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1 Introduction
Sensor technology plays a critical role in the operation of the Automated Highway System (AHS). The
proposed concepts depend on a variety of sensors for positioning, lane-tracking, range and vehicle
proximity. Since large subsystems of the AHS will be designed and evaluated in simulation before
deployment, it is important that simulators make realistic sensor assumptions.

The sensor models presented here are part of the functional sensor hierarchy, incorporating geometric
models, abstract noise characteristics, and can be used directly with current AHS tools. These models
capture the aspects of sensing technology that are important to AHS concept design such as occlusion,
and field of view restrictions, while ignoring physical-level details such as electromagnetic sensor
reflections. Since the functional sensor models operate at the same level of granularity as the
simulation platform, complete integration is assured. The hierarchy classifies sensors into functional
groups. The models at a particular level incorporate characteristics that are common to all sensors in its
subgroups. For example, range sensors have a parameter corresponding to a maximum effective range,
while lane-trackers will include information pertaining to lateral accuracy.

Sensor models described in this document are implemented using SHIFT programming language [1].
The characteristics and general input/output structure of the sensors are compatible with Smart-AHS
[2] simulation platform defined in [3], and therefore can be used with Smart-AHS package (current
version 1.1).

Each of the classes described in the following sections is represented in the microsimulator by a
functional sensor model. The functional sensor model contains three important parts. First, it
implements algorithms that access the microsimulator's internal state to create the appropriate outputs
(e.g., a range sensor should return the distance to the appropriate target). Second, it is responsible for
realistically corrupting the sensor measurements. Parameters such as maximum range or field of view
are represented explicitly when the microsimulator's fidelity can support them. In other cases, the
characteristics will be captured in a more abstract manner (e.g., expected accuracy of lane tracking).
Initial results obtained with the following sensor models as well as the initial sensor hierarchy
envisioned for AHS applications are presented in [4].

The computer implementation of a functional sensor is a module that processes information from the
simulation environment (“real world”) to create inputs suitable for the cognition system (“perceived
world”). Additionally, the functional sensors are used to “corrupt” the actual state of the world, as
represented in the microsimulator internals, into realistic sensor readings, useful for evaluating control
methodologies.

The general structure of a range sensor is given in Figure 1 to illustrate our sensor implementation
approach. The environment conditions are used to evaluate noise characteristics fort a specific sensor,
although the initial noise model is defined at the setup phase with other sensor characteristics such as
the level of detail and pertaining parameters. The information about the vehicles is preprocessed in
order to extract necessary information, such as current sensor and vehicle positions and orientations,
and the set of vehicle in the field of view. The preprocessing is followed by the computation of the
desired sensor outputs. Fault modes of the sensors are defined as discrete states, and the parameters
characterizing the sensor capabilities are updated while transitioning between these states.
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Figure 1. Implementation structure for a functional range sensor.

2 Range Sensors
There are currently four different implementations for on-board range sensors. These are described in

the following sections. All sensors are implemented in two-dimensional space, although the simulation
platform supports three-dimensional definitions. The extension of the models to 3-D will be carried
out, as it becomes necessary.

Figure 2 illustrates the levels of detail considered for range sensor implementation. The simplest
model for range sensing uses the position information on all vehicles to compute the distance to the
closest vehicle (Figure 2a). This approach treats the vehicles as particles; therefore, the error in sensed
distance can be large for shorter ranges. Furthermore, the exact position of the vehicle with respect to
the sensor is not known.

(a)

(b)

(c)

(d)

Figure 2. Four different levels of detail for generic range sensor: (a) point vehicles, (b) addition of sensor position and
orientation, (c) pseudo-vertex calculations for vehicle orientation, (d) ray definitions.

A natural extension of the first sensor model is the addition of the sensor position and orientation in
vehicle coordinate frame (Figure 2b). This enables the user to define more realistic sensors such as
side-looking proximity sensors. The addition of the position and orientation information slightly
increases the computational burden. The global position and orientation of the sensor must be
computed at every time step using the vehicle information provided by simulation platform. For the
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first two sensor models, it is possible to define a horizontal field of view by simply filtering the
vehicles with azimuth readings beyond a predefined value. The definition of field of view is
implemented for the second model.

The next two levels of detail for range sensor model are designed to provide additional information
about the orientation of the sensed objects as well as more accurate information about the position and
the range of the sensed vehicle. The model which employs “pseudo-vertex” definitions enables the
user to define points on the rectangles describing the vehicles, and uses these points to evaluate the
range and azimuth angle (Figure 2c). This approach is useful in long range sensor implementations or
in platoon simulations where the road curvature is small; the returned azimuth angle may be drastically
different from the actual value in close range.

The sensor module created for pseudo-vertices approach can return the range and azimuth angle of all
defined points in the sensor range (with minor changes in the current external function), thus providing
additional information about the orientation of the vehicle/obstacle surface. The price for this
additional information is of course the complexity of computation: The length and width of all the
vehicles, as well as their current orientation, must be fed to the sensor modules, since they are required
for calculating the position of multiple pseudo-vertex points. An additional computation loop for all
these points is needed for each vehicle in range (See external functions given in Section 13 for details).

The most complex range sensor definition includes ray definitions where the number of scanning rays
are parameterized in addition to previous definitions of horizontal field of view, sensor position and
orientation. In this model, the functional sensor computes the intersection of defined rays (for which
the maximum range and the azimuth angle are known) and the lines defining the sensed vehicle. For
each ray of the sensor, and for each line of all vehicles in range, the intersections are computed.
Intersection points outside of the segments that constitute the vehicle (“diamonds” in Figure 2d) are
discarded as well as those that are in the opposing side of the vehicle (“white circles” in Figure 2d).
The closest intersection point is returned as the range.

All sensor models presented here use periodical updates where the sampling frequency is a user-
defined parameter that can be as small as the simulation time step. Gaussian measurement noise can be
injected into range and/or azimuth readings; the mean and variance of the noise are also user-defined
parameters.

Furthermore, it is possible to define different operating modes with minor changes in the program
code. For example, the noise characteristics of a range sensor may depend on the weather conditions
on the road segment that the vehicle travels, or the user may want to introduce operating modes that
emulate faults in the system. Examples of such sensors are given in later sections.

2.1 Simple Range Sensor
This functional sensor type uses the global set of vehicles to obtain the position of all vehicles in the
global reference frame. The sensor is assumed to be located at the center of gravity of the vehicle
(Figure 2a). The sensor detects the position of other vehicles in 2-D space. It returns the distance to the
center of gravity of the sensed vehicle and the azimuth angle from vehicle x-axis that is directed
toward the front of the vehicle. This evaluation does not take the shapes of vehicles into account.

As seen in Figure 3, range sensor’s main axis is assumed to be aligned with the x-axis of the vehicle
coordinate frame. The rotation of the two-dimensional vehicle coordinate frame with respect to global
coordinate frame is shown as Tvg. The orientation of the line connecting to vehicles with respect to the
global coordinate frame is Tsv. The first angle can be evaluated using the vehicle-to-global alignment
matrix available from Smart-AHS implementation for vehicle roadway environment processor (VREP)
in SHIFT (For detailed information, see [3], and Section 12). The second value is calculated using the
atan2 function with vehicle coordinates. The azimuth angle can then be calculated as the difference
between these two values:
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(Eq. 1)     

� �

� �

� �svvg

sv

vg

gxpavgxpgypavgyp

vgamvgam

TTD

T

T

�� 

�� 

 

)(,)(2atan

11,122atan

where vgam11 and vgam12 are the first and second elements of the “vehicle-to-global alignment
matrix” VGAM, and gxp and gyp indicates the global positions of the vehicles. The negative sign in
(Eq. 1) is required due to the right-handed definition of the vehicle coordinate frame while the global
frame is right-handed.

Vehicle in range (av)

Sensor

xv

yv

yg

xg

TTvg

TTsv

DD

Figure 3. Alignment of sensor main axis with global and vehicle coordinate frames.

2.1.1 I/O Structure and Parameters
The type RangeSensor has the following inputs:
x gxp, gyp: Global position of the vehicle/sensor (m)
x vgam11, vgam12: First to elements of the vehicle orientation matrix VGAM.

The following values are returned as outputs:
x distance: Distance from the center of gravity of the sensed vehicle to the sensor. (m)
x angle:     Azimuth angle defined between the sensor main axis (i.e., vehicle x-axis)

and the line connecting the sensor and the COG of the sensed vehicle (deg).
x closest: Identification number of the closest vehicle in sensor range.

The following are user-defined parameters or state variables (evaluated during processing) for the
range sensor type:

x vehicle: Vehicle associated with the sensor.
x maxrange: Maximum range (m).
x procspd: Processing speed for the sensor (sec).
x inrange: Set of the vehicles in range.



Sensor Models 7  02/03/98

x t: Time (sec).

The set of vehicles is defined globally as shown in Section 11.

