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Abstract

Spacetime constraintsare a new method for creating char-
acter animation. The animator specifies what the character
hasto do, for instance, “jump from hereto there, clearing a
hurdlein between;” how the motion should be performed,
for instance “don’'t waste energy,” or “come down hard
enough to splatter whatever you land on;” the character’s
physical structure—the geometry, mass, connectivity, etc.
of the parts; and the physica resources available to the
character to accomplish the motion, for instance the char-
acter’s muscles, afloor to push off from, etc. The require-
ments contained in this description, together with New-
ton’'s laws, comprise a problem of constrained optimiza
tion. Thesolutionto thisproblemisaphysically valid mo-
tion satisfying the “what” constraints and optimizing the
“how” criteria. We present as examples aLuxo lamp per-
forming a variety of coordinated motions. These realistic
motions conform to such principles of traditiona anima
tion as anticipation, squash-and-stretch, follow-through,
and timing.
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1 Introduction

Computer animation has made enormous stridesinthe past
severa years. |n particular, Pixar's Luxo, Jr. [10] marked
a turning point as perhaps the first computer-generated
work to compete seriously with works of traditional ani-
mation on every front. Key among the reasons for Luxo,
Jr’s success is that it was made by a talented animator
who adapted the principles of traditional animation to the
computer medium. Luxo, Jr., in large measure, isawork
of traditional animation that happens to use a computer
to render and to interpolate between keyframes. John
Lasseter spelled this out clearly in his presentation to

Siggraph ’87 [9]. Although Luxo, Jr. showed us that the
team of animator, keyframe system, and renderer can be
a powerful one, the responsibility for defining the motion
remains almost entirely with the animator.

Some aspects of animation—personality and appeal , for
example—will surely beleft to the animator’s artistry and
skill for along timeto come. However, many of the prin-
ciplesof animation are concerned with making the charac-
ter’smotionlook real at abasic mechanical level that ought
to admit to formal physical trestment. Consider for exam-
pleajump exhibiting antici pation, squash-and-stretch, and
follow-through. Any creature—human or lamp—can only
accel erate itsown center of mass by pushing on something
else. Injumping, the opportunity to control acceleration
only exists during contact with the floor, because while
airborne there is nothing to push on. Anticipation prior to
takeoff isthe phasein which the needed momentum s ac-
quired by squashing then stretching to push off against the
floor. Follow-throughisthe phaseinwhichthemomentum
on landing is absorbed.

Such physical arguments make nice post hoc explana-
tions, but can physics be brought to bear in creating the
complex active motions of characters like Luxo? If so,
how much of what we regard as “nice’” motion follows
directly from first principles, and how much is redly a
matter of styleand convention?

Thispaper presentsaphysically-based approach to char-
acter animation in which coordinated, active motion is
created automatically by specifying:

¢ \What the character hasto do, for instance“jump from
here to there.”

¢ How the motion should be performed, for instance
“don’'t waste energy,” or “come down hard enough to
splatter whatever you land on.”

What the character’s physical structure is—what the
pieces are shaped like, what they weigh, how they’re
connected, etc.

04 uxo” is atrademark of Jac Jacobsen Industries AS.



o What physical resourcesare availableto the character
to accomplish the desired motion, for instance the
character’s muscles (or whatever an animate lamp
hasin place of muscles,) afloor to push off from, etc.

Our initia experiments with this approach have aimed
at making a Luxo lamp execute a convincing jump just
by telling it where to start and where to end. The re-
sults we present in this paper show that such properties
as anticipation, follow-through, squash-and-stretch, and
timing indeed emerge from a bare description of the mo-
tion’s purpose and the physical context inwhich it occurs.
Moreover, simple changes to the goals of the motion or
to the physical model giveriseto interesting variationson
the basic motion. For example, doubling (or quadrupling)
the mass of Luxo’s base creates amusingly exaggerated
motion in which the base 1ooks heavy.

