor: Global orientation of the sensor (rad)

. rho: Curvature of the road segment (1/m)

. R Radius of curvature of the segment (m)

. beta Orientation of the segment (rad)

. Sxbar, sybar Sensor position relative to the road segment (in global coordinate frame; m)

. diff1, diff2: Temporary variables for angle summation (taking care of the problem
around+II).

The set of vehicles is defined globally as shown in Section 11.
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4.2.2 Source Code
The SHIFT code for the roadside sensor is given below:

<roadsidesensor.hs>

The function that evaluates the distance to the vehicle in range is implemented as an external C
subroutine, and is linked as shown in the first few lines of the program code above. For the description
of the external function, see Section 13 on page 39.

4.3 Other possibilities

Roadside sensors similar to HDM sensor models given in Section 3 are also possible. These sensors
will return only the longitudinal distance between the point that the sensor is “attached” to the road
segment and the COG of the vehicle in range.

The most detailed roadside sensor should include parameters such as height of the sensor with respect
to the road surface, and scanning ray definitions, and must take into account three-dimensional
positioning information about the roadway and the vehicle.

5 Speed sensor

This functional sensor type uses the information provided byvéhecle roadway environment
processonVREB to model a simple implementation. The sensor is assumed to be reading the current
speed of the vehicle with a small Gaussian zero mean error distribution. In other words, the vehicle
longitudinal speed provided BYREPIs taken, and corrupted with Gaussian noise, which is generated
by a separate function. The mean and variance of the measurement error are user-defined parameters.

The speed sensor has more than one operation mode (currently two; this number can be increased
with minor changes in the source code). The percentage value of the precipitation on the road segment
that the vehicle is traveling is taken and used to deteriorate the speed measurement. This is
implemented by using two different “operation states” for the sensor; the only difference between the
two states is the variance of the measurement error which is set during state transitions.

The variance and mean characteristics of the measurement error can also be a continuous function of
the precipitation percentage. The model given here is used as an initial test of the different operation
modes. The main use of these operational states is the implementation of fault mode for complex
sensor types. More detailed information about the vehicle environment and/or condition can be relayed
by environment processor VREP.

5.1 I/O Structure and Parameters

The typeSpeedSensdras the following inputs:
. xDot Actual longitudinal speed of the vehicle (m/s)
. precip Percentage precipitation on the current road segment (%)

The following value is returned as output:
. spd reading Sensor measurement (m/s)

The following are user-defined parameters or state variables (evaluated during processing) for the
speed sensor:

. vehicle Vehicle associated with the sensor.
« mean Mean value of the measurement error
. var. Variance of the measurement error

. error_signat Measurement error.
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. tnoise Gaussian noise generator with two independent noise signals.

The states of the sensor type and the transition conditions between them are given in Table 1.

Table 1.Speed sensor operation modes and transition conditions

From { to — when... Normal problem
Normal - precip> 10
problem precip< 10 -

5.2 Source Code
The SHIFT code for the simplest speed sensor is given below:

<speed.hs>

6 Position sensors

There are currently two simple implementations for position sensors: one for dead reckoning, the other
for global positioning system. The position of the vehicle provided by the simulation environment is
corrupted with user-defined noise model based on the sensor characteristics, and the desired output is
generated.

6.1 Dead Reckoning

A positioning system using dead reckoning devices such as encoder is implemented as noisy
measurements of the actual vehicle speed provided by the simulation environment. The variance of the
error is assumed to be relatively smaller than a GPS measurement, the dead reckoning error grow as
the measurement error due to bumps and cracks on the road accumulates over time.

The distance traveleD by a vehicle with an encoder attached to one of its wheel shafts is simply
given by the equation:

(Eq.8) D=¢-R,
where ¢ is the wheel rotation, anR, is the effective (actual) wheel radius. The rotagooan be
expressed in terms of encoder counts as:
211-N
C

whereN is the number of counts detected, and C is the encoder count per wheel revolution. Using the
above equation, and massaging them into another form, we obtain the following “ideal” equation:

(Eq.9) ¢=

Eq.10) D=¢-R =@ -R, = —.
(Eq. 10) ¢ R ZURaRaRa

wherev is the speed of the vehicle. Introducing the measurement noise, and errors in estimated wheel
radius, we have:

(Eq. 11) D:é-&:w-&:(é+ N(m,v)j-Re

whereRe is the estimated wheel radiUg, is the actual wheel radius (a decreasing function of time
with an initial value oRe), andN(m,v) is the measurement noise with a meamaind variance of.
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Besides the measurement and estimation errors, bumps and cracks on the road also affect the distance
measurements. The effects of a bump and a crack on the distance evaluation are illustrated in Figure
11.

R-he

w/2
he

N

v

(@) (b)

Figure 11. Distance measurement errors introduced by (a) bumps and (b) cracks on the road surface (Adapted from [9]).