2.1.2 Source Code
The SHIFT code for the simplest range sensor is given below:

<rangesensor.hs>

The function that evaluates the distance to the vehicle in range is implemented as an external C
subroutine, and is linked as shown in the first few lines of the program code above. For the description
of the external function, see Section 13 on page 39.

2.2 Range Sensor Type 2
This type is similar to the previous one except the fact that the location and the orientation of the
sensor with respect to the vehicle coordinate frame can be defined. Again, all vehicle positions in
global vehicle frame are obtained from the global set of vehicles.

The sensor detects the positions of other vehicles in 2-D space. It evaluates the distance from the
sensor location to and the azimuth angle from the main sensor axis for the closest vehicle in range. The
shape of the vehicle is not taken into account. A set of vehicles that are in the sensing range and in the
field of view is generated before selecting the closest vehicle.

As seen in Figure 4, the sensor’s main axis deviates from the vehicle coordinate frame by a rotation
of Tvs degrees, a user-defined parameter. Again, the rotation of the of the vehicle coordinate frame with
respect to the global coordinate frame (in 2-D) is given by the angle Tvg whose value is obtained from
VREP. These  values are used to calculate Tsg, the orientation of the sensor main axis with respect to
the global coordinate frame. Furthermore, the angle Tsv between the global x-axis and the line
connecting the locations of the sensor and detected vehicle can be calculated using the position
information provided by VREP. Therefore, azimuth angle D from the sensor axis can be evaluated as:

(Eq. 2) � � vsvgsvvsvgsvsgsv TTTTTTTTD �� �� � 

It is important to remember that the angle Tvs is subtracted from the angle Tvg although the figure
indicates a summation. This is due to the right-handed definition of the vehicle coordinate frame; the
value of the angle must be negated.
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Figure 4.  Alignment of sensor axis with global and vehicle coordinate frames.

Using the vehicle-to-global alignment matrix VGAM, the position of the sensor can be evaluated as:

(Eq. 3) > @ > @ > @gypgxp
vgamvgam

vgamvgam
yxyx svsvsgsg �»

¼
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� 

2221
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where xsg and ysg are the global position of the sensor while xsv and ysv denote the position of the sensor
in vehicle coordinate frame. The vectors are given in row format for clarity since the alignment matrix
is given in transpose form in the code (See SHIFT file vrep.hs in Smart-AHS package for details).

For the evaluation of the closest vehicle in range and in the field of view, a set of vehicles in range
(inrange) is created first from the set of all vehicles except the self-vehicle. Then, a subset of vehicle in
the horizontal field of view (infield) is evaluated from the set inrange. The vehicle returning the closest
distance in the set infield is indicated as the closest vehicle.

2.2.1 I/O Structure and Parameters
The type RangeSensor2 has the following inputs:

x gxp, gyp: Global position of the vehicle/sensor (m)
x vgam11, vgam12: Elements of the vehicle orientation matrix VGAM.
   vgam21, vgam22

The following values are returned as outputs:
x distance: Distance from the center of gravity of the sensed vehicle to the sensor (m).
x angle:     Azimuth angle defined between the sensor main axis (i.e., vehicle x-axis)

and the line connecting the sensor and the COG of the sensed vehicle (deg).
x closest: Identification number of the closest vehicle in sensor range.
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The following are user-defined parameters or state variables (evaluated during processing) for the
range sensor type:

x vehicle: Vehicle associated with the sensor.
x maxrange: Maximum range (m).
x fov: Angle defining the horizontal field of view (degrees).
x procspd: Processing speed for the sensor (sec).
x xs, ys: Sensor position in vehicle coordinate frame (m).
x sor: Sensor orientation in vehicle coordinate frame (degrees).
x infield: Set of vehicle in the field of view.
x inrange: Set of the vehicles in range.
x t: Time (sec)

The set of vehicles is defined globally as shown in Section 11.

2.2.2 Source Code
The SHIFT code for the second range sensor type is given below:

<rangesensor2.hs>

The function that evaluates the distance to the vehicle in range is implemented as an external C
subroutine, and is linked to as shown in the first few lines of the program code above. For the
description of the external function, see Section 13 on page 39.

2.3 Range Sensor with Pseudo-vertex Definitions
Range sensor with pseudo-vertex definitions uses the information from the global set of vehicles to
obtain the position of all vehicles in the global reference frame. The position and the orientation of the
sensor can also be defined with respect to the vehicle coordinate frame. The method used for distance
and angle measurements is based on the definitions of multiple points on the edges of the rectangular
space occupied by the (sensed) vehicle. For vehicle detection, range sensor checks these points instead
of the center of gravity as in the previous sections. For each vehicle in range, the distance and the angle
to these (currently six) points are calculated; values associated with the vehicle pseudo-vertex point
with shortest range are returned (Figure 2d).

At present, the sensor position, and orientation, as well as the position and orientation of all vehicles
are passed to an external function, which calculates the distance and the angle to six pseudo-vertex
points for each vehicle. The distance and the azimuth angle to the closest pseudo-vertex point in the
horizontal field of view are returned. Several parameters such as vehicle length, vehicle width,
maximum sensor range, and field of view are also sent to external subroutine since these values may
change from vehicle to vehicle. If the values for multiple points for a specific vehicle are needed,
minor changes are required in the subroutine.

 The position with respect to the center of gravity and the number of the pseudo-vertex points are
defined in the external C function (See function dist6 in Section 13). Depending on the application at
hand, these values can be changed. For example, in a platooning simulation, 3 or more points can be
defined on the “rear edge” of the vehicles for sensor readings close to actual values.

2.3.1 I/O Structure and Parameters
The type RangeSensor_PV has the following inputs:

x gxp, gyp: Global position of the vehicle center of gravity (m)
x vgam11, vgam12: Elements of the vehicle orientation matrix VGAM

vgam21, vgam22
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The following are returned as outputs:
x distance: Distance from the closest pseudo-vertex point to the sensor  (m)
x angle: Azimuth angle defined between the sensor main axis and the line

 connecting the sensor and the pseudo-vertex point on the sensed vehicle (deg).

The following are user-defined parameters or state variables (evaluated during processing) for the
range sensor type:

x maxrange: Maximum range (m)
x hfov: Half of the horizontal field of view (degrees)
x xs, ys: Sensor position in vehicle coordinate frame (m)
x sor: Sensor orientation in vehicle coordinate frame (degrees)
x procspd: Processing speed for the sensor (sec)
x inrange: Set of the vehicles in range
x t: Time (sec)
x vl, vw: Vehicle length and width (m)

The set of vehicle is defined globally as shown in Section 11.

2.3.2 Source Code
The SHIFT code for the range sensor with pseudo-vertex definitions is given below:

<rangesensor_pv.hs>

The function that evaluates the distance and the azimuth angle to the closest pseudo-vertex point is
implemented as an external C subroutine, and is linked as shown in the first few lines of the program
code above. For the description of the external function, see Section 13 on page 39.

2.4 Range Sensor with Ray Definitions
Range sensor with ray definitions uses the information from the global set of vehicles to obtain the
position of all vehicles in the global reference frame. The position and the orientation of the sensor can
be defined with respect to vehicle coordinate frame. The method used for this sensor model is based on
a subroutine that calculates the intersection of two straight lines in two-dimensional space.

The user defines the resolution of the range sensor by the number of scanning rays and the maximum
horizontal field of view. Since the position and orientation of the sensor with respect to the vehicle
coordinate frame, and the position and orientation of the vehicle with respect to global coordinate
frame are known, the equation of the lines representing the rays can be evaluated. The same is true for
the line segments defining the sensed vehicles (Figure 5).

Using the definitions of Figure 5 and (Eq. 1), the slope/orientation Ti of a scanning ray is given as:

(Eq. 4) 
� � � �¸

¹

·
¨

©
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��

�

�
��� 
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hfov
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vsvgi

i

TTT

where Tvg is the orientation of the vehicle with respect to the global coordinate frame, Tvs is the
orientation of the sensor with respect to the vehicle coordinate frame (the minus sign is required since
the vehicle coordinate frame is right-handed), hfov is the angle defining half of the horizontal field of
view, r is the number of scanning rays, and i is the index of the ray.
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At present, the sensor position, and orientation, as well as the position and orientation of all vehicles
and the deviation of the rays from the sensor main axis, are passed to an external function. This
function calculates the intersection points (four for each vehicle— before discarding the points outside
the segments defining the sensed vehicle) of the scanning rays with the vehicles, and evaluates the
distance to the closest intersection point for each ray. A vector of ranges is then returned.

The minimum value in this vector is taken as the range, and the index of the minimum is used to
calculate the azimuth angle. Of course, there may be a slight deviation from the actual range and
azimuth angle values due to low resolution of the scanning rays.

The model employs a second external subroutine for calculating the minimum of an array and its
index. This additional subroutine is chosen due to complexity of realizing the same in SHIFT
language. This subroutine will be replaced with its SHIFT counterpart in the future.

The vertex points for the segments representing the vehicles are defined in the external C function
(See  Function dist5 in Section 13.1.3). The vertex points are currently chosen to define rectangular
vehicle shapes. With the addition of more vertex points, defining other vehicle shapes is possible
though computationally tasking.
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Figure 5. Definition of the sensor and scanning rays.