Our method entail sthe numerical solution of large con-
strained optimization problems, for which a variety of
standard algorithms exist. These algorithms, while rela
tively expensive, spend most of their time solving sparse
linear systems, and are therefore amenable to accelera-
tion by array processors and other commonly available
hardware. The greatest difficulty arises not in comput-
ing the numerical solution, but in setting up the intricate
sparse matrix equationsthat drivethe solution process. To
address this problem we implemented an object-oriented
symbolic algebra system that automates this difficult task
almost entirely. Wethereforebelievethemethod described
here can become a practical animation tool reguiring no
more mathematical sophistication of the end user than do
current keyframing systems.

The remainder of the paper isorganized asfollows: the
following section discusses the previous use of physical
methods in animation. The spacetime method is then in-
troduced using a moving particle as atoy example. Next,
our extension of the method to complex problemsis dis-
cussed. Finaly, the Luxo model and the results obtained
with it are described.

2 Background and Motivation

Recently, there has been considerable interest in incorpo-
rating physics into animation using simulation methods.
[7,14,15,1, 13, 4, 6] Theappeal of physica simulationas
an animation techniqueliesin its promiseto produce real -
istic motion automatically by applying the same physica
laws that govern real objects’ behavior.

Unfortunately, the realism of simulation comes at the
expense of control. Simulation methods solveinitial value
problems: the course of a simulation is completely deter-
mined by the objects’ initial positionsand velocities, and
by the forces applied to the objects along the way. An ani-
mator, however, isusually concerned as much with where

the objects end up and how they get there as where they
begin. Problemscast inthisformarenotinitial value prob-
lems. For instance, while simulating a bouncing ball is
easy enough, making the ball bounceto a particular place
requires choosing just the right starting values for posi-
tion, velocity, and spin. Making these choices manually is
a painful matter of trial and error. Problems such as this
one, inwhich both initial and final conditionsare partialy
or completely constrained, are called two-point boundary
problems, requiring more el aborate sol ution methods than
forward simulation.[3]

Character animation posesastill moredifficult problem.
Animals move by using their muscles to exert forces that
vary as a function of time. Calculating the motion by
simulation is straightforward once these time-dependent
force functions are known, but the difficult problem is
to calculate force functions that achieve the goals of the
motion. Specifying these functions by hand would be
hopeless, equivalent to making a robot move gracefully
by manually varying its motor torques.

In an effort to reconcile the advantages of simulation
with the need for control, several researchers [1, 7] have
proposed methods for blending positional constraintswith
dynamic simulations. The idea behind these methods is
to treat kinematic constraints as the consequences of un-
known “constraint forces,” solve for the forces, then add
themintothesimulation, exactly canceling that component
of the applied forces that fights against the constraints.

Constraint force methods permit parts, such as a char-
acter's hands or feet, to be moved along predefined
keyframed trgectories, but provide no help in defining
the trgjectories, which is the centra problem in creat-
ing character animation. While allowing a character to
be dragged around manually like a marionette, constraint
forces sidestep the central issue of deciding how the char-
acter should move.

These shortcomingsled usto adopt anew formul ation of
the constraint problem, whose central characteristic isthat
we solvefor the character’ s motion and time-varying mus-
cle forces over the entire time interval of interest, rather
than progressing sequentially through time. Because we
extend the model through time as well as space, we call
the formul ation spacetime constraints.

The spacetime formulation permits the imposition of
constraintsthroughout the time course of the motion, with
the effects of constraints propagating freely backward as
well as forward in time. Constraints on initial, final, or
intermediate positions and velocities directly encode the
goals of the motion, while constraints limiting muscle
forces or preventing interpenetration define properties of
the physical situation. Additionally, Newtonian physics
provides a constraint relating the force and position func-
tions that must hold at every instant in time. Subject
to these constraints we optimize functions that specify



how the motion should be performed, in terms of effi-
ciency, smoothness, etc. Solving this constrained opti-
mization problem yields optimal, physically valid motion
that achieves the goal's specified by the animator.

