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Abstract

This paper presents the analysis and experimental veri�cation of a fourth order model of the
arm/ sensor / environment system plant, to be use in evaluation of force control strategies. Both
the undamped and underdamped cases are investigated. Approximations and quali�cations, based
on the reality of our experimental system, help reduce the solution to just a few dominant terms.
Comparing these terms with experimental data of the system undergoing small oscillations yields
approximate values for all of the parameters in the model. To justify the obtained values, and
thereby the approximations used, two measures are taken. First, a simulation of the fourth order
model is performed, and compared against experimental data obtained from the CMU DD Arm
II system. Second, a stability analysis of several force control schemes acting on the modelled
plant is reviewed and compared against experimental tests of the controllers. In both cases, the
simulation and analysis match closely with the experimental results, con�rming the validity of
the plant model.

1 Introduction

There exist a large number of capabilities needed for automation which require control of the forces
of interaction between a robot and its environment. Examples include pushing, pulling, scraping,
grinding, twisting, etc. While performing these tasks, the system may be considered to consist
of two components: the force feedback controller and the arm/ sensor / environment plant. Many
types of algorithms have been proposed for force control of robots [15]. However, analysis of them
is often based on an assumed plant model, with parameter values that are not experimentally
derived [4, 2, 1]. Alternatively, some researchers have experimentally developed a compensator
that works for their plant [16, 5, 6]. But this approach often yields little understanding into the
physics of the of the plant, preventing analysis of alternative compensators. The obvious merger
of these two solution techniques requires the experimental extraction of a physical model, and the
design and analysis of compensators by using the model. This paper describes in detail the �rst
part of this solution: experimental extraction of physical system model parameters. Elsewhere, we
have used the parameters in the model to analyze the wide variety of force control strategies, and
con�rmed the analysis and model with experimental implementation of the strategies [11, 12].
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Figure 1: General fourth order model of the arm, sensor, and environment system.

In order to have a basis for the experimentation presented herein, a fourth order plant model
has been hypothesized, based on an assumption that the �rst mode of vibration is dominant in the
system components [9, 3]. This model is shown in Figure 1, where f is the actuation force; xA is
the measured position of the arm; xB is the position of the environment; and m, k, and c are the
mass, sti�ness, and damping parameters. This is similar to the model presented in [4]. However,
the following analysis will result in di�erent parameter values for the system, and leads to di�erent
predicted behavior for the force controllers having this system as a plant [11].

This paper is organized as follows: Section 2 outlines a vibration analysis of the model for the
undamped and underdamped, low frequency oscillation cases. Also presented is an approximate
relation between the measured force and the position and velocity of the �rst oscillatory mass.
Section 3 reviews the formulation of force versus position/velocity ellipses representing damped
oscillations. Then Section 4 presents the methods and results for static and low frequency oscillation
experiments. Step by step, it is shown how all system parameters are extracted, either directly or
through judicious approximations. Section 5 presents the results of using the extracted parameters
in a simulation of the fourth order system, showing favorable comparison with the experimental
data. Finally, Section 6 reviews the results of utilizing the derived model as a plant in explicit
force control schemes. It is shown that this analysis correctly predicts the experimentally measured
response of the system under several force control strategies. The correct predictions further con�rm
the validity of the model, and the extracted parameters.

2 Vibrational Analysis

This section provides a vibration analysis of the model shown in Figure 1. Similar analysis can be
found in many standard physics textbooks [7]. However, the analysis here deals with the asymmetric
case and an approximate result will be presented for the case of underdamped vibration.