2.4.1 I/O Structure and Parameters
The type RangeSensor_R has the following inputs:

x gxp, gyp: Global position of the vehicle/sensor (m)
x vgam11, vgam12: Elements of the vehicle orientation matrix VGAM.
   vgam21, vgam22

The following values are returned as outputs:
x distance: Distance from the edge of the sensed vehicle to the sensor (m)
x angle:     Azimuth angle (i.e., the angle associated with the intersecting ray; degrees).
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The following are user-defined parameters or state variables (evaluated during processing) for the
range sensor type:

x vehicle: Vehicle associated with the sensor.
x maxrange: Maximum range (m)
x hfov: Angle defining half  the horizontal field of view (degrees).
x nray: Number of scanning rays.
x procspd: Processing speed for the sensor (sec).
x xs, ys: Sensor position in vehicle coordinate frame (m).
x sor: Sensor orientation in vehicle coordinate frame (degrees).
x rayvec: Array of ray slopes/orientations
x inrange: Set of the vehicles in range.
x range: Returned readings for all rays (m).
x t: Time (sec)
x vl, vw: Vehicle length and width (m).

The set of vehicles is defined globally as shown in Section 11.

2.4.2 Source Code
The SHIFT code for the range sensor with scanning ray definitions is given below:

<rangesensor_r.hs>

The function that evaluates the distance to the closest intersection point is implemented as an external
C subroutine, and is linked as shown in the first few lines of the program code above. Another function
for finding the minimum valued element of an array and its index is also implemented. For the
description of these functions, see Section 13 on page 39.

2.5 Addition and Subtraction of Angles: Problems around ± 33

All sensor models (and/or their external C functions) include the following line of codes or similar
lines:

number diff := atan2(vgam12,vgam11)-sor;
number sen_or := if abs(diff) < 2*PI-abs(diff)
                           then diff

   else -(2*PI-abs(diff))*signum(diff);

The reason for this is the definition of the variable indicating angles and/or slopes. All such variables
are defined in the interval > @33� , . When two such values are added or subtracted, the result may be
outside of the predefined interval. If-then condition given above is actually implementing a function
mapping the resulting values back to the interval when there is a need for such an adjustment (Figure 6
on page 14).

2.6 Preprocessing for Range Sensors
Initially, all sensor modules are designed to take the global set of vehicles as input for evaluating
vehicles in range. This approach results in extensive computational effort –especially for large number
of vehicles–, and needs to be eliminated. Instead of checking the whole set of existing vehicle on the
simulation platform, it is sufficient to consider a subset of vehicles that are in the sensor range of the
vehicle in question. The limiting area for a “sensor sweep” is illustrated in Figure 7. The size of the
rectangular filtering area is then� � � �mrvlmrvl 22 �u�  where vl is the vehicle length, and mr is the
maximum sensor range. Two approaches currently used in Smart-AHS projects are:
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x Grids with user-defined sizes (part of the communications project).
x Definition of cells in road segments for use with sensor environment processor SEP.

For detailed description of these methods, see the latest Smart-AHS distribution. As of December
1997, a global grid definition is added to this sensor suite. The details of the grid, and its cell structure,
as well as the sensor environment processor associated with these definitions are given in Section 9.

3
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�3��3

x

f(x)

Figure 6.  Function mapping resulting values back into the defined interval
after summation and/or subtraction.
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Figure 7. Sensor range definitions for filtering the vehicle set.
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3 Range Sensors for Human Driver Models
There are currently four different implementations of functional range sensors specifically used for
human driver models in SHIFT (See [5] for details of human driver models). These are actually two
different models: same lane detection, and adjacent lane detection. The first model is used for front-
and rear-looking sensors while the second approach is needed for side sensors.

The main difference between these sensors and the sensors described in Section 2 is the identification
procedure for vehicles in range. Sensors in Section 2 can also be used for other applications such as
multiple autonomous robot simulations while those described in this section are implemented as
human perception modules, and require specific Smart-AHS definitions such as VREP, and highway
components.

Instead of “filtering” the vehicles in sensor range and/or field of view, these sensors use the Smart-
AHS highway definitions in SHIFT, and consider only the vehicles in a specific lane and its up and
down connecting lanes. Since vehicle roadway environment processor (VREP) provides the lane,
segment and section information [3], the evaluation of the adjacent lanes is straightforward.

Sensor range is still a user-defined variable for these sensor models, and indicates the longitudinal
distance from the sensor/vehicle location. As seen in Figure 8, “longitudinal” distances are calculated
using the information about the position of the vehicles on a road section, and therefore indicate the
distance between vehicle COGs on the circular curve representing the left edge of the road section.

front sensor range
back sensor range

side sensor ranges

Section beginning

Lane 2

rxp
Lane 4

rxp
sensors’ location

detected vehicle

Figure 8. Definition of the sensor ranges for front, back, left and right sensors.

The detection subroutine is slightly different for four sensor types described in detail below. First, up
and/or down stream connecting lanes to the lane in question are evaluated depending on the sensor
type. For example, the left-sensor module checks for up and down stream lanes connected the lane on
the left side of the current vehicle lane. Then, the vehicles, which occupy the lane in question or its
connected lanes, are filtered based on the maximum sensor range(s) defined by the user.

Since vehicle positions in the road section, namely the variable rxp, is used for evaluations, the
connecting up and/or down stream sections must also be considered: the sensor range may extend
beyond the limits of the current section. For example, front sensor module looks for vehicles that
satisfy range conditions and are (a) in the same section and in the same lane or (b) in the section
connected downstream to the current section and in the lane connected down stream to the current
lane. For the second case, the vehicle road position rxp cannot be used directly for calculating the
distance between vehicles due to its definition (See source codes in Section 3.1.2 and the figure above
for details).

The sensors are designed to provide data at user-defined frequencies. However, due to drastic
changes in the sensor environment during lane changes, they are forced to “sample” range information
when the vehicle moves over the adjacent lane. This “forced sampling” is obtained by synchronizing
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the sampling state transition of the sensor(s) to the external Driver event new_lane which is in turn
synchronized to the exported events updateLaneRight and updateLaneLeft of type VREP. See source
codes given below for details.

Sensor models described here use the highway descriptions of Smart-AHS in SHIFT  (See [2, 3] for
details). Currently, we assume that there is only one element in arrays downSection and upSection. The
Smart-AHS platform is capable of supporting multiple definitions in these arrays; if multiple sections
are connected, the source code needs to be changed. See source codes given below for details.

3.1 Front and Back Sensors
Range sensors for human driver models use the roadway information provided by the simulation
platform and the vehicle position information from the set of vehicles. Distance calculations are based
on the road (section) coordinates of the vehicles providing their relative positions from the beginning
of road section that they are traveling. Euclidean distance and azimuth angle are not computed; only
the “longitudinal” difference between the vehicle COGs is returned.

 The vehicles that are in the same lane or in the up/downstream lane connected to the self-vehicle’s
lane are filtered as the vehicles in range. The calculation of the distance is slightly different for
vehicles on a connected section; the length of the section must also be taken into account because of
the definition of the parameter rxp. The vehicle with closest distance to the sensor/self-vehicle is
chosen from the set of vehicles in range. Vehicle ID as well as its longitudinal distance are returned. If
there are no vehicles in the current lane and/or up/downstream lane satisfying the range condition, a
sensor reading of –1 is returned.

3.1.1 I/O Structure and Parameters
The types FrontSensor and BackSensor have the following inputs:

x rxp: Longitudinal position of the vehicle with respect to the beginning of the road
x section (m).
x gxp, gyp: Global position of the vehicle/sensor (m)
x lane: Current lane.
x section: Current section.

The following values are returned as outputs in both types:
x closest: Identification number of the closest vehicle in sensor range.
x distance: COG-to-COG distance from the closest vehicle in range to the self-vehicle (m)

The following are user-defined parameters or state variables (evaluated during processing) for both
range sensor types:

x vehicle: Vehicle associated with the sensor.
x range: Maximum range of the sensor (m)
x sr: Sampling rate (processing speed) for the sensor (sec).
x t: Time (sec)
x lanesDown: Set of downstream lanes connected to the current lane (for FrontSensor;

the parameter is lanesUp for BackSensor).
x inrange: Set of vehicles in range.
x vir: Temporary variable for closest vehicle.

The set of vehicles is defined globally as shown in Section 11.
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3.1.2 Source Codes
The SHIFT code for the front-looking range sensor is given below:

<frontsensor.hs>

The SHIFT code for the rear-looking range sensor is given below:

<backsensor.hs>

3.2 Left and Right Sensors
Left and right range sensors for human driver models use the roadway information provided by the
simulation platform and the vehicle position information from the set of vehicles. Distance calculations
are based on the road (section) coordinates of the vehicles providing their relative positions from the
beginning of the road section that they are traveling. Euclidean distance and azimuth angle are not
computed; only the longitudinal distance between the vehicle COGs is returned.