3 A spacetime particle

As a gentle but concrete introduction to the spacetime
method, this section describes aminima exampleinvolv-
ing amoving particle, influenced by gravity, and equipped
with a “jet engine” as a means of locomotion. With no
restrictions on theforces exerted by itsengine, the particle
can move any way it likes. The problem we formulate
here is that of making the particle fly from a given start-
ing point to a given destination in afixed period of time,
with minimal fuel consumption. Thistoy problem istoo
simpleto produce any really interesting motion, but it ex-
hibits al the key elements of the method, and will aid in
understanding what follows.

3.1 Problem formulation

Let the particle's position as a function of time be x(¢),
and the time-varying jet force be f(¢). Suppose for sim-
plicity that the mass of the fuel is negligible compared to
that of the particle, so the total mass may be treated as a
constant, m, with aconstant gravitational force mg. Then
the particle's equation of motionis

mx —f —mg =0, (1)

where x is the second time derivative of position. Given
the function f(¢), and initial values for x and x at some
time ¢o, the motion x(¢) from ¢, could be obtained by
integrating equation 1 to solvetheinitial value problem.

Instead we wish to make the particle fly from a known
point a to a known point b in a fixed period of time.
Suppose for simplicity that the rate of fuel consumption
is |f|°. In that case, we have constraints x(o) = a and
x(t1) = b subject towhich

R= /“ £(t) | dt

to

must be minimized. The problem then is to find a force
functionf(¢), defined on theinterval (¢o,¢1), such that the
position function x(¢) obtained by solving equation 1 sat-
isfies theboundary constraints, and such that the objective
function R isaconstrained minimum.

There exist avariety of standard approaches to solving
problems of this form. Prevaent in the optima control
literature are iterative methods that solve theinitial value
problem within each iteration, using the equations of mo-
tion to obtain the position function from theforce function

(see [12] for a good survey.) We choose instead to rep-
resent the functions x(¢) and f(¢) independently. The
equation of motion then enters as a constraint that relates
the two functions, to be satisfied along with the other
congtraints during the solution process. Each function is
discretized, that is, represented as a sequence of values,
with time derivatives approximated by finite differences.
This approach leads to a classical problemin constrained
optimization, for which a variety of standard solution al-
gorithms are available.

Let the discretized functions x(¢) and f(¢) be repre-
sented by sequences of values x; and f;, 0 < i < n,
with h thetimeinterval between samples. To approximate
the time derivatives of x(¢) we use the finite difference
formulas

. Xy — X1
X = —hn 2
Xip1— 2% + X1

% = ¥ ©)

Subgtituting these relations into equation 1 gives n
“physics constraints’ relating the «;'sto the f;'s,

Xip1 — 2% + X1 .
27 l<i<n.

(4)

pi=m —f;—mg =0,

In addition we have the two boundary constraints
c,=x1—a=0

and
¢, =%, —b=0.

Assuming that f(¢) is constant between samples, the ob-
jective function i becomes asum

R= hZ:|fz'|2 (5)

which is to be minimized subject to the constraints. The
discretized objective and constraint functions are now ex-
pressed in terms of the x;’s and the f;'s, which are the
independent variables to be solved for.

3.2 Numerical Solution

From the standpoint of the numerical solution processitis
useful to suppress the structure of the particular problem,
reducingitto acanonical form consisting of acollection of
scalar independent variables S;, 1 < j < n, an objective
function R(.S;) to be minimized, and a collection of scalar
constraint functions C;(.S;), 1 < i < m, which must be
driven to zero. In the current problem, the S;’s are the
z, y, and z components of the x;’s and the f;'s, while the
C;’sarethe componentsof thep;’s, ¢,, and ¢;. Typicaly,
setting up the linearized indices is the responsibility of a



program that keepstrack of the independent variables and
the constraint functions.

In these terms, the standard constrained optimization
problem is “Find .S; that minimizes R(S;) subject to
C;(S;) = 0. For the sake of modularity, the numeri-
ca method that solves the problemis best regarded as an
object that requests answers to certain standard questions
about the system, and iteratively provides updated values
for the solution vector S;. Any method must be permitted
to request the values of R and C; at agiven .S;. In addi-
tion, most effective methods require access to derivatives
of R and C; withrespect to S;, in order to move toward a
solution.