When the wheel is traveling over a bump of heighthe measured distance is K while in fact the
displacement of the wheel center is only L. Therefore the error is measurement can be evaluated as:

L=4(2R-h)-h

Eqg. 12
(Eq ) K:R-a:R-arcsir[%J

and:
error = 2-(K - L)

(Eg. 13) _9. (R- arcsi{@} - m}

For a crack on the road surface, given its widitihe effective height of the crack can be evaluated
as:

2 a2
(Eq. 14) he:R—M

(Eq. 12) and (Eg. 13) can then be evaluated using the effective height for the crack.

6.1.1 1/O Structure and Parameters

The typeDR_encoderhas the following input:
. speed Actual speed of the vehicle
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The following value is returned as output:
« distance Measured distance

The following are user-defined parameters or state variables (evaluated during processing) for the
position sensor:

. re: Estimated/model wheel radius (m).

. I Actual wheel radius (m).

« M_noise, v_noise: Measurement noise mean and variance

. arrival_bump: Random arrival time for bumps (t)

. arrival_crack: Random arrival time for cracks (t)

. bmin, bmax, cmin, cmaXParameters for arrival times

« hm, hv, wm, wv: Mean and variances for height and widths of the bumps and cracks.
. noise: Gaussian noise generator providing two independent signals
« N1, n2: Noise signals

.t b tc: Time variables

. theta: Wheel revolutions (rad)

. W, h: Calculated width of the crack and height of the bump.

. he: Effective height of the crack.

. md_c, md_b: Variables used in effective distance error measurements.

6.1.2 Source Code
The SHIFT source code for dead reckoning is given below:

<encoder.hs>

6.2 Global Positioning System

A positioning system using a satellite network can be implemented by simply adding Gaussian
measurement noise to the actual position of the vehicle. The data provided for GPS (and GLONASS)
[6], and the data for differential global positioning systems obtained by Navlab vehicles [7] suggest
that the longitude and latitude readings can be characterized by independent Gaussian distributions.

GPS position sensor has more than one operation mode (currently three modes; this number can be
increased with minor changes in the source code). The percentage value of the precipitation on the road
segment that the vehicle is traveling is taken and used to deteriorate the position measurement. This is
implemented by using three different “operation states” for the sensor; the only difference between
these states is the variance of the measurement error which is set during state transitions.

6.2.1 1/O Structure and Parameters
The typePositionSensoiGPShas the following inputs:

« OXp, gYp Actual global position of the vehicle (m)

. precip Percentage precipitation on the current road segment (%)
The following value is returned as output:

« POS X, pPOS V. Sensor readings (m)

. €IT_X, err.y, Sensor measurement errors (m)

. S: Measurement signal (1 = signal, O = no signal).

The following are user-defined parameters or state variables (evaluated during processing) for the
position sensor:
. vehicle Vehicle associated with the sensor.
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. mean Mean value of the measurement errors.
. var Variance of the measurement errors
(Same mean and variance for both readings).
. error_signals Measurement errors.
. tnoise Gaussian noise generator with two independent noise signals.

The states of the sensor type and the transition conditions between them are given in Table 2.

Table 2.GPS posion sensor operation modes and transition conditions.

From { to — when... normal problem nodata
normal - 10 < precip < 60 precip> 60
problem precip< 10 - precip> 60
nodata precip< 10 10< precip < 60 -

6.2.2 Source Code
The SHIFT code for GPS position sensing is given below:

<gps.hs>

7 Time Clock

A global time clock is created to make it available to all sensor types. The&Clypke has a single
outputt. The SHIFT code for time sensing is given below:

<clock.hs>

8 Noise models

A Gaussian signal generator is implemented in order to corrupt sensor readings with measurement
noise. The typ&aussiangenerates two uncorrelated signals using two uniformly distributed random
variables. Both signals return values that are normally distributed around 0 with a variance of 1.

The algorithm for Gaussian noise generation using uniform distributions is taken from [8]. The
uniform distributions are obtained using the SHIFT functiandom() This functions is found to
behave similar to Matlébs rand function on a Sun SparcStatfodm running Sun0%4.1.4. Given
two uniform distributionsg andx,; between 0 and 1, two independent normal distributions around zero
with a variance of 1 can be obtained using:

y, = 4/ 2In(x,) - coq2IIx,)
y, = +/- 2In(x,) - sin(2I1x,)

The outputs of the noise signal generator, distributed around 0 mean with unit variance, can be used
to obtain new normal distributions around different means with different variance values. Given a
normal distributiony around zero with a variance of 1, a new normal distributianoundm with a
variancev is obtained using the equation:

(Eq. 16) z:\/V-erm

(Eg. 15)

L SHIFT version 3.1 installed on the same machine returned erroneous values during run-time, possibly due to the fact that
version 3.1 —designed under Solaris 2.*- does no longer support SunOS 4.1* implementations.
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8.1 /O Structure and Parameters

The typeGaussiarhas the following outputs:
. sgl sg2 Gaussian signals with zero mean and unit variance.