The vehicles that are in the adjacent left/right left or in the up and downstream lane connected to the
left/right lane are filtered as the vehicles in range. The calculation of the distance is slightly different
for vehicles on a connected section; the length of the section must also be taken into account because
of the definition of the parameter rxp. The vehicles with closest longitudinal distance on the front and
at the back are chosen from the set of vehicles in range. Vehicle Ids as well as their longitudinal
distances to the sensor location are returned. If there are no vehicles in the current left lane and/or up
and downstream lanes satisfying the range condition, a sensor reading of –1 is returned. Sensor output
is -2 if there is no adjacent lane on the left/right.

3.2.1 I/O Structure and Parameters
The types LeftSensor and RightSensor have the following inputs:

x rxp: Longitudinal position of the vehicle with respect to the beginning of the road
x section (m).
x gxp, gyp: Global position of the vehicle/sensor (m)
x lane: Current lane.
x section: Current section.

The following values are returned as outputs in both types:
x fclosest: Identification numbers of the closest vehicles in sensor range (front and

bclosest: back).
x fdistance: COG-to-COG distances from the closest vehicles in range to the self-vehicle.

bdistance:

The following are user-defined parameters or state variables (evaluated during processing) for both
range sensor types:

x vehicle: Vehicle associated with the sensor.
x frange, brange: Maximum range of the sensor in meters (front and back).
x sr: Sampling rate (processing speed) for the sensor (sec).
x t: Time (sec)
x lanesDownLeft: Set of downstream lanes connected to the current lane (for LeftSensor;

lanesUpLeft: the parameters  are lanesDownRight and lanesUpRight for RightSensor).
x inrangef: Sets of vehicles in range (front and back).

inrangeb:
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x virf, virb: Temporary variables for closest vehicles (redundant).

The set of vehicles is defined globally as shown in Section 11.

3.2.2 Source Codes
The SHIFT code for the left-side range sensor is given below:

<leftsensor.hs>

The SHIFT code for the right-side range sensor is given below:

<rightsensor.hs>

3.3 Possible Extensions to HDM Range Sensor Models
There are three possible extensions to the range sensors that use roadway information from the Smart-
AHS platform. These are:

x Extension of the side sensor capabilities to the second lane on the right/left:
In order to provide information for more complex path decisions, the sensors (human perception
models) can be assumed to detect vehicles beyond the adjacent lane. The implementation of this
addition is straightforward.

x Addition of rate information to sensor outputs:
Besides the distance and vehicle ID, the rate of change of the measured distance can be useful to
human driver models in making intelligent path decisions. If this capability is not implemented in
the associated HDM model (see examples in [5] for a straightforward implementation), the rate of
change can be provided by the range sensor. An example is given in Section 3.3.1.

x Addition of the second closest vehicle to sensor outputs:
Since human drivers try to and can look beyond the vehicle in front, the second closest vehicle
must be returned by the sensor module in order to implement human perception more accurately.
Implementation of this capability is slightly difficult then the previous one, though feasible. A
simple approach would be deleting the vehicle returned as closest vehicle from the set of vehicles
in range, and repeat the detection subroutine on the resulting set. An example if this is given in
Section 3.3.2.

3.3.1 Providing Rate of Change in Headway: FrontSensor_Rate
The sensor type FrontSensor_Rate is a direct extension of the type FrontSensor. The only addition is
the evaluation of the rate of change in measured distance by comparing two consecutive readings. The
source code of FrontSensor_Rate is given below:

<frontsensor_rate.hs>

3.3.2 Providing Information on Second Closest Vehicle: FrontSensor2
The sensor type FrontSensor2 is a direct extension of the type FrontSensor. The only addition is the
definition of another subset of vehicles in range in adjacent lane in question by eliminating closest
vehicle from the initial set of vehicles. By applying the same detection condition to this new set,
second closest vehicle is obtained. The SHIFT code for FrontSensor2 is given below:

<frontsensor2.hs>
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4 Roadside Range Sensors
Two roadside sensor models given in this section are similar to previous sensor models except the fact
that there are associated with road segments instead of vehicles. Their position and/or orientation are
defined at the beginning of the simulation run based on the parameters given by the user. Input/output
structure and evaluation of vehicles in range is adapted from previous sensor models given in Section
2.

The first sensor model can return the Euclidean distance to the vehicles in range. The orientation of
the sensor is not important. The second sensor model can also return the azimuth angle from the main
sensor axis, which is defined with respect to the x-axis of the road coordinate frame at the sensor
position.

4.1 Roadside Sensor
This functional sensor type uses the information from the global set of vehicles to obtain the position
of all vehicles in the global reference frame. The sensor position on a road segment is given by its
distance from the beginning of the road segment along the arc defining the left edge of the road, and its
lateral deviation from the left edge of the road segment. Associating sensor position with a road
segment enables the user to define sensor positions easily and more clearly. The transformation of
these definitions into global coordinates requires additional computations based on the road segment’s
global position, orientation, and curvature.

If the position of a sensor with respect to a road segment is defined with sx and sy in two-dimensional
space, then the global position [xgs, ygs]T of the sensor is given by:

(Eq. 5) 
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where gxa, gya are the global position of the left edge of the road segment at its beginning when

looking downstream, E is the global orientation of the road segment, and xs and ys are given as:
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where U is the curvature of the road segment. Its sign is positive for left turns, and negative for right
turns. Figure 9 illustrates the parameters described above for a generic case. Multiple negative signs in
the equations are kept in order to facilitate the understanding of the evaluation equations, and
debugging in later stages.

Once the global position of the sensor is calculated, the evaluation of the distance to the vehicle in
range is straightforward. The evaluation of the closest vehicle in the sensor range is the same as in the
sensors described in Section 2.
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Figure 9. The global position of the roadside sensor relative to the road segment.

4.1.1 I/O Structure and Parameters
The type RoadSideSensor has no inputs.

The following values are returned as outputs:
x distance: Distance from the center of gravity of the sensed vehicle to the sensor (m).
x closest:  Identification number of the closest vehicle in sensor range.

The following user-defined parameters or state variables (evaluated during processing) for the
roadside sensor type:

x segment:        Segment associated with the sensor
x sx, sy:             Sensor position on the segment (m)
x maxrange:      Maximum range (m)
x procspd:         Processing speed for the sensor (sec)
x inrange:  Set of the vehicles in range.
x t:         Time (sec)
x xgs, ygs:             Global position of the sensor (m)
x rho: Curvature of the road segment (1/m)
x R: Radius of curvature of the segment (m)
x beta: Orientation of the segment (rad)
x sxbar, sybar: Sensor position relative to the road segment (in global coordinate frame; m)
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The set of vehicles is defined globally as shown in Section 11.

4.1.2 Source Code
The SHIFT code for the simplest roadside sensor is given below:

<roadsidesensor.hs>

The function that evaluates the distance to the vehicle in range is implemented as an external C
subroutine, and is linked as shown in the first few lines of the program code above. For the description
of the external function, see Section 13 on page 39.

4.2 Roadside Sensor Type 2
This type is similar to the previous type except the fact that the orientation of the sensor as well as its
position is a user-defined parameter. However, there is no field of view definition for this sensor. The
orientation of the sensed vehicle with respect to the main sensor axis (defined with respect to the road
coordinate frame at the sensor position) is returned in degrees.

The position of the sensor is again defined on the associated road segment, the global position is
evaluated at the setup phase of the simulation. Orientation of the sensor is defined with respect to the
road segment; it is the difference between the main sensor axis and the x-axis of the road coordinate
frame at the position of the sensor. Clockwise direction is positive for azimuth angle calculations.
Figure 10 illustrates the parameters related to sensor orientation.

As seen from Figure 10, global orientation T of the roadside sensor can be calculated using:

(Eq. 7) 
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For the sensor shown in Figure 10, a road orientation of 
2

3
 radians will cause the sensor to return an

azimuth angle of zero for a vehicle that is positioned at sx meters from the beginning of the segment.
For the same vehicle the closest possible distance reading would be ryp-(-sy) = ryp+sy.

Once the global orientation of the sensor is known, the calculation of the azimuth angle to the vehicle
center of gravity is straightforward: the evaluation is the same as in the sensors described in Section 2.
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Figure 10.  Global proentation of the roadside sensor located at (sx, sy) on the road segment.

4.2.1 I/O Structure and Parameters
The type RoadSideSensor2 has no inputs.

The following values are returned as outputs:
x distance: Distance from the center of gravity of the sensed vehicle to the sensor (m).
x angle: Azimuth angle defined between the sensor main axis and the line connecting

the sensor and the COG of sensed vehicle (degrees).
x closest:  Identification number of the closest vehicle in sensor range.