The solution method we use is a variant of Sequential
Quadratic Programming (SQP), described in detail in [3].
Essentidly, the method computes a second-order Newton-
Raphson step in R, and afirst-order Newton-Raphson step
in the C;’s, and combines the two steps by projecting
the first onto the null space of the second (that is, onto the
hyperplanefor whichall theC;’ sare constant tofirst order.)
Because it is first-order in the constraint functions and
second-order intheobjectivefunction, themethod requires
that we be able to compute two derivative matrices: the
Jacabian of the constraint functions, given by

aC;
i = B,
and the Hessian of the objective function,
O’R
H;; = .
708,08,

In addition, the first derivative vector dR/dS; must be
available. The SQP step is obtained by solving two linear
systemsin sequence. Thefirgt,

IR :
7, = 2 i
J

yieldsastep S‘j that minimizes a second-order approxima-
tionto R, without regard to the constraints. The second,

—Ci=)_ Jy(S +5;)

J

yields a step 5‘]» that drives linear approximations to the
C;’ssimultaneously to zero, and at the same time projects
the optimization step S‘j onto the null space of the con-
straint Jacobian. Thefinal updateisAS; = S; 4 5;. The
algorithmreaches afixed point when C; = 0and when any
further decrease in R requires violating the constraints.

3.3 Linear system solving

The choice of amethod for solving these linear systemsis
critically important, because the matrices can be large.

Although inverting a general n x n matrix is O(n®),
the matrices arising in spacetime problems are nearly al-
ways extremely sparse. Exploiting the sparsity is essen-
tid to make the problem tractable. Moreover, over- and
under-constrained systems, whose matricesare non-square
and/or rank-deficient, can easily arise, in which case the
inverseis undefined and the system cannot be solved. The
latter problem iswell treated by the pseudo-inverse[8, 4],
which provides|east-squares solutionsto overconstrained
problems, and minimal sol utionsto underconstrained ones.
To compute the pseudo-inverse while exploiting random
sparsity, we adapted a sparse conjugate gradient (CG)
agorithm described in [11], which is O(n?) for typica
problems. The CG agorithm solves the matrix equation
a = Mb by iteratively minimizing |a — Mb|2, giving a
least-squares solution to overconstrained problems. Pro-
vided that a zero starting-pointis given for b, the solution
vector isrestricted to the null-space complement of M.

3.4 Matrix evaluation.

Applying the SQP algorithm to the moving particle exam-
ple requires evaluation of the sparse derivative matrices,
as well as the objective and constraint functions them-
selves. Apart from the bookkeeping required for indexing,
these evaluations are straightforward. The Jacobian of the
physics constraint is given by

opi

= 2m/h%. i=
aX] m/ bl ? .]
= —m/h? i=j+1
= 0, othewise
opi ..
= 1 =
of, ;1=
= 0, otherwise

The Jacobians of the boundary constraintsare trivial. The
gradient of Ris

OR
:Zfza
of;
and theHessian is
0?R
_ o i
ot of; e
= 0, otherwise

Althoughit happensthat the toy problem we chose con-
strains initial and final positions, nothing in the solution
approach depends on this configuration: initial and final
conditions could be left free, and constraints at arbitrary
internal points could be added. Moreover, arbitrary con-
straints of the form F(S;) = 0, not just position con-
straints, may be added provided that the constraint func-
tionsand their derivatives can be evaluated.



4 Extension to complex models

In principle, the procedure described inthe last section ex-
tends to complex models, constraints, and objective func-
tions. In practice, asthe model grows more complex, the
problem becomes prohibitively difficult. The difficulty
lies not so much in calculating the numerical solution as
in creating code to evauate the constraint and objective
functions and their sparse derivatives, and in coercing the
evaluations into the form of a canonica constrained op-
timization. In particular, the required differentiations can
lead to enormous algebraic expressions that are al but
impossible to derive and code by hand.