The following are state variables evaluated during processing:
« X1, X2 Uniform distributions in [0, 1].

8.2 Source Code
The SHIFT code for the Gaussian signal generator is given below:

<noise.hs>

The function that evaluates the natural logarithm of a variable is implemented as an external C
subroutine, and linked as shown in the first few lines of the program code above. For the description of
the external function, see Section 13 on page 39.

9 Global Grid for Vehicle Detection

The section and segment descriptions in Smart-AHS libraries include cell definitions to be used with
range sensors and/or vehicle detection algorithms. This definition enables the sensing and detection
algorithms to work on a small subset of vehicles. The cells are defined using the existing definitions of
segments and sections in Smart-AHS (See/fédp.hs in Smart-AHS library for details).

Here, we will define another cell structure forming a global grid for vehicle detection. Global
environment that includes the highway elements and the vehicles is divided into same-size squares
(cells) that facilitate vehicle detection for sensors. We call this structure the “grid” (Figure 12 ).

(0, 0) | —

(xmax, ymax)
Figure 12.Definition of the grid.

The grid formed by the cells, is defined between origin point (0, 0) at the upper left corner of the 2-D
representation of the world (as defined in TkShift GUI). It extends to the maximum coordxmases (
ymay defined (See filgrid.hs ) by the user. These values must be chosen so that the global grid
includes all vehicles and the highway sections for proper operation. It may be possible to automate the
definitions ofxmaxandymaxin the future.
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The size of the grid regions is defined with the variaisi¢for ‘cell size’). This variable must be
chosen in accordance with the simulation complexity and the sensor range descriptions. It may be also
possible to automate the choice of this variable based on the sensor ranges and the highway structure
defined in the SHIFT description files. For all the cells defined in the grid, neighboring cells are
indicated with a seNC of cells, which includes at most eight neighboring cells. For cells that are
located at the edge of the global space definition, the number of neighbors is of course less than eight.

It is also possible to defined a smaller set of cells in order to define a grid only over the portions of
the two-dimensional space with roadway definitions as shown in Figure 13. In this case, the user has to
define the cell positions, sizes and neighboring cells manually in a file simged teimpler.hs

Figure 13.Simplified grid structure.

9.1 The use

Sensors types given in previous sections use the global 3&thaflesto detect vehicles in range.
Using the grid structure, sensors will now be able to consider only a subset of the vehicles for range
calculations. Sensor environment processor SEP will keep track of the current grid cell the
vehicle/sensor is travelling in, and the set of vehicles in a specific cell can be polled for evaluation.

SEPis synchronized with the updates of the current grid cell. Whenever the cell updates its set of
vehicles, alSEPsin this cell check to see whether the vehicle leaving the cell (if there are any) is their
associated vehicle (ego-vehicle). If this is the case,$k#updates its current cell parameter.

Range sensors use this information about the current cell to define a subset of vehicles to be checked
for range measurements. From the paranaigentcell (provided by associatesEB), the set of cells
including the current cell and all the neighboring cells, is defined. Using this set of cells, a new set of
vehicles —minus the ego-vehicle- is generated, and used for distance and angle measurements.

Sampling rate for the cells is directly related to how much tolerance we have on the cell boundaries.
If there is a new vehicle entering a cell, and we do not detect it for —for example- 4 seconds, it will not
be taken into account by the range sensors that are checking the new cell this vehicle entered. During
that time, (a) the vehicle may not even be in the sensor range (e.g., good application of cell size), or (b)
the vehicle is in the sensor range, but we do not detect it until the cell updates its set of vehicles
(possible problems). Hopefully, the definition of the cells relative to the sensor ranges will guarantee
case (a); cell sizes and the update rates can be chosen carefully by considering the maximum speed the
vehicles will attend during the simulation. On the other hand, it is always possible to increase the rate
at which the cells check for leaving vehicles.
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9.2 Vehicle tracking

The global grid consists of square cells for which the adjoining cells are known. The neighboring cells
are defined for each cell at the beginning of the simulation right after cell creation. All the cells obtain
the list of vehicles currently travelling from the source. (Therefore, the $gpeceneeds to be
changed as given in fieource_grid.hs . The vehicles/sensors also obtain the cell they are traveling

in initially from their source.

When a vehicle leaves a cell, this fact is detected by the cell that checks for vehicles leaving with a
user-defined frequency. If the cell type finds vehicles that moved outside of its range, it then updates
its set of vehicles while exportingehicle_leaving At the same time, all neighboring cells,
synchronized to this exported value, check to see if the vehicle entered their region. Only the adjoining
cell that finds the leaving vehicle(s) in its range, updates its set of vehicles; all other cells add null set
to their set of vehicles (See code in figid.hs ). As described above, exported parameter
vehicle_leavings also used to update the current cell definition in sensor environment processors
(SEPs).