The following user-defined parameters or state variables (evaluated during processing) for the
roadside sensor type:

x segment:        Segment associated with the sensor.
x sx, sy:             Sensor position on the segment (m)
x sorseg: Sensor orientation with respect to the road coordinate frame at the sensor

position (rad)
x maxrange:      Maximum range (m)
x procspd:         Processing speed for the sensor (sec)
x inrange:  Set of the vehicles in range.
x t:         Time (sec)
x xgs, ygs:             Global position of the sensor (m)
x sen_or: Global orientation of the sensor (rad)
x rho: Curvature of the road segment (1/m)
x R: Radius of curvature of the segment (m)
x beta: Orientation of the segment (rad)
x sxbar, sybar: Sensor position relative to the road segment (in global coordinate frame; m)
x diff1, diff2: Temporary variables for angle summation (taking care of the problem

around r3�.

The set of vehicles is defined globally as shown in Section 11.
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4.2.2 Source Code
The SHIFT code for the roadside sensor is given below:

<roadsidesensor.hs>

 The function that evaluates the distance to the vehicle in range is implemented as an external C
subroutine, and is linked as shown in the first few lines of the program code above. For the description
of the external function, see Section 13 on page 39.

4.3 Other possibilities
Roadside sensors similar to HDM sensor models given in Section 3 are also possible. These sensors
will return only the longitudinal distance between the point that the sensor is “attached” to the road
segment and the COG of the vehicle in range.

The most detailed roadside sensor should include parameters such as height of the sensor with respect
to the road surface, and scanning ray definitions, and must take into account three-dimensional
positioning information about the roadway and the vehicle.

5 Speed sensor
This functional sensor type uses the information provided by the vehicle roadway environment
processor (VREP) to model a simple implementation. The sensor is assumed to be reading the current
speed of the vehicle with a small Gaussian zero mean error distribution. In other words, the vehicle
longitudinal speed provided by VREP is taken, and corrupted with Gaussian noise, which is generated
by a separate function. The mean and variance of the measurement error are user-defined parameters.

The speed sensor has more than one operation mode (currently two; this number can be increased
with minor changes in the source code). The percentage value of the precipitation on the road segment
that the vehicle is traveling is taken and used to deteriorate the speed measurement. This is
implemented by using two different “operation states” for the sensor; the only difference between the
two states is the variance of the measurement error which is set during state transitions.

 The variance and mean characteristics of the measurement error can also be a continuous function of
the precipitation percentage. The model given here is used as an initial test of the different operation
modes. The main use of these operational states is the implementation of fault mode for complex
sensor types. More detailed information about the vehicle environment and/or condition can be relayed
by environment processor VREP.

5.1 I/O Structure and Parameters
The type SpeedSensor has the following inputs:

x xDot: Actual longitudinal speed of the vehicle (m/s)
x precip: Percentage precipitation on the current road segment (%)

The following value is returned as output:
x spd_reading: Sensor measurement (m/s)

The following are user-defined parameters or state variables (evaluated during processing) for the
speed sensor:

x vehicle: Vehicle associated with the sensor.
x mean: Mean value of the measurement error
x var: Variance of the measurement error
x error_signal: Measurement error.
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x tnoise: Gaussian noise generator with two independent noise signals.

The states of the sensor type and the transition conditions between them are given in Table 1.

Table 1. Speed sensor operation modes and transition conditions

From pp  to  oo when… Normal problem

Normal - precip t 10
problem precip � 10 -

5.2 Source Code
The SHIFT code for the simplest speed sensor is given below:

<speed.hs>

6 Position sensors
There are currently two simple implementations for position sensors: one for dead reckoning, the other
for global positioning system. The position of the vehicle provided by the simulation environment is
corrupted with user-defined noise model based on the sensor characteristics, and the desired output is
generated.

6.1 Dead Reckoning
A positioning system using dead reckoning devices such as encoder is implemented as noisy
measurements of the actual vehicle speed provided by the simulation environment. The variance of the
error is assumed to be relatively smaller than a GPS measurement, the dead reckoning error grow as
the measurement error due to bumps and cracks on the road accumulates over time.

The distance traveled D by a vehicle with  an encoder attached to one of its wheel shafts is simply
given by the equation:

(Eq. 8) aRD � I

where I  is the wheel rotation, and Ra is the effective (actual) wheel radius. The rotation I can be
expressed in terms of encoder counts as:

(Eq. 9) 
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where N is the number of counts detected, and C is the encoder count per wheel revolution. Using the
above equation, and massaging them into another form, we obtain the following “ideal” equation:
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where v is the speed of the vehicle. Introducing the measurement noise, and errors in estimated wheel
radius, we have:
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where Re is the estimated wheel radius, Ra is the actual wheel radius (a decreasing function of time
with an initial value of Re), and N(m,Q) is the measurement noise with a mean of m and variance of Q.
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Besides the measurement and estimation errors, bumps and cracks on the road also affect the distance
measurements. The effects of a bump and a crack on the distance evaluation are illustrated in Figure
11.
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Figure 11.  Distance measurement errors introduced by (a) bumps and (b) cracks on the road surface (Adapted from [9]).

When the wheel is traveling over a bump of height h, the measured distance is K while in fact the
displacement of the wheel center is only L. Therefore the error is measurement can be evaluated as:

(Eq. 12) 
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For a crack on the road surface, given its width w, the effective height of the crack can be evaluated
as:

(Eq. 14) 
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� 

(Eq. 12) and  (Eq. 13) can then be evaluated using the effective height for the crack.

6.1.1 I/O Structure and Parameters
The type DR_encoder has the following input:

x speed: Actual speed of the vehicle



Sensor Models 26  02/03/98

The following value is returned as output:
x distance:  Measured distance

The following are user-defined parameters or state variables (evaluated during processing) for the
position sensor:

x re: Estimated/model wheel radius (m).
x r: Actual wheel radius (m).
x m_noise, v_noise: Measurement noise mean and variance
x arrival_bump: Random arrival time for bumps (t)
x arrival_crack:  Random arrival time for cracks (t)
x bmin, bmax, cmin, cmax:Parameters for arrival times
x hm, hv, wm, wv:        Mean and variances for height and widths of the bumps and cracks.
x noise: Gaussian noise generator providing two independent signals
x n1, n2: Noise signals
x t_b, t_c:     Time variables
x theta: Wheel revolutions (rad)
x w, h: Calculated width of the crack and height of the bump.        
x he:      Effective height of the crack.
x md_c, md_b: Variables used in effective distance error measurements.

6.1.2 Source Code
The SHIFT source code for dead reckoning is given below:

<encoder.hs>

6.2 Global Positioning System
A positioning system using a satellite network can be implemented by simply adding Gaussian
measurement noise to the actual position of the vehicle. The data provided for GPS (and GLONASS)
[6], and the data for differential global positioning systems obtained by Navlab vehicles [7] suggest
that the longitude and latitude readings can be characterized by independent Gaussian distributions.

GPS position sensor has more than one operation mode (currently three modes; this number can be
increased with minor changes in the source code). The percentage value of the precipitation on the road
segment that the vehicle is traveling is taken and used to deteriorate the position measurement. This is
implemented by using three different “operation states” for the sensor; the only difference between
these states is the variance of the measurement error which is set during state transitions.

6.2.1 I/O Structure and Parameters
The type PositionSensor_GPS has the following inputs:

x gxp, gyp: Actual global position of the vehicle (m)
x precip: Percentage precipitation on the current road segment (%)

The following value is returned as output:
x pos_x, pos_y: Sensor readings (m)
x err_x, err_y;   Sensor measurement errors (m)
x s: Measurement signal (1 = signal, 0 = no signal).

The following are user-defined parameters or state variables (evaluated during processing) for the
position sensor:

x vehicle: Vehicle associated with the sensor.
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x mean: Mean value of the measurement errors.
x var: Variance of the measurement errors

(Same mean and variance for both readings).
x error_signals: Measurement errors.
x tnoise: Gaussian noise generator with two independent noise signals.

The states of the sensor type and the transition conditions between them are given in Table 2.

Table 2. GPS position sensor operation modes and transition conditions.

From pp  to  oo when... normal problem nodata

normal - 10 d precip < 60 precip t 60
problem precip < 10 - precip t 60
nodata precip < 10 10 d precip < 60 -

6.2.2 Source Code
The SHIFT code for GPS position sensing is given below:

<gps.hs>

7 Time Clock
A global time clock is created to make it available to all sensor types. The type Clock has a single
output t. The SHIFT code for time sensing is given below:

<clock.hs>

8 Noise models
A Gaussian signal generator is implemented in order to corrupt sensor readings with measurement
noise. The type Gaussian generates two uncorrelated signals using two uniformly distributed random
variables. Both signals return values that are normally distributed around 0 with a variance of 1.