Using the general solution of x = Ce�pt the equations of motion for the model may be written
as: 2

64 mAp
2 + cAp+ kA �(c2p+ k2)

�(c2p+ k2) mBp
2 + cBp+ kB

3
75
2
64 xA

xB

3
75 =

2
64 f

0

3
75 (1)

where p is a complex number (p = � � i!) and

kA = k1 + k2 cA = c1 + c2 (2)

kB = k2 + k3 cB = c2 + c3: (3)
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The characteristic equation may be obtained from Equation (1) with f = 0:

p4mAmB + p3(mBcA +mAcB) + p2(mBkA +mAkB + cAcB � c2
2
)

+ p(cBkA + cAkB � 2c2k2) + (kAkB � k2
2
) = 0 (4)

For our experiments with the CMU DD Arm II , k1 = 0 since the manipulator has no gearing,
and no position dependent term is used in the controller during model identi�cation. It is also
assumed the k2 � k3, since k2 is provided by the aluminum link and sensor sti�ness, whereas k3
represents a softer environment composed of a cardboard box with an aluminum plate resting on
it. Using these assumptions about the sti�ness parameters, the eigenvalues for this system in the
undamped case (c1 = c2 = c3 = 0) are:

!l �

s
k3

mA +mB

and !h �

s
k2

�
1

mA

+
1

mB

�
: (5)

These results make intuitive sense. The lower frequency !l corresponds to the case of mA and mB

acting as a rigid body oscillating on k3. Similarly, the higher frequency !h corresponds to the case
of mA and mB oscillating out of phase on spring k2, neglecting any e�ect of k3.

In the damped system, solving for p will yield two complex solutions and their conjugates. For
the underdamped case, the poles will be close to the undamped poles, but moved slightly to the left
of the imaginary axis. Considering the case of the low frequency oscillation, mA and mB oscillate
in phase on k3, with damping from only c1 and c3. This is essentially a second order system with
poles:

p =
c1 + c3

2(mA +mB)
�

s
(c1 + c3)2

4(mA +mB)2
�

k3
(mA +mB)

(6)

indicating that the decay parameter is

� =
c1 + c3

2(mA +mB)
: (7)

This estimation will prove useful later in the paper when analyzing data of the oscillations of the
real system.

This low frequency approximation, however, precludes the measurement of force, which depends
on the compression of spring k2:

fm = ks�xs = k2(xB � xA): (8)

where s indicates the sensor sti�ness and compression. A further complication is the fact that it is
not possible to directly measure the value of xB (at least with our experimental system).

One possibility for determining an analytic expression for fm is to solve Equation (4) for p
exactly, and substitute these solutions into Equation (1) to obtain the relation between xA and xB.
However, this brute force method would provide an algebraically complicated solution, yielding
little intuitive insight. Instead, we have previously shown [9, 10] that the transfer functions for
xA=xB given in Equations (1) can be used in Equation (8) to obtain an approximation of the
measured force in terms of only xA (and its derivative):

fm � �
k3
�
xA +

�
c1 � c3 + c2

k3
k2�

�
_xA (9)

= �K 0xA � C0 _xA (10)
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where K0 and C0 are the e�ective sti�ness and damping, and � is the ratio (mA +mB)=mA [10].
The relationship of fm to xA seems reasonable | the measured force is equal to the value

of �k3xA, modi�ed only be the parameter �. But the value of C0 seems strange at �rst glance.
Obviously, the introduction of damping to the system can make the measured force proportional to
the velocity, _xA. However, it can be seen that this term may take on negative and positive values.
For positive values, it appears at �rst that the system is not conservative. But a very simple and
intuitive explanation can be provided to show that the system remains a conservative one.

When the system is oscillating at the low eigenfrequency the masses are moving symmetrically,
with mA having a slightly larger amplitude than mB [10]. As mA moves toward the environment,
k2 is compressed and a force is measured. However, the dampers c1 and c2 resist the motion of mA.
Thus, they both diminish the magnitude of the measured force. This is in contrast to the force
caused by c3 which resists the motion of mB away from mA, increasing the measured force.

In summary, the introduction of damping to the oscillatory system has caused a change of phase
of the oscillations. This phase change shows up as a velocity term in our approximation for the
measured force. In the next section the e�ects of this phase change on the system will be detailed.

3 Damped Oscillations

When damping is added to an oscillating system, energy is lost during the cycle of motion. If the
oscillation is maintained by a driving force, then the energy lost due to damping is replaced every
cycle. However, the addition and subtraction of energy are not in phase. If they were, the damping
would be instantaneously negated, and the system would oscillate as if it were undamped.