If the frequency of checking for leaving vehicles is low, the number of calculations over the set of
vehicles for sensor range evaluations must be much less than the number with global set of vehicles.
Again, the vehicles/sensors do not check the global set of vehicles at every (sensor) iteration, but only
a smaller set of vehicles in a specific number of cells (at least one). On the other hand, all the cells in
the global coordinate system check a smaller set of vehicles to see if there is a vehicle leaving the cell
at a predefined frequency, which is smaller than sensor frequency. Once a vehicle is found to be
leaving a cell, all the neighboring cells, and all the vehicles in that specific cell must evaluate multiple
sets to update their set of vehicles, or cell value. For a large number of vehicles, this grid method may
prove to be more efficient than searching the whole set of vehicles.

9.3 Source Codes

9.3.1 Cell and Grid Definition Files
The SHIFT codes for the cell and grid definitions are given below:

<cell.hs>
<grid.hs>
<grid_simpler.hs>

9.3.2 Changes/Updates Required in other Smart-AHS Elements

A new sensor environment processor SEP described in the previous section is required. The SHIFT
code for the environment processor is given below:

sep.hs>

Initial position and initial cell for the vehicle (and its sensors) are provided by the source. Therefore,
the source definition file is changed as given below:

<source_gid.hs>

There are several changes to be made in the range sensors described in Section 2. These are:
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. Addition of following line to sensor inputs:

input  Cell currentcell;

. Addition and changes given below to the evaluation of the vehicles in range:

/* Subset of Vehicles from SEP */
set(set(Vehicle)) vsetl := {vset(k) : k in NC(currentcell)};

/* Set of the vehicles in range
* Instead of the whole set of vehicles, only the vehicle in the current cell
* and neighboring cells (minus the ego-vehicle) are considered */
set(Vehicle) inRange
:={x:vlinvsetl, x in v1} + vset(currentcell) - {vehicle};

/* set of vehicles in the field of view */
set(Vehicle) inField
:={z: zininRange
| abs(atan2(gyp(z)-sen_y,gxp(z)-sen_x)-sen_or) < fov
or
2*Pl-abs(atan2(gyp(z)-sen_y,gxp(z)-sen_x)-sen_or) < fov};

Furthermore, the following additions are to be made in the definition of the vehicle:

. Include new range sensor and sensor environment processor files:

#include <NewRangeSensorType>

« Change the definition of the outputs as follows:

output NewRangeSensorType sensorl, sensor2, [..];
SEP sep;

« Add the following lines tsetupphase:

. Define:
NewRangeSensorType tsensorl := create(NewRangeSensorType, <parameters> );
SEP tsep := create(SEP, mycell := scell(source), myveh := self);
« Do:
sensorl := tsensorl,
sep := tsep;
. Connect:

currentcell(tsensorl) <- mycell(tsep);
currentcell(tsensor2) <- mycell(tsep);

[--]
. Similar changes need to be made for the range sensors. Below, SHIFT code for type
RangeSensorZrid (altered version oRangeSensojds given:

<rangesensor2_grid.hs>

10 Additional Files for Sensor Simulations

In order to test the sensor models described in this document, several Smart-AHS/SHIFT files are
created. Some of these files are given in this section to facilitate the understanding of the sensor
models. Inspection of these files will clarify the input/output structure of the models, and give a better
understanding of the vehicle creation methods in the simulation platform.

10.1 2-D Kinematic Vehicle Model

Two-dimensional kinematic definition of a vehicle is basically a bicycle model in vehicle coordinate
frame. It takes the steering angle at the front whetek(ing and the acceleration of the front wheel
(aco as inputs, and generates the angular spibedaDo) and the longitudinal speed of the vehicle
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(xDot) in its own coordinate frame. The distance between the front wheel and the center of the rear
axle (i.e., wheelbase) is a user-defined parameter. While using this model, vehicle’s center of gravity is
implicitly assumed to be at the center of the rear axle.

10.1.1 Source Code
The SHIFT code for the two-dimensional kinematic vehicle model is given below:

<2dkineveh.hs>

10.2 2-D Vehicle Controller Model

The controller for the two-dimensional kinematic vehicle is realized in two parts: the longitudinal and
lateral controller. The longitudinal controller is a proportional feedback controller for unit step inputs

of desired speed value. The lateral controller uses a predefined look-ahead distance to generate desirec
lateral deviation for the pursuit point assumed to be followed by the vehicle. Based on the lateral
deviation, required steering angle is evaluated. The details of the controller models are given in the
following sections.