The algorithm for Gaussian noise generation using uniform distributions is taken from [8]. The
uniform distributions are obtained using the SHIFT function random(). This functions is found to
behave similar to Matlab¤’s rand function on a Sun SparcStation¤ 4m running SunOS¤ 4.1.41. Given
two uniform distributions x1 and x2 between 0 and 1, two independent normal distributions around zero
with a variance of 1 can be obtained using:

(Eq. 15) 
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The outputs of the noise signal generator, distributed around 0 mean with unit variance, can be used
to obtain new normal distributions around different means with different variance values. Given a
normal distribution y around zero with a variance of 1, a new normal distribution z around m with a
variance v is obtained using the equation:

(Eq. 16) myvz �� 

                                                       
1 SHIFT version 3.1 installed on the same machine returned erroneous values during run-time, possibly due to the fact that
version 3.1 –designed under Solaris 2.*- does no longer support SunOS 4.1* implementations.
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8.1 I/O Structure and Parameters
The type Gaussian has the following outputs:
x sg1, sg2: Gaussian signals with zero mean and unit variance.

The following are state variables evaluated during processing:
x x1, x2: Uniform distributions in [0, 1].

8.2 Source Code
The SHIFT code for the Gaussian signal generator is given below:

<noise.hs>

The function that evaluates the natural logarithm of a variable is implemented as an external C
subroutine, and linked as shown in the first few lines of the program code above. For the description of
the external function, see Section 13 on page 39.

9 Global Grid for Vehicle Detection
The section and segment descriptions in Smart-AHS libraries include cell definitions to be used with
range sensors and/or vehicle detection algorithms. This definition enables the sensing and detection
algorithms to work on a small subset of vehicles. The cells are defined using the existing definitions of
segments and sections in Smart-AHS (See file vrep.hs  in Smart-AHS library for details).

Here, we will define another cell structure forming a global grid for vehicle detection. Global
environment that includes the highway elements and the vehicles is divided into same-size squares
(cells) that facilitate vehicle detection for sensors. We call this structure the “grid” (Figure 12 ).

(xmax, ymax)

(0, 0)
cs

Figure 12. Definition of the grid.

The grid formed by the cells, is defined between origin point (0, 0) at the upper left corner of the 2-D
representation of the world (as defined in TkShift GUI). It extends to the maximum coordinates (xmax,
ymax) defined (See file grid.hs ) by the user. These values must be chosen so that the global grid
includes all vehicles and the highway sections for proper operation. It may be possible to automate the
definitions of xmax and ymax in the future.
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The size of the grid regions is defined with the variable cs (for ‘cell size’). This variable must be
chosen in accordance with the simulation complexity and the sensor range descriptions. It may be also
possible to automate the choice of this variable based on the sensor ranges and the highway structure
defined in the SHIFT description files. For all the cells defined in the grid, neighboring cells are
indicated with a set NC of cells, which includes at most eight neighboring cells. For cells that are
located at the edge of the global space definition, the number of neighbors is of course less than eight.

It is also possible to defined a smaller set of cells in order to define a grid only over the portions of
the two-dimensional space with roadway definitions as shown in Figure 13. In this case, the user has to
define the cell positions, sizes and neighboring cells manually in a file similar to grid_simpler.hs .

 

Figure 13. Simplified grid structure.

9.1 The use
Sensors types given in previous sections use the global set of Vehicles to detect vehicles in range.
Using the grid structure, sensors will now be able to consider only a subset of the vehicles for range
calculations. Sensor environment processor SEP will keep track of the current grid cell the
vehicle/sensor is travelling in, and the set of vehicles in a specific cell can be polled for evaluation.

SEP is synchronized with the updates of the current grid cell. Whenever the cell updates its set of
vehicles, all SEPs in this cell check to see whether the vehicle leaving the cell (if there are any) is their
associated vehicle (ego-vehicle). If this is the case, then SEP updates its current cell parameter.

Range sensors use this information about the current cell to define a subset of vehicles to be checked
for range measurements. From the parameter currentcell (provided by associated SEP), the set of cells
including the current cell and all the neighboring cells, is defined. Using this set of cells, a new set of
vehicles –minus the ego-vehicle- is generated, and used for distance and angle measurements.

Sampling rate for the cells is directly related to how much tolerance we have on the cell boundaries.
If there is a new vehicle entering a cell, and we do not detect it for –for example- 4 seconds, it will not
be taken into account by the range sensors that are checking the new cell this vehicle entered. During
that time, (a) the vehicle may not even be in the sensor range (e.g., good application of cell size), or (b)
the vehicle is in the sensor range, but we do not detect it until the cell updates its set of vehicles
(possible problems). Hopefully, the definition of the cells relative to the sensor ranges will guarantee
case (a); cell sizes and the update rates can be chosen carefully by considering the maximum speed the
vehicles will attend during the simulation. On the other hand, it is always possible to increase the rate
at which the cells check for leaving vehicles.
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9.2 Vehicle tracking
The global grid consists of square cells for which the adjoining cells are known. The neighboring cells
are defined for each cell at the beginning of the simulation right after cell creation. All the cells obtain
the list of vehicles currently travelling from the source. (Therefore, the type Source needs to be
changed as given in file source_grid.hs . The vehicles/sensors also obtain the cell they are traveling
in initially from their source.

When a vehicle leaves a cell, this fact is detected by the cell that checks for vehicles leaving with a
user-defined frequency. If the cell type finds vehicles that moved outside of its range, it then updates
its set of vehicles while exporting vehicle_leaving. At the same time, all neighboring cells,
synchronized to this exported value, check to see if the vehicle entered their region. Only the adjoining
cell that finds the leaving vehicle(s) in its range, updates its set of vehicles; all other cells add null set
to their set of vehicles (See code in file grid.hs ). As described above, exported parameter
vehicle_leaving is also used to update the current cell definition in sensor environment processors
(SEPs).

If the frequency of checking for leaving vehicles is low, the number of calculations over the set of
vehicles for sensor range evaluations must be much less than the number with global set of vehicles.
Again, the vehicles/sensors do not check the global set of vehicles at every (sensor) iteration, but only
a smaller set of vehicles in a specific number of cells (at least one). On the other hand, all the cells in
the global coordinate system check a smaller set of vehicles to see if there is a vehicle leaving the cell
at a predefined frequency, which is smaller than sensor frequency. Once a vehicle is found to be
leaving a cell, all the neighboring cells, and all the vehicles in that specific cell must evaluate multiple
sets to update their set of vehicles, or cell value. For a large number of vehicles, this grid method may
prove to be more efficient than searching the whole set of vehicles.

9.3 Source Codes

9.3.1 Cell and Grid Definition Files
The SHIFT codes for the cell and grid definitions are given below:

<cell.hs>

<grid.hs>

<grid_simpler.hs>

9.3.2 Changes/Updates Required in other Smart-AHS Elements
A new sensor environment processor SEP described in the previous section is required. The SHIFT
code for the environment processor is given below:

sep.hs>

Initial position and initial cell for the vehicle (and its sensors) are provided by the source. Therefore,
the source definition file is changed as given below:

<source_gid.hs>

There are several changes to be made in the range sensors described in Section 2. These are:
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x Addition of following line to sensor inputs:
input Cell currentcell;

x Addition and changes given below to the evaluation of the vehicles in range:
/* Subset of Vehicles from SEP */
set(set(Vehicle)) vset1 := {vset(k) : k in NC(currentcell)};

/* Set of the vehicles in range
 * Instead of the whole set of vehicles, only the vehicle in the current cell

        * and neighboring cells (minus the ego-vehicle) are considered */
 set(Vehicle) inRange
      := {x : v1 in vset1, x in v1} + vset(currentcell) - {vehicle};

       /* set of vehicles in the field of view */
                set(Vehicle) inField

      := {z : z in inRange
            | abs(atan2(gyp(z)-sen_y,gxp(z)-sen_x)-sen_or) < fov
              or
              2*PI-abs(atan2(gyp(z)-sen_y,gxp(z)-sen_x)-sen_or) < fov};

Furthermore, the following additions are to be made in the definition of the vehicle:

x Include new range sensor and sensor environment processor files:
#include <NewRangeSensorType>

x Change the definition of the outputs as follows:
output NewRangeSensorType sensor1, sensor2, [..];

SEP  sep;

x Add the following lines to setup phase:
x Define:

NewRangeSensorType tsensor1 := create(NewRangeSensorType, <parameters> );
...
SEP tsep := create(SEP, mycell := scell(source), myveh := self);

x Do:
sensor1 := tsensor1;
...
sep := tsep;

x Connect:
currentcell(tsensor1) <- mycell(tsep);

        currentcell(tsensor2) <- mycell(tsep);
        [...]

x Similar changes need to be made for the range sensors. Below, SHIFT code for type
RangeSensor2_Grid (altered version on RangeSensor2) is given:

<rangesensor2_grid.hs>

10 Additional Files for Sensor Simulations
In order to test the sensor models described in this document, several Smart-AHS/SHIFT files are
created. Some of these files are given in this section to facilitate the understanding of the sensor
models. Inspection of these files will clarify the input/output structure of the models, and give a better
understanding of the vehicle creation methods in the simulation platform.

10.1 2-D Kinematic Vehicle Model
Two-dimensional kinematic definition of a vehicle is basically a bicycle model in vehicle coordinate
frame. It takes the steering angle at the front wheel (steering) and the acceleration of the front wheel
(acc) as inputs, and generates the angular speed (thetaDot) and the longitudinal speed of the vehicle
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(xDot) in its own coordinate frame. The distance between the front wheel and the center of the rear
axle (i.e., wheelbase) is a user-defined parameter. While using this model, vehicle’s center of gravity is
implicitly assumed to be at the center of the rear axle.