Consider the fourth order system that we have been analyzing. Equation (10) shows that this
may be thought of as a second order system with an arbitrary mass on spring and damper, K0 and
C0. In this reduced model, the measured force fm is equivalent to the sum of the forces experienced
by the mass:

f = m�x = �K 0x� C0 _x (11)

(For convenience, the subscripts have been dropped.) For such a system, the quasi-static motion of
x would yield a straight line of slope �K0 and maximum x deviations of A, as shown in Figure 2.
(Note, this �gure contains an o�set f0 = �K

0x0 which may be added to both sides of the above
equation.) For the dynamic situation in which the damped system is driven so that there is no
loss in amplitude, the force is described by Figure 3. It is no longer a straight line but a loop.
This makes intuitive sense. Since the value of f is no longer dependent on just x, but also on the
direction of motion. Motion in the positive direction causes the measured force to be reduced by a
negative damping force. Motion in the negative direction causes the measured force to be increased
by a positive damping force.

It has been shown that this loop is an ellipse for steady state oscillations [8, 10]:

�
FD
C0A!

�2

+

�
x

A

�
2

= 1 (12)

To obtain the direction of travel about this curve note that when passing through x0 and moving in
the negative x direction, the damping force, �C0 _x, must be positive for C0 > 0. Thus, for C0 > 0,
the direction of travel around the loop is counterclockwise. For C0 < 0, it is clockwise.

However, this is just the description of the damping force. To get the value of the measured
force we must add the spring force as in Equation (11). This is the equivalent of adding a line
to an ellipse. The addition of a line to an ellipse mathematically yields a rotated ellipse, but the
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Figure 2: Linear relationship of force to displacement.

semi-major axis is not parallel to the line. Since the slope of the line added is important, we will
think of the new contour as a skew ellipse. Thus, the addition of the spring force to the damping
force yields the measured force as a skew ellipse with an axis at slope �K 0, as shown in Figure 3.

A similar analysis may be performed for the curve of f( _x) which again yields an ellipse. The
direction of travel about this loop may be obtained by considering the situation at the extremes of
oscillation when the velocity is zero. When switching from a positive to negative velocity, the force
must be in the negative direction. Thus the direction of travel is clockwise for K0 > 0.

Again, it is necessary to add an o�set to obtain the measured force. From Equation (11) we see
that we must add the damping force. This again yields a skew ellipse with an axis at slope �C0,
as shown in Figure 4.

Finally, if the system is not driven to maintain a constant amplitude the oscillations will decay.
This causes the continuous elliptical curves to change to elliptical spirals that converge on the
ellipse centers.

4 Experimental Data

To test the model presented, we have obtained experimental data of the arm and environment
system under small oscillations. The experimental setup is shown in Figure 5. The environment
is a cardboard box with an aluminum plate resting on it. The box is resting on a table that is
considerably sti�er than the box, and is therefore considered ground for these tests. The force
sensor is mounted on link six of the CMU DD Arm II . Attached to the force sensor is a steel probe
with a brass weight on its end. The brass weight serves as an end e�ector substitute and provides
a at, sti� surface for applying forces on the environment.

The �rst test was to determine the sti�ness of the environment. This was done by quasi-statically
depressing the box with the CMU DD Arm II . The resultant force versus position diagram is shown

5



fo
rc

e 
f(

x)

position x
x0

f0

x0 - A x0 + A

Figure 3: Force as a function of displacement with damping present.

in Figure 6. The graph is linear with a slope of 9340 N/m. This slope is equal to the sequential
combination of of k2 and k3. However, since k2 is much larger, the measured spring constant can
be reduced to kmeas � k3 � 104 N/m.

(Note: In this and all subsequent data charts presented, the parameter fm may be represented
by MezForc wd[2], the z component of the measured force in the world frame. Similarly, the
parameter xA may be represented by MezP[2], the z component of the measured position in world
frame. Also _xA is represented by MezXVel wd[2], the z component of the measured Cartesian
velocity in world frame.)

Another test was performed to measure the sti�ness of the force sensor. To do this, the sensor
was removed from the arm and compressed in a C-clamp. Compression of the sensor was measured
with a micrometer, and the forces were measured by the sensor itself. The data is shown in Figure 7.
The measured spring constant, ks, was about 5� 106 N/m.