10.2.1 Longitudinal Controller

The longitudinal controller tries to track the desired speed input using a proportional control law. As
long as the desired value is characterized as unit input, P-type controller successfully tracks the desired
value and drives the error to zero. The error in speed is multiplied with the longitudinal controller gain
(k1) and the control input (longitudinal acceleration) to the system (vehicle) is generated. The control
input to the system is limited by maximum and minimum values. The overall control is given as:

S= kl ) (Vdesired - Vactual)
“d_ if s<-d_,
a=< s -—-d.,<s<a,.,

max —

(Eq. 17)

Aax S> Arpax

See source code given in Section 10.2.4.1 for details.

10.2.2 Lateral Controller
The lateral controller first evaluates the relative orientation of the vehicle on the roadway by using the
vehicle-to-global, and roadway-to-global orientation matrices:

(Eq.18) 6 atan2(vgam 2, vgani) - atan2(rgan. 2, rgantl)

actual —

Using this value, and the curvature information about the roadway, the lateral deviation of the pure-
pursuit point on the lane/roadway is calculated. The deviation of the pursuit point from the lane center
given as:

(Eq 19) Iyppursuit = IprOG +L- Sineactual -L- tal'(l_ : g}

where L is the look-ahead distance, and the curvature of the road at the vehicle center of gravity,
defined as:
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(Eq. 20) SIgN(Oeq)

= SIgN(Pe,) - TYP

p segt

where pseg is the curvature of the road segment the vehicle is traveling onrypnis the lateral
position of the vehicle on that segment. These values are used to correct the curvature value for the
lateral vehicle position.

The first term in (Eqg. 19) is the effect of the vehicle orientation on the lateral deviation of the pursuit
point while the second term is due to the road curvature. The value obtained using (Eqg. 19) gives the
“actual’ position of the pursuit point. Given the desired value for the location of this point, the
curvature of the arc to be followed by the vehicle can be calculated as:

2: (Iypdesired - Iyp pursuit)
L2
The steering angle required to drive the error to zero is:
S= k2 ) a'ta'r(ptravel W)

(Eq 21) ptravel =

- S<—«
(Eq. 22) max max
o= S ~Upax <SSy
A ax S> U

whereamax denotes the maximum possible steering, W is the wheelbask; snthe controller gain.
The choice of the gaike as well as the look-ahead distacaffects the behavior of the vehicle. See

the source code given in Section 10.2.4.1 for details. Figure 14 illustrates the definitions given in this
section.

/ b\ atanqrgam12 rgam1]

Figure 14.Pure-pursuit point definitions.
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10.2.3 Tracking the Pursuit Point

An additional subroutine (SHIFT typ®@ursuitis used to take the target lane position information from

the driver (or the higher decision level in the control hierarchy), and relay it to the (lateral) vehicle
controller with a predefined rate of change. This subroutine is required in order to make sure that the
lateral controller is able to track the pursuit point.

A second task for this type is to guarantee smooth transitions for the desired lane position (lateral
deviation) input to the lateral controller during lane changes. As seen in the highway and vehicle
environment processoVREP descriptions in Smart-AHS [3], the lateral lane deviation vajye
“jumps” from —Iw/2 to Iw/2 during left lane changes, or vice verba ihdicates the lane width). The
driver model (higher control level in the hierarchy) currently uses a lane deviation vale tof
indicate a desired lane change. Due to the change in the actual value at transition from one lane to the
other, the value of the desired deviation also needs to be changed to guarantee smooth operation. The
type Pursuituses a conditional transition waiting for the lane change to take care of this problem.

This module takes target lane position from driver module, current lane position and current lane for
VREPas inputs, and generates desired pursuit point as output. The rate of change for the desired lane
position and its maximum value are user-defined parameters. See the source code given in Section
10.2.4.2 for details.

10.2.4 Source codes

10.2.4.1 Controller
The SHIFT code for lateral and longitudinal 2-D kinematic vehicle controller is given below:

<2dkinectrl.hs>

he function that evaluate the inverse sin of a variable is implemented as an external C subroutine, and
is linked as shown in the first few lines of the program code above. For the description of the external
function, see Section 13 on page 39.

10.2.4.2 Pursuit Point
The SHIFT code for pursuit point evaluation is given below:

<pursuit.hs>

11 Scenario and Vehicle Description Files

Some of the highway/scenario and vehicle description files created for sensor modeling are given to
clarify the input/output structure of the models, and facilitate the use of the models for other
application and/or AHS simulations. Investigation of the files in this section will give the reader a good
idea on how to connect several modeling blocks.

11.1 Highway Descriptions

11.1.1 Straight Road with Three Sections

Figure 15 illustrates the 3-section roadway definition given in3section.hs . There are three
sourcesthe beginning of the first section, located at the middle of each lane, except the one in the left
lane. A user-defined parametiitiallanedevis usedto introduce a slight deviation from the lane
center for the first source. For details, see the source code below.
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Secl Sec? Sec3

Sour.|cfs /_{ ™

2 > — Lnxv
3 P ~ LR

Sell  Seyl2 Sel3  Sey2l  Se@22 Se23 S@31 Se32 Se33

Figure 15. Straight roadway with 3 sections, 9 segments and 3 lanes.