10.1.1 Source Code
The SHIFT code for the two-dimensional kinematic vehicle model is given below:

<2dkineveh.hs>

10.2 2-D Vehicle Controller Model
The controller for the two-dimensional kinematic vehicle is realized in two parts: the longitudinal and
lateral controller. The longitudinal controller is a proportional feedback controller for unit step inputs
of desired speed value. The lateral controller uses a predefined look-ahead distance to generate desired
lateral deviation for the pursuit point assumed to be followed by the vehicle. Based on the lateral
deviation, required steering angle is evaluated. The details of the controller models are given in the
following sections.

10.2.1 Longitudinal Controller
The longitudinal controller tries to track the desired speed input using a proportional control law. As
long as the desired value is characterized as unit input, P-type controller successfully tracks the desired
value and drives the error to zero. The error in speed is multiplied with the longitudinal controller gain
(k1) and the control input (longitudinal acceleration) to the system (vehicle) is generated. The control
input to the system is limited by maximum and minimum values. The overall control is given as:

(Eq. 17) 
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See source code given in Section 10.2.4.1 for details.

10.2.2 Lateral Controller
The lateral controller first evaluates the relative orientation of the vehicle on the roadway by using the
vehicle-to-global, and roadway-to-global orientation matrices:

(Eq. 18) � � � �1,122atan1,122atan rgamrgamvgamvgamactual � T

Using this value, and the curvature information about the roadway, the lateral deviation of the pure-
pursuit point on the lane/roadway is calculated. The deviation of the pursuit point from the lane center
given as:
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where L is the look-ahead distance, and U is the curvature of the road at the vehicle center of gravity,
defined as:
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(Eq. 20) 
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where Useg is the curvature of the road segment the vehicle is traveling on, and ryp is the lateral
position of the vehicle on that segment. These values are used to correct the curvature value for the
lateral vehicle position.

The first term in (Eq. 19) is the effect of the vehicle orientation on the lateral deviation of the pursuit
point while the second term is due to the road curvature. The value obtained using (Eq. 19) gives the
“actual” position of the pursuit point. Given the desired value for the location of this point, the
curvature of the arc to be followed by the vehicle can be calculated as:

(Eq. 21) 
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The steering angle required to drive the error to zero is:

(Eq. 22) 
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where Dmax denotes the maximum possible steering, W is the wheelbase, and k2 is the controller gain.
The choice of the gain k2 as well as the look-ahead distance L affects the behavior of the vehicle. See
the source code given in Section 10.2.4.1 for details. Figure 14 illustrates the definitions given in this
section.

atan2(rgam12, rgam11)

atan2(vgam12, vgam11)

Tactual

L

lypCOG

lyppursuit

P-point

COG

LsinT

Ltan(LU/2)

Figure 14. Pure-pursuit point definitions.



Sensor Models 34  02/03/98

10.2.3 Tracking the Pursuit Point
An additional subroutine (SHIFT type) Pursuit is used to take the target lane position information from
the driver (or the higher decision level in the control hierarchy), and relay it to the (lateral) vehicle
controller with a predefined rate of change. This subroutine is required in order to make sure that the
lateral controller is able to track the pursuit point.

A second task for this type is to guarantee smooth transitions for the desired lane position (lateral
deviation) input to the lateral controller during lane changes. As seen in the highway and vehicle
environment processor VREP descriptions in Smart-AHS [3], the lateral lane deviation value lyp
“jumps” from 2lw�  to 2lw  during left lane changes, or vice versa (lw indicates the lane width). The

driver model (higher control level in the hierarchy) currently uses a lane deviation value of rlw to
indicate a desired lane change. Due to the change in the actual value at transition from one lane to the
other, the value of the desired deviation also needs to be changed to guarantee smooth operation. The
type Pursuit uses a conditional transition waiting for the lane change to take care of this problem.

This module takes target lane position from driver module, current lane position and current lane for
VREP as inputs, and generates desired pursuit point as output. The rate of change for the desired lane
position and its maximum value are user-defined parameters. See the source code given in Section
10.2.4.2 for details.

10.2.4 Source codes

10.2.4.1 Controller
The SHIFT code for lateral and longitudinal 2-D kinematic vehicle controller is given below:

<2dkinectrl.hs>

he function that evaluate the inverse sin of a variable is implemented as an external C subroutine, and
is linked as shown in the first few lines of the program code above. For the description of the external
function, see Section 13 on page 39.

10.2.4.2 Pursuit Point
The SHIFT code for pursuit point evaluation is given below:

<pursuit.hs>

11 Scenario and Vehicle Description Files
Some of the highway/scenario and vehicle description files created for sensor modeling are given to
clarify the input/output structure of the models, and facilitate the use of the models for other
application and/or AHS simulations. Investigation of the files in this section will give the reader a good
idea on how to connect several modeling blocks.

11.1 Highway Descriptions

11.1.1 Straight Road with Three Sections

Figure 15 illustrates the 3-section roadway definition given in file 3section.hs . There are three
sources the beginning of the first section, located at the middle of each lane, except the one in the left
lane. A user-defined parameter initiallanedev is used to introduce a slight deviation from the lane
center for the first source. For details, see the source code below.
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Sec1 Sec3Sec2Sources

1

2

3

Seg11 Seg12 Seg13 Seg21 Seg22 Seg23 Seg31 Seg32 Seg33

LnxR

LnxM

LnxL

x = 1,2,3

Figure 15.  Straight roadway with 3 sections, 9 segments and 3 lanes.

The SHIFT code for the 3-section roadway description is given below:

<3section.hs>

11.1.2 Circular Highway

Figure 16 illustrates the 4-section circular highway given in file circular.hs . The file includes only
one source at the beginning of lower left section. For details, see the source code below and the web
page http://www.cs.cmu.edu/~unsal/research/shift/circular.html.

Figure 16.  Circular roadway with 4 sections, 4x3=12 segments, and 3 lanes.
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The SHIFT code for the circular highway description is given below:

<circular.hs>

11.1.3 Racetrack

Figure 17 illustrates the 4-section racetrack given in file racetrack.hs . The file includes only one
source at the beginning of lower left section. For details, see the source code below and the web page
http://www.cs.cmu.edu/~unsal/research/shift/track.html.

Figure 17.  Racetrack with 4 sections, 3+4+1+4 =12 segments, and 3 lanes.

The SHIFT code for the racetrack description is given below:

<racetrack.hs>
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11.2 Vehicle Description
An example file (ExVehicle2.hs ) is included in this section to illustrate subtype definitions for an
vehicle simulation in SHIFT/Smart-AHS platform. Figure 18 gives possible links between the subtypes
constituting the vehicle.

 As seen in the SHIFT code below, the set of vehicles is defined globally. Sub-modules (types) in the
vehicle require inclusion of additional files for the SHIFT compiler. A generic type Vehicle includes a
two-dimensional vehicle model (subtype Vehicle_Kinematics), a lateral and longitudinal control
models (Controller), the pursuit subroutine (Pursuit), a simple driver model (Driver), and several
sensor models (e.g., RangeSensor_PV) as well as vehicle roadway environment processor (VREP),
source and/or a sink (Source, Sink).  Global position, the velocity and the width and length of the
vehicle are defined as outputs for the vehicle.
In the setup phase, sensor, controller, and other model parameters are defined; the newly created
vehicle is added to the set of vehicles. The initial location of the vehicle is inherited from the
associated source.
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Figure 18.  Connections between the subtypes for the type Vehicle.
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The SHIFT code for the example vehicle description is given below:

<ExVehicle2.hs>

12 Coordinate frames in Smart-AHS
Three different coordinate frames are used to describe the positions of components in Smart-AHS [3,
2]. These are:

x vehicle,
x road, and
x global

coordinate (or reference) frames.
Vehicle coordinate frame is assumed to be attached to the vehicle at its center of gravity. The x-axis

of this frame is aligned with the forward direction of motion. The y-axis points toward the left side of
the vehicle, while the z-axis is directed away from the ground. This frame is in accordance with the
"right hand rule." Vehicle movement is defined in this frame (e.g., lateral and longitudinal speeds).

Road coordinate frame has its origin at the point where the left edge and the line defining the
beginning of a section intersect. The x-axis is the tangent to the left edge, and is pointing toward the
direction of traffic flow. The y-axis is parallel to the radius of curvature, pointing to the right when
looking down the direction of vehicle movement. The z-axis is directed away from the ground. This
frame is "left-handed." It is used to define the vehicle position on the road/lane (rxp, ryp, rzp, and lyp).

Global coordinate frame is assumed to be attached to a point on the ground. We assume this frame to
be a "left-handed frame" with z-axis pointing away from the ground. This definition is in accordance
with the description of the vehicle-to-global alignment matrix (VGAM). The frame is used to define the
vehicle's global position (gxp, gyp and gzp).