To make the method practical, we developed a lisp-
based system that performs these difficult tasks automati-
caly. The system consists of three principle elements. a
specialized math compiler that performs symbolic differ-
entiation and simplification of tensor forms, and generates
optimized code to perform the evaluations; a runtime sys-
tem that all owsthe generated functionsto be composed dy-
namically, automatically building the vectors and sparse
matrices that drive the numerical solution; and an SQP
solver.

Because the mathematical operations required to define
a new primitive object or constraint are highly stylized,
it is possible to reduce the programmer’s job to a simple
cookbook procedure. Once the primitives are defined, a
user with little or no knowledge of the underlying math-
ematics can wire them together dynamicaly to create an-
imation. Although a full description is beyond the scope
of this paper, this section briefly outlines the system and
the operationsit performs.

4.1 Function Boxes

A function box, the lowest level construct in the system,
consists of aset of input quantities, which may be scalars,
vectors, matrices, or higher-order tensors, and a collec-
tion of output quantities each defined as a mathematical
function of the inputs. To define a function box, the pro-
grammer specifiestheinputs, theoutputs, and thefunctions
that relate them. The function definitions are mathemati-
cal expressionsthat may includedifferentiationsaswell as
algebraic operations. Non-scalar quantities are expressed
and mani pul ated using index notation with the summation
convention. For each output, the system performs sym-
bolic differentiation as called for, simplifies the resulting
expression, extracts common sub-expressions, and gener-
ates an optimized lisp function that evaluates the output
given theinputs. In addition, the system symbolically dif-
ferentiates each output with respect to each input onwhich
it depends, creates a lisp function to evaluate the deriva
tive, and analyzes its sparsity. These functions form the
Jacobians of the outputs. The generated functions, input-

output dependencies, sparsities, etc., arerecorded in adata
structure ble to the runtime system.

4.2 User Interface

Once defined, function boxes are manipulated using a
graphical interface in which they appear as literal boxes
on the screen, with ports representing the input and out-
put quantities.[2] The user may instantiate boxes, con-
necting the ports to form a graph whose arcs represent
function composition. In thisway, complex systems are
built dynamically by composing pre-compiled primitives.
By default, input ports to which nothing has been con-
nected are treated as internal constants whose values may
be inspected and modified interactively, and unconnected
output ports are ignored. However, inputs may also be
flagged by the user as state variables to be solved for, and
outputsmay be flagged either as constraintsor astermsto
be summed into the objective function.

4.3 Runtime System

Once the graph representing the model has been con-
structed, and the state-variabl es, constraints, and objective
terms declared, a pre-runtime computation is performed
to set up the constrained optimization. The user-declared
state variables, constraints, and objective terms are col-
lected and indexed to form the quantities S;, C;, and R
required by the solver. The sparse derivatives are formed
by propagationthroughthegraph usingthechain rule, with
theindividual Jacobian functions associated with function
boxes combined by a hierarchy of sparse matrix multi-
plications and additions. An optima sequence of adds
and multipliesis pre-computed for each sparse matrix op-
eration, and the sparsity patterns of the resulting global
meatrices are also precomputed. Evaluation of C;, R, and
their derivatives, then proceeds by recursing through the
graph, calling theindividual value and Jacobian functions,
and performing the sparse matrix operations. The solver
communicates with the model by requesting these evalua-
tionsand updating the state vector.

4.4 Defining Objects

Built on top of the basic system is a layer handling the
specifics of physical object models, whose main job isto
congtruct the object’s equations of motion. In the case of
the moving particlethisjust involved direct application of
f = ma. However, deriving the equations of motion for
more complicated objects can be difficult.
Wederivetheequationsautomatically using Lagrangian
Dynamics|[5], aclassical cookbook procedureinwhich an
expression for a body’s kinetic energy is subjected to a



series of symbolic differentiations. Lagrange’s equations
of motion are given by

where T is kinetic energy, q is a vector of generalized
coordinates, and Q is a generalized force. The compo-
nentsof thegeneralized coordinatesare whatever variables
control the positions and orientations of parts of the body
(eg. trandations, rotations, joint angles, etc.) The gener-
alized force is just the sum of ordinary forces applied to
body, transformed into generalized coordinates. For point
forces, thistransformationisaccomplished by multiplying
the force vector by the Jacobian of the point at which the
forceisapplied with respect to q.