The SHIFT code for the 3-section roadway description is given below:

<3section.hs>

11.1.2 Circular Highway

Figure 16 illustrates the 4-section circular highway given incfileular.hs . The file includes only
one source at the beginning of lower left section. For details, see the source code below and the web
pagehttp://www.cs.cmu.edu/~unsal/research/shift/circular.html

sl segln 2sl seg B3

Inl UT
¥

Zal 451-3lw 4sl

sl = segment length

AN

Iwr = lane width

2
segk (25, 3lw)
15l
SE-ELUS : SE-ERU'].
seclU secRU (45]-3lw, 251) T
p *m‘lﬂz \
23] s]-3lw - e +. L :_ _ _I'I _______ ﬁ
] oo
secll secEL
seglLl segRL3
sl+ ([ s1-3lw) *pid
sl _ L b L
: (451-1lw, 3s1)
sl—3h@r
45]-3hr seglL3 segRL1
f seghL2
Do T\ negative curvature [ -1/[sl-3lw])
0 T 2T Sl xoffaet = gl + (s1-3lw)*pil2 InFL2

Figure 16. Circular roadway with 4 sections, 4x3=12 segments, and 3 lanes.
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The SHIFT code for the circular highway description is given below:
<circular.hs>

11.1.3 Racetrack

Figure 17 illustrates the 4-section racetrack given inréifetrack.hs . The file includes only one
source at the beginning of lower left section. For details, see the source code below and the web page
http://www.cs.cmu.edu/~unsal/research/shift/track.html

45]-3lw 45l
sl seg LN 25l seg R4 3sl o

Inl 112
¥

gl = segment length

Ivw = lane width

segl 12 L [2g], 3lw)
15l ST
r
secLU ' secRU (hel-tl, s
s sl-11w, 8
T s1-31
segl.U3 BT Il secBL R segRUL segRla
: - T A A 25l-3lw

negadve curvature | -1/ s1-31w])

54l " gl-3lw
5 ""—h'n I'SE-SRL']. ]IIRL3
o, (3513w, 251-315)
T
seglLl  positive cunvature (+1/50)
Ihw
sl L B L T
- [ zl+(2]-3lw), 3aD)
4elal | xoffset = al + (s1-3hw)*pi
sl-3hw
0 T 2l e xoffset = sl + (s1-3lw)*pif2

Figure 17. Racetrack with 4 sections, 3+4+1+4 =12 segments, and 3 lanes.
The SHIFT code for the racetrack description is given below:

<racetrack.hs>
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11.2 Vehicle Description

An example file ExVehicle2.hs ) is included in this section to illustrate subtype definitions for an
vehicle simulation in SHIFT/Smart-AHS platform. Figure 18 gives possible links between the subtypes
constituting the vehicle.

As seen in the SHIFT code below, the set of vehicles is defined globally. Sub-modules (types) in the
vehicle require inclusion of additional files for the SHIFT compiler. A generic #glecleincludes a
two-dimensional vehicle model (subtypéehicle_Kinematigs a lateral and longitudinal control
models Controller), the pursuit subroutineP(rsui, a simple driver modelDQriver), and several
sensor models (e.gRangeSensoPV) as well as vehicle roadway environment procesS&®EP),
source and/or a sinkSpurce Sink. Global position, the velocity and the width and length of the
vehicle are defined as outputs for the vehicle.

In the setup phase, sensor, controller, and other model parameters are defined; the newly created
vehicle is added to the set of vehicles. The initial location of the vehicle is inherited from the
associated source.

P

vgamrgam curvature curvature vgamrgam
long_acc > acc xDot [ xDot rXp
- , yDot % yDot gxp
steering———»| steering
00— zDot gyp
CONTROLLER VEHICLE o—™ wx VREP
des | 0 wy section[ ]
»-| des_lyp speed  thetaDopF——» 7
lyp_act 0~ followLane
spd_des spd_act4_T_ lyp lane lane
A - | T
>
___________ l. * synchronization
: cur_spd lane P lane lane
target spd left/right| ! left/right _
9%-PT frontback ; fronyback  section[
detectior] ! detection
DECISION sensor) P[4 T
headway distance gxp :__'
target lyp  azimuth[*® angle Cell XD
target_| cur_lyp[e- Cell
geL_lyp _lyp : oxp |
PURSUIT i SEP
: gyp [—
des_lyp_pur  lane [e-——o

DRIVER

Figure 18. Connections betwedhe subtypes for the typ¥ehicle.
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The SHIFT code for the example vehicle description is given below:
<ExVehicle2.hs>

12 Coordinate frames in Smart-AHS

Three different coordinate frames are used to describe the positions of components in Smart-AHS [3,
2]. These are:

« vehicle,
« road, and
. global

coordinate (or reference) frames.