We have previously described how k2 is less than ks by a geometric proportion factor due to
the concatenation of the aluminum sensor with the aluminum arm [10]. For the CMU DD Arm
II this factor is on the order of ten. Thus k2 will be about an order of magnitude less than the
force sensor sti�ness of 5 � 106 N/m. We also have also assumed in Section 2 that k2 � k3, and
therefore k2 is at least an order of magnitude larger than the environmental sti�ness of 104 N/m.
This implies, k3 � k2 � ks or 104N=m < k2 < 5� 106N=m. We let k2 � 5� 105.

Given this initial data, and the model development of the previous sections, it is possible to
analyze the response of the entire system to small oscillations. To obtain the data, the arm was
placed against the environment as shown in Figure 5. The arm was given an open-loop command
to exert 20 N of force against the surface. (Incidentally, the measured open-loop force of 18.6 N
indicates the need for closed-loop force control.)

A damping gain of c1 = 10N � s=m was also employed. This value of damping was chosen since
it provided reasonable damping during position controlled motion without surface contact. During
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Figure 4: Force as a function of velocity with damping present in the oscillating fourth order
system.

contact, the sti�ness of the environment makes this gain too small for critical damping. However, it
could not be increased for several reasons directly e�ecting system stability: sampling rate, sensor
noise, and plant model consistencies [14].

To measure the system response, the environmental surface was struck softly so as to excite only
low frequency oscillations. The measured force, position and velocity of one of these tests is shown
as a function of time in Figure 8. While damping is present, the system is obviously underdamped,
which matches our earlier assumptions.

First, the frequency of oscillation in Figure 8 is about 90 radians/second. Since only the low
frequency mode of oscillation has been excited, !l in Equations (5) gives mA +mB = 1:2 kg.

Second, the environmental damping parameter c3 may be obtained using Equation (7). Figure 9
is a plot of the natural logarithm of the absolute value of the peak oscillations of the measured
force. The slope of the line in this graph gives the value of the decay parameter � = �11:3. Thus,
c3 = �2(mA +mB)� � c1 = 17N � s=m.

The above time response of force, position, and velocity, may also be graphed to show the
damped response. Figure 10 shows the measured force as a function of displacement. The slope
of the elliptical spiral yields K 0 � 104 N/m. Figure 11 shows the measured force as a function of
velocity. The slope of this elliptical spiral indicates that C0 � 66N � s=m, which is greater than zero,
as explained previously. Figure 12 shows that these are valid values of K 0 and C0 by comparing
the measured force with the force calculated from Equation (10). These values of K 0 and C0 may
be used in a comparison of Equations (10) and (9) to provide estimates of the remaining model
parameters: mA, mB, and c2.

First, we know that K0 � k3=�. Since both K 0 and k3 are approximately 104 N/m, � � 1.
However, � cannot be exactly unity or mB is zero. Therefore, we infer the data indicates that
mA � mB. We will assume that � � 1:1, or equivalently, mB is less than mA by an order of
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Figure 5: Experimental setup for force oscillation experiments.

magnitude: mB = 0:1mA. Therefore, from our previous result that mA +mB = 1:2kg, we have
mA � 1:1kg and mB � 0:1kg.

Second, we know that from Equations (10) and (9) that c2 � (�k2=k3)(C0� c1+ c3) = 4400N �
s=m.

In review, the following parameters values were obtained using the described means and as-
sumptions:

k1 = 0 N/m Direct Drive motors have no intrinsic sti�ness, and none was pro-
vided actively.

k3 � 104 N/m Quasi-static measurement of force versus displacement assuming
k2 � k3.

ks = 5� 106 N/m Direct measurement with the force sensor and a micrometer.

k2 � 5� 105 N/m Condition that k3 � k2 � (10�1)ks.

mA +mB = 1:2 kg Measurement of oscillating frequency, assuming low frequency un-
derdamped vibration.

c1 = 10N � s=m Controlled damping.

c3 = 17N � s=m Measured from decay envelope.

K0 � 104 N=m Measurement of force versus position loop skew.