To define an object, the user is required to supply ex-
pressions for 7', and for the coordinates of points on the
body to which forces or constraints may be applied. Al-
though 7" must be derived manually, thisis a manageable
job and need only be done once when aprimitiveabject is
defined. Given these expressions, automatic construction
of a function box representing the objects is straightfor-
ward: thekinetic energy expressionissubjected totherote
symbolic differentiations called for in equation 6, with an
additiona derivative with respect to q used to define the
Jacobian of the physics constraint. The expressions for
materia points are also differentiated with respect to q to
cregte “force converter” functions, small Jacobian matri-
ces that map applied forces into generaized coordinates.
Thefunction box takes asinputsvauesfor q, q, and q, for
applied forces, and for constants such as masses and di-
mensions. It produces outputsfor the “ physics constraint”
defined by the equations of motion, and for the positions
and velocities of the materia points defined by the user.

45 Discretized functionsof time

In developing the particle example of thelast section, dis-
cretized functions representing forces and positions over
time were incorporated into the equations of motion by
direct substitution. Given the ability to compose functions
and their sparse Jacobians automatically, we adopted the
alternative of constructing specialized function boxes to
represent discretized functions. These boxes contain the
sequence of values representing the function, and output
the values and the time-derivatives obtained using finite-
difference formulas. The Jacobians of these output func-
tionsaretrivia constant diagonal or banded matrices. The
values and derivatives are connected to the corresponding
inputs on the object model, causing the discretization to
be effected automatically at runtime.

Figure1: Luxo

5 Spacetime Luxo

We are now equipped to proceed to a spacetime model of
an animate Luxo Lamp. The model is composed of rigid
bodies of uniform mass connected by frictionless joints.
Each joint isequipped with a“muscle’ modeled as an an-
gular spring whose stiffness and rest angle are freeto vary
with time. The lamp is subject to the forces of its own
muscles, in addition to the externa force of gravity and
the contact forces arising from its interaction with objects
such as floors and skijumps. A picture of the model ap-
pearsinFigurel. Inourinitial examples, Luxo’'smotionis
restricted to a plane. This expedient simplifies the mathe-
matics, whilegtill allowingthecreation of complex, subtle,
and interesting motion. Extension of the mode to three
dimensionsinvolvesno fundamental difficulties, although
it leads to systems that are somewhat larger, somewhat
slower, and more difficult to debug. The definition of the
model consists of less than a page of tensor expressions,
which expand into roughly 4000 lines of automatically
generated lisp code.

5.1 Kinetic Energy

Asdiscussed inthelast section, our principletask in defin-
ing the model was to formulate an expression for the ki-
netic energy, I'. In generd, 7' isthe volumeintegral over
the body of the kinetic energy of each particle, 3p |>'c|2,
where p isthe mass density at point z. The kinetic energy
of an articulated obj ect i sthe sum of thekinetic energies of
the parts. Each of Luxo'slinksismodeled as arigid body
rotating about an axisof fixed direction that passesthrough
the originin body coordinates (see Figure 2.) Because the
axisisfixed, theorientation of the:-thlink may be denoted
by asingleangled;, withangular velocity w; = 6;a, where
aisaunit vector inthedirection of theaxis. Inadditionto



Figure2: Luxo’s parameters: Pgisatrandation, and 6; is
theorientation of thei-thlink. PointsP1—P 3 are computed
from these parameters.

rotation, the body origin undergoes a trandation p;, with
trandationa velocity v; = dp;/dt. Each link has mass
m;, aconstant moment of inertial; about therotationaxis,
and a center of mass ¢; expressed as a displacement from
the body origin. In these terms, the kinetic energy of the
i-thlink is