Vehicle coordinate frame is assumed to be attached to the vehicle at its center of grawitsixiShe
of this frame is aligned with the forward direction of motion. VFaxis points toward the left side of
the vehicle, while the-axis is directed away from the ground. This frame is in accordance with the
"right hand rule."” Vehicle movement is defined in this frame (e.g., lateral and longitudinal speeds).

Road coordinate frame has its origin at the point where the left edge and the line defining the
beginning of a section intersect. Tkaxis is the tangent to the left edge, and is pointing toward the
direction of traffic flow. They-axis is parallel to the radius of curvature, pointing to the right when
looking down the direction of vehicle movement. Taexis is directed away from the ground. This
frame is "left-handed.” It is used to define the vehicle position on the roadfaneyp, rzp, andlyp).

Global coordinate frame is assumed to be attached to a point on the ground. We assume this frame to
be a "left-handed frame" witiraxis pointing away from the ground. This definition is in accordance
with the description of the vehicle-to-global alignment matvissAM). The frame is used to define the
vehicle's global positiorgkp, gyp andgzp.

12.1 Relation between coordinate frames

Figure 19 shows the global, road and vehicle coordinate frames for a (very simple) highway
description. As seen in the figure, the road coordinate frame is aligned with the global coordinate
frame for this specific example (The segment's orientation is zero radian). Both coordinate frames are
left-handed. On the other hand, the vehicle coordinate frame is not completely aligned with the global,
or the road coordinate frames due to the definition of the transformation matrix (S&&REpn file

vrephs) Vehicle coordinate frame (for a vehicle following the road segment as shown in Figure 19) is
a left-handed frame where only theandz-axes are aligned.

Z Z@ .;X ________
Global Road :

Road segment with zero
orientation

Figure 19.Reference frames in Smart-AHS.

The transformation between the vehicle and global coordinate frames cannot be described by using
“standard” matrices used in robotics applications, because the former is right-handed while the latter is
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left-handed. For a two-dimensional system, the transformation, given by the W@k, can be
written as:

[oxp gyp gzp|=[xDot yDot zDot]-VGAM
coda) sinf@) O
= [xDot yDot zDot]-| sin(e) —coda) O
0 0 1

(Eq. 23)

where a is the angle between x-axes of the vehicle and global reference frames. Th¥@G#stix
differs from a standard coordinate frame transformation matrix in two ways:

1.The position/velocity vectors are written as row vectors resulting in a “transposed”
transformation matrix definition, and

2.The difference in the definition of the coordinate frames forces the second column of the matrix
VGAMto be the negative of the second row of a standard transformation’matrix

13 External C functions

Most of the sensor models defined in this document use external functions implemented as C
subroutines. It is also possible to implement some of these functions in SHIFT, depending on the
sensor structure and computational effort. The external C functions are combined into a single file
(ext-func.c ) for use with the C compiler.

13.1 Function descriptions

Some of the functions given in fikxt-func.c are described in this section. Simpler functions such
aseucdist natlog andarcsinare not described due to their straightforward implementations.

13.1.1 Function dist6

This function is used by the range sensor with pseudo-vertex definitions; it is used to evaluate the
distance and the azimuth angle to the closest vehicle in range, given the set of vehicles. The following
are provided by the range sensor type in SHIFT as inputs:

. Senxseny Global sensor position

. Senor Global sensor orientation

. vehX], vehy]:  Global positions of the vehicles in range

. cd], sd]: Global orientations of the vehicles in range (Elemeni¢@AM)
. n_of veh Number of vehicles

« VI, VW Vehicle length and width

« maxrange Maximum sensor range

. hfov. Half the horizontal field of view

The output of the functiodist6is the two-element arragadind]. The first element is the distance to
the closest vehicle in range, the second is the azimuth angle.

Pseudo-vertex points are defined at the corners and at the middle of the long sides of the rectangle
defining the vehicle. There are two loops for evaluation. The outer loop checks for all the vehicles

2 The standard transformation matrix for a rotation of a radians around the z-axis is given as:
codar) sin(@) 0
-sin(@) code) 0
0 0 1
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(defined by the position, orientation vectors, and the paramebdérveh). The inner loop is completed

for all the pseudo-vertex points for a given vehicle. If (a) the distance to a vertex point is less than the
maximum sensor range, (b) the azimuth angle is less than half the horizontal field of view, and (c) the
distance is less than the minimum range reading, then the current values are assigned to the output
vector. If no such point is found, a maximum range of 1000m, and an azimuth angle of zero are
returned.

13.1.2 Function min_of_array

This function is used by the range sensor with ray definitions. It is used to evaluate the value and the
index of the minimum element in an array. The array and its size are provided by the range sensor type
in SHIFT as inputs. The output is an arragul{] that combines the minimum-valued element and its
index. If there are more than one minimal value in the array, this function will return the index of the
last element encountered.