C0 � 66 N � s=m Measurement of force versus velocity loop skew.

mA = 1:1 kg, mB = 0:1 kg K0 � k3 indicates �! 1. Assume � � 1:1 or mA=mB � 10.

c2 = 4235 N � s=m From calculation based on small damping approximation.

In the case of di�erent arm con�gurations, the only parameter to change would be mA, due to
the change in the arm inertia [11]. From Equations (5), (7), and (10) it is apparent that a change
in mA causes a change in the frequency of oscillation of the system, and rate of decay of these
oscillations. This change might manifest itself as a change in the parameters K0 and C0, and in
the slopes of the corresponding ellipses. However, if singular con�gurations of the manipulator are
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Figure 6: Force versus position data for arm pushing quasi-statically on environment. The slope
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Figure 10: The measured response of force versus position for the fourth order system with
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avoided, the inertia of the arm typically varies by less than an order of magnitude. Further, for
our experiments the manipulator was close to a minimum inertia con�guration. Therefore, higher
inertia con�gurations would not invalidate the approximation of �! 1, nor greatly change K0 and
C0.

5 Simulation

To validate the parametric values obtained through experimentation and the approximations pre-
viously outlined, the values where employed in a simulation of the original fourth order model
represented by Equations (1). Figure 13 shows the time response of the measured force, posi-
tion, and velocity. This compares favorably with the real data in Figure 8. The frequency of the
simulation is 84 radians/second, compared with 90 radians/sec for the data.

The simulated force versus velocity loop is shown in Figure 14. This is compared to the real
data in Figure 11. The slope of 64 N � s=m is very close to the data value of 66 N � s=m. Notice
too, that this graph exhibits a positive skew axis, further justifying the earlier explanation of this
phenomenon in Section 3.

The simulated force versus position loop is shown in Figure 15. This is compared to the real
data in Figure 10. Although the slope of the skew axis is smaller in the simulation by about 30%,
this can be attributed to the model inaccuracies and experimental error. Since we have been mainly
concerned with the order of magnitudes of the spring constants, this is a reasonably good result.

The slope of the force versus position curve is determined mainly by the value of k3. To improve
its slope, k3 can be increased by 30% to 13000 N/m. Changing k3 alters other parameters also.
The new values of the altered parameters are: mA = 1:46kg, mB = 0:14kg, c2 = 3651N � s=m, and
c3 = 26:3N � s=m. The use of these parameters does not greatly alter the appearance of the previous
simulation results, except making the slope of the f(x) loop about the same as the experimental
data [10].

6 The Resultant Model

The purpose of this analysis has been to obtain reasonable estimates of the system parameters.
These values provide a plant model for developing and evaluating force control strategies. For
these purposes, even order of magnitude approximations will prove to be acceptable. The cor-
respondence between experimentation and simulation indicated that the developed fourth order
model is accurate and useful.

This fourth order model has been used as the plant to correctly predict the behavior of a
spectrum of force control strategies [11]. However, for that type of analysis it is more useful to use
the pole/zero representation of the plant. The locations of the poles and zeros for this plant are
shown in Figure 16. Figure 17 shows this same plot, but ignores the leftmost, insigni�cant pole on
the real axis at -28000. The complex pole/zero pairs are due mainly to the environment. The
other pole pair is due mainly to the sensor dynamics. It can be seen that the sensor poles are fairly
far removed from the environmental ones, and are located farther into the left half plane. Usually,
the leftmost sensor pole can be ignored.

It is important to note that the derived model parameters make the fourth order system ex-
tremely di�erent than the one presented in [3]. In that discussion, based on theoretical analysis
only, it was assumed that two (complex conjugate, sensor) poles are to the right of two (envi-
ronmental) pole/zero pairs. As has been shown from experimental data, the sensor poles are
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Figure 16: The poles and zeros of the fourth order system.
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Figure 17: A pole/zero plot of the modelled system showing all but one pole which is on the real
axis at approximately -28000.
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Figure 18: Root locus for the fourth order model under derivative gain explicit force control.

to the left and are real, for a very common environment. This di�erence in the arm/ sensor /
environment model results in erroneous predictions about the stability properties of common force
control schemes [11]. For instance, integral gain control has been predicted to be a poor controller,
while proportional gain control has been predicted to be always stable [3].