12.1 Relation between coordinate frames
Figure 19 shows the global, road and vehicle coordinate frames for a (very simple) highway
description. As seen in the figure, the road coordinate frame is aligned with the global coordinate
frame for this specific example (The segment's orientation is zero radian). Both coordinate frames are
left-handed. On the other hand, the vehicle coordinate frame is not completely aligned with the global,
or the road coordinate frames due to the definition of the transformation matrix (See type VREP in file
vrep.hs.) Vehicle coordinate frame (for a vehicle following the road segment as shown in Figure 19) is
a left-handed frame where only the x- and z-axes are aligned.

 x

 y

 z

Global

 x

 y

 z

Road

 x

 y

 z
Vehicle

Road segment with zero
orientation

Figure 19. Reference frames in Smart-AHS.

The transformation between the vehicle and global coordinate frames cannot be described by using
“standard” matrices used in robotics applications, because the former is right-handed while the latter is
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left-handed. For a two-dimensional system, the transformation, given by the matrix VGAM, can be
written as:

(Eq. 23) 
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where a is the angle between x-axes of the vehicle and global reference frames. The matrix VGAM
differs from a standard coordinate frame transformation matrix in two ways:

1. The position/velocity vectors are written as row vectors resulting in a “transposed”
transformation matrix definition, and

2. The difference in the definition of the coordinate frames forces the second column of the matrix
VGAM to be the negative of the second row of a standard transformation matrix2.

13 External C functions
Most of the sensor models defined in this document use external functions implemented as C
subroutines. It is also possible to implement some of these functions in SHIFT, depending on the
sensor structure and computational effort. The external C functions are combined into a single file
(ext-func.c ) for use with the C compiler.

13.1 Function descriptions
Some of the functions given in file ext-func.c  are described in this section. Simpler functions such
as eucdist, natlog, and arcsin are not described due to their straightforward implementations.

13.1.1  Function dist6
This function is used by the range sensor with pseudo-vertex definitions; it is used to evaluate the
distance and the azimuth angle to the closest vehicle in range, given the set of vehicles. The following
are provided by the range sensor type in SHIFT as inputs:

x senx, seny:    Global sensor position
x senor:         Global sensor orientation
x vehx[], vehy[]: Global positions of the vehicles in range
x ca[], sa[]:    Global orientations of the vehicles in range (Elements of VGAM)
x n_of_veh:      Number of vehicles
x vl, vw:        Vehicle length and width
x maxrange:      Maximum sensor range
x hfov:          Half the horizontal field of view

The output of the function dist6 is the two-element array reading[]. The first element is the distance to
the closest vehicle in range, the second is the azimuth angle.

Pseudo-vertex points are defined at the corners and at the middle of the long sides of the rectangle
defining the vehicle. There are two loops for evaluation. The outer loop checks for all the vehicles
                                                       
2  The standard transformation matrix for a rotation of a radians around the z-axis is given as:
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(defined by the position, orientation vectors, and the parameter n_of_veh). The inner loop is completed
for all the pseudo-vertex points for a given vehicle. If (a) the distance to a vertex point is less than the
maximum sensor range, (b) the azimuth angle is less than half the horizontal field of view, and (c) the
distance is less than the minimum range reading, then the current values are assigned to the output
vector. If no such point is found, a maximum range of 1000m, and an azimuth angle of zero are
returned.

13.1.2  Function min_of_array
This function is used by the range sensor with ray definitions. It is used to evaluate the value and the
index of the minimum element in an array. The array and its size are provided by the range sensor type
in SHIFT as inputs. The output is an array result[] that combines the minimum-valued element and its
index. If there are more than one minimal value in the array, this function will return the index of the
last element encountered.

This function could be replaced with its SHIFT counterpart in the future.

13.1.3  Function dist5
This function is used by the range sensor with ray definitions; it is used to evaluate the vector of range
readings for the scanning rays, given the set of vehicles. The following are provided by the range
sensor is inputs:

x senx, seny:    Global sensor position
x senor:         Global sensor orientation
x vehx[], vehy[]: Global positions of the vehicles in range
x ca[], sa[]:    Global orientations of the vehicles in range (Elements of VGAM)
x n_of_veh:      Number of vehicles
x vl, vw:        Vehicle length and width
x rayvec[]: Vector defining the rays (azimuth angles from the sensor normal).

The output of the function dist5 is an array of range readings whose length is equal to the number of
scanning rays.

The vehicles are defined as rectangular regions described by four vertex points. Using the position
and orientation information provided by the range sensor, it is possible to define the four lines
describing the region occupied by the vehicle. The information on sensor position and orientation
along with the ray definition vector rayvec is used to define the scanning rays. There are three loops in
the subroutine. One for rays, one for vehicles and one for lines defining the vehicles. If (a) there is an
intersection between a line defining the scanning ray and a line defining the vehicle, and (b) this
intersection occurs in the line segment constituting an edge of the region occupied by the vehicle, and
(c) the distance is less than the minimum range reading obtained for that specific ray, then the distance
to the current intersection point is assigned to the corresponding element of the output vector. If no
such point is found, a value of 10000 meters is returned. The azimuth angle to the closest vehicle in
range is calculated using the index of the minimum-valued element of the distance vector.

13.2 Source Code
The C code for the external functions is given below:

<ext-func.c>
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14 Additional Information
All source code files listed below as well as this documentation are provided at
http://www.cs.cmu.edu/~unsal/research/shift/index.html

x 2dkinectrl.hs
x 2dkineveh.hs
x 3section.hs
x ExVehicle2.hs
x backsensor.hs
x backsensor2.hs
x cell.hs
x circular.hs
x clock.hs
x delayer.hs
x encoder.hs
x ext-func.c
x frontsensor.hs
x frontsensor2.hs
x frontsensor_rate.hs
x gps.hs
x grid.hs
x grid_simpler.hs
x humandrivers.hs

x leftsensor.hs
x leftsensor2.hs
x noise.hs
x pursuit.hs
x sep.hs
x racetrack.hs
x rangesensor.hs
x rangesensor2.hs
x rangesensor2_grid.hs
x rangesensor_pv.hs
x rangesensor_r.hs
x rightsensor.hs
x rightsensor2.hs
x roadsidesensor.hs
x roadsidesensor2.hs
x roadsidesensor2_grid.hs
x sep.hs
x source_grid.hs
x speed.hs

Sensor models and related files described here are compatible with Smart-AHS versions 0.45 and
0.60 [2], and were tested under SHIFT version 2.12 [1] using Sun SPARC¤ Station 4 running SunOS
4.1.4.

The following text must included in the directory where the source files are located, under the name
CONDITIONS:

/********************************************************************\
* The files in this directory are distributed under the following    *
* conditions:                                                        *
*                                                                    *
* 1. The recipient shall refrain from disclosing the software,       *
*    in any form, to third parties without prior written             *
*    authorization from Carnegie-Mellon University.  The             *
*    recipient shall have the right to use and copy the              *
*    software on, or in connection with the operation of, any        *
*    computer system owned or operated by it.  In addition,          *
*    the recipient shall have the right to modify or merge           *
*    the software to form updated works.                             *
*                                                                    *
* 2. If the recipient receives a request from any third party        *
*    to furnish all or a portion of the software to any third        *
*    party,  it will refer such a request to Carnegie-Mellon         *
*    University.                                                     *
*                                                                    *
* 3. Carnegie-Mellon University shall not be held liable for any     *
*    damages resulting from the use or misuse of the software        *
*    provided by it.  Furthermore, Carnegie-Mellon University        *
*    remains without obligation to assist in its installation        *
*    or maintenance.                                                 *
*                                                                    *
* 4. The recipient agrees to acknowledge Carnegie-Mellon             *
*    University in appropriate citations appearing in public         *
*    literature when reference is made to the software provided      *
*    above.                                                          *
*                                                                    *
* 5. If the recipient develops any enhancements to the software      *
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*    which materially improves its operation, the recipient          *
*    agrees to make such enhancements available to Carnegie-         *
*    Mellon University without charge, provided Carnegie-            *
*    Mellon University agrees in writing to receive such             *
*    enhancements in confidence, if requested to do so.              *
*                                                                    *
* 6. This header comment must remain attached to the source          *
*    code of the provided software.                                  *
*                                                                    *
*  Bug reports and suggestions can be mailed to Cem Unsal by         *
*  electronic mail addressed to: "unsal@ri.cmu.edu". As mentioned    *
*  in condition 3 above, the author is not obligated to fix any      *
*  such bugs, or even to acknowledge receipt of the bug report.      *
*                                                                    *
\********************************************************************/

15 Contact Information
The author of this document can be contacted at:

              Cem Ünsal
              Robotics Institute
              Carnegie Mellon University
              5000 Forbes Avenue
              Pittsburgh, PA 15213-3890
              (412) 268-5594
              (412) 268-5571 (fax)

unsal@ri.cmu.edu
http://www.cs.cmu.edu/~unsal/
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