This function could be replaced with its SHIFT counterpart in the future.

13.1.3 Function dist5

This function is used by the range sensor with ray definitions; it is used to evaluate the vector of range
readings for the scanning rays, given the set of vehicles. The following are provided by the range
sensor is inputs:

. Senxseny Global sensor position

« senor Global sensor orientation

. vehX], vehy]:  Global positions of the vehicles in range

. cd], sd]: Global orientations of the vehicles in range (Elemeni¢@AM)

. n_of veh Number of vehicles

« VI, VW Vehicle length and width

. rayvedl: Vector defining the rays (azimuth angles from the sensor normal).

The output of the functiodist5 is an array of range readings whose length is equal to the number of
scanning rays.

The vehicles are defined as rectangular regions described by four vertex points. Using the position
and orientation information provided by the range sensor, it is possible to define the four lines
describing the region occupied by the vehicle. The information on sensor position and orientation
along with the ray definition vectoayvecis used to define the scanning rays. There are three loops in
the subroutine. One for rays, one for vehicles and one for lines defining the vehicles. If (a) there is an
intersection between a line defining the scanning ray and a line defining the vehicle, and (b) this
intersection occurs in the line segment constituting an edge of the region occupied by the vehicle, and
(c) the distance is less than the minimum range reading obtained for that specific ray, then the distance
to the current intersection point is assigned to the corresponding element of the output vector. If no
such point is found, a value of 10000 meters is returned. The azimuth angle to the closest vehicle in
range is calculated using the index of the minimum-valued element of the distance vector.

13.2 Source Code
The C code for the external functions is given below:

<ext-func.c>
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14 Additional Information

All source code files listed below as well as this documentation are provided at
http://www.cs.cmu.edu/~unsal/research/shift/index.htmi

. 2dkinectrl.hs . leftsensor.hs

. 2dkineveh.hs . leftsensor2.hs

. 3section.hs . noise.hs

« ExVehicle2.hs . pursuit.hs

. backsensor.hs . sep.hs

« backsensor2.hs . racetrack.hs

. cell.hs . rangesensor.hs

. circular.hs . rangesensor2.hs

. clock.hs . rangesensor2_grid.hs
. delayer.hs . rangesensor_pv.hs

. encoder.hs . rangesensor_r.hs

. ext-func.c . rightsensor.hs

. frontsensor.hs . rightsensor2.hs

. frontsensor2.hs . roadsidesensor.hs

. frontsensor_rate.hs . roadsidesensor2.hs

. gps.hs . roadsidesensor2_grid.hs
. grid.hs . sep.hs

. grid_simpler.hs . source_grid.hs

. humandrivers.hs . speed.hs

Sensor models and related files described here are compatible with Smart-AHS versions 0.45 and
0.60 [2], and were tested under SHIFT version 2.12 [1] using Sun SPAR(on 4 running SunOS
4.1.4.

The following text must included in the directory where the source files are located, under the name
CONDITIONS:

/ \
* The files in this directory are distributed under the following *
* conditions:

* *

* 1. The recipient shall refrain from disclosing the software, *
in any form, to third parties without prior written *
authorization from Carnegie-Mellon University. The *
recipient shall have the right to use and copy the *
software on, or in connection with the operation of, any *
computer system owned or operated by it. In addition, *
the recipient shall have the right to modify or merge *
the software to form updated works. *

*

2. If the recipient receives a request from any third party *
to furnish all or a portion of the software to any third *
party, it will refer such a request to Carnegle Mellon *
University.

*

3. Carnegie-Mellon University shall not be held liable for any  *
damages resulting from the use or misuse of the software *
provided by it. Furthermore, Carnegie-Mellon University *
remains without obligation to assist in its mstallatlon *
or maintenance.

*

4. The recipient agrees to acknowledge Carnegie-Mellon *
University in appropriate citations appearing in public *
literature when reference is made to the software provided *
above.

*
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5. If the recipient develops any enhancements to the software  *
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which materially improves its operation, the recipient *
agrees to make such enhancements available to Carnegie- *
Mellon University without charge, provided Carnegie- *
Mellon University agrees in writing to receive such *
enhancements in confidence, if requested to do so. *

*

E I

* 6. This header comment must remain attached to the source *
* code of the provided software. *

* *

* Bug reports and suggestions can be mailed to Cem Unsal by *
* electronic mail addressed to: "unsal@ri.cmu.edu". As mentioned *
* in condition 3 above, the author is not obligated to fix any = *

* such bugs, or even to acknowledge receipt of the bug report.  *

* *

\ /

15 Contact Information
The author of this document can be contacted at:

Cem Unsal

Robotics Institute

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213-3890

(412) 268-5594 unsal@ri.cmu.edu

(412) 268-5571 (fax) http://www.cs.cmu.edu/~unsal/
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