A more valid analysis of force control schemes can be obtained from using the experimen-
tally obtained model parameters. Figures 18-23 show the root loci and Bode magnitude plots
for proportional-derivative, proportional, and integral gain force controllers acting on the arm/
sensor / environment plant. The PD controller analyzed in Figure 18 appears best since it keeps
the poles in the left half plane. However, Figure 19 shows that it acts as a band-pass �lter for the
resonance frequencies of they system. This fact, and its ampli�cation of noise, make it unstable
in practice (without the addition of passive compliance) [11]. Alternatively, the proportional and
integral controllers of Figures 20-23 have about the same pole structure near the origin, with the
exception of the integral controller pole on the real axis. While both controllers can make the
system unstable, the integrator pole provides valuable low-pass �ltering as shown in Figure 23, and
eliminates steady state error at lower gains.

Figures 24 and 25 show the best responses obtained for the proportional and integral gain
controllers. Contrary to the previous predictions, but consistent with the predictions based on our
experimentally derived model, the integral controller is superior. Further, experimentation showed
that the proportional controller could easily be made unstable [13], directly contradicting previous
predictions.

These results indicate the need for experimentally derived parameters, and validate the fourth
order model of the system. The results also validate the model parameters obtained, as well as the
method used to obtain them. However, it is important to note that it may not be necessary to
employ this same method to analyze all arm/ sensor / environment systems. Instead, a fourth order
system assumption may be made in an adaptive scheme and real-time parameter identi�cation may
be possible. The analysis presented, however, has the bene�t of giving physical insight into the
derived model and its assigned parameters.
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Figure 19: Bode plot for the fourth order system under derivative gain explicit force control. The
resonance peak corresponds to the natural frequency of the environment. Thus, this controller acts
as a band pass �lter for the resonant frequency of the system.
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Figure 20: Root locus for the fourth order model under proportional gain explicit force control.
The locus �rst crosses the imaginary axis for Kfp � 1:2.

17



10-3

10-2

10-1

100

101

10-1 100 101 102 103 104

frequency(rad/s)

m
ag

ni
tu

de

Figure 21: Bode plot for the fourth order system under proportional gain explicit force control.
The resonance peak occurs near the natural frequency of the environment. The gain margin is 1.2
at ! = 118 rad=s, which corresponds to the root locus crossing to the right half plane in Figure 20.
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Figure 22: Root locus for the fourth order model under integral gain explicit force control.
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Figure 23: Bode plot for the fourth order system under integral gain explicit force control. The
resonance peak corresponds to the natural frequency of the environment, but remains under a
magnitude of one for gains of � 10. The gain margin is 28 at ! = 85 rad=s, which corresponds to
the root locus crossing to the right half plane in Figure 22.
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Figure 24: Experimental data of proportional gain explicit force control with feedforward and
Kfp = 0:5.
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Figure 25: Experimental data of integral gain explicit force control with feedforward and Kfi =
22:5.

7 Conclusion

This paper has presented an analysis of an arm/ sensor / environment model for force control of a
robot manipulator in contact with its environment. First, a fourth order model was presented and
vibration analysis of it was performed for both undamped and underdamped cases. This analysis
described the oscillation modes of the system and predicted the form of the curves for force versus
position and velocity. Experimental measurement of the real arm/ sensor / environment system
con�rmed this predicted behavior. Further, quantitative analysis and judicious approximations
made it possible to extract values for all system parameters. A simulation of the system using
the extracted parameters matched the real system response, and con�rmed the correctness of the
values. Analysis of force controllers with this plant provided new predictions about the e�cacy of
each. Finally, some experimental results were provided, which matched the analysis, and thereby
validated the plant model.

This research was valuable for three major reasons. First, real parameter values for the fourth
order model were determined. Second, the match of the simulation with the real system response
con�rms the correctness of using the fourth order model, as well as the extracted parameter values.
Third, the model has been used to analyze the e�cacy and stability of many proposed force control
strategies, and to understand the experimental results of tests of them [11, 12].
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