T = %mz |Vz'|2 + miw; - v; X ¢; + % |wi|ZIZ’. (7)
To connect the links, each link inherits as its trandation
the positionof the previouslink’s endpoint, with thebase's
trandation, P, serving as a trandation parameter for the
wholemodel. Thetrandational velocity v; of thei-thlink
isthus

ap
V; = —_— 1=

dt’

= V,_1+7T;_1 Xwi—1, otherwise

wherer;_ isavector fromthe (i — 1)-th link’s center of
rotation to its point of attachment with the i-th link. The
total kinetic energy 7" is obtained by recursively substitut-
ing this expression into equation 7 to obtain the 7;'s, and
summing over :.

5.2 Muscles

Luxo’s muscles are three angular springs, one situated at
each joint. The spring force on the joint connecting the
i-thand (i 4+ 1)-thlinksis defined by

Fi = ki(¢i — pi),

where k; is the stiffness constant, ¢, is the joint angle,
and p; istherest angle. Our model is parameterized by
link orientations rather than joint angles. The joint angle
is¢; = 0,41 — 0;, the difference between the orientations
of the surrounding links. The generalized force on 4, , the
orientation of the i-th link, dueto the j-th muscleis

d¢;
Qi = ZFde,j,
J
= ki(¢j—p;), j=i+1

= —ki(¢;—pj), J=1
= 0, otherwise

bl

Unlike passive springs whose stiffness and rest state are
congtants, k; and p; vary freely over time, allowing arbi-
trary time-dependent joint forces to be exerted.

6 Results

6.1 Jumping Luxo

Jumping motion was created using kinematic constraints
to specify initial and final poses, with linear interpolation
between the poses to create a trivid initia condition for
the spacetime iteration. Another constraint was used to
put Luxo on the floor during the initia and final phases of
the motion. Subject to these and the physics constraint,
we minimized the power due to the muscles, F8. In one
variation, we adjusted themass of Luxo’sbase, leaving the
situation otherwiseunchanged. Inanother, weadditionally
congtrained the force of contact with the floor on landing,
to produce a relatively soft landing. In afinal variation,
we added a hurdle, together with aconstraint that thejump
clear the hurdle,

The pose constraints consisted of vaues for the three
joint angles, and were applied to thefirst two and | ast two
frames of motion. Because we measure velocity using a
finitedifference, thisincorporatesthe additiona constraint
that Luxo be at rest at the beginning and end of motion.
Initial values for the orientations were obtained by linear
interpol ation between the two poses.

The floor enters both as a kinematic constraint and as a
force. In genera, collision constraints appear as inequali-
ties, but to simplify matters, we choseto specify explicitly
the time intervals during which Luxo was on the floor,
imposing during those times the equality constraints

T

90—2

OP—-P;=0

where 0y is the orientation of the base, P is the position
of the center of the base, and P is a constant point on
the floor. In other words, the position and orientation
of the base are nailed. The limitation of thisformulation,



compared toan inequality, isthat thetimes at which contact
occurs must be pre-specified, rather than allowing things
to bounce freely. The floor constraint was enabled for the
first and last five frames, allowing time for anticipation
and follow-through. Of course, two different values were
used for P & the start and finish, defining the start end
points of the jump.

The floor constraint represents amechanica interaction
involving the transmission of force between the base and
thefloor. This contact force must be taken into account to
satisfy the physics constraint. The simple contact model
used for the jump has the base colliding with the floor
indlagtically with infinite friction, which means that the
base comes to rest, losing its kinetic energy, at the mo-
ment of contact. The contact force is therefore whatever
arbitrary force on the base—specifically, on P and p—is
required to satisfy physicsin light of the floor constraint.
No special provision need be made to solve for the con-
tact forces beyond introducing additional statevariablesto
represent them. Their values are then determined during
the constraint-solving process. This method of solving for
congtraint forces applies to other mechanica constraints,
such as joint attachments, and is closely related to the
method of Lagrange multipliers.

The choice of optimization criteriais an area we have
just begunto explore. Intheexamplesshown, we soughtto
optimize a measure of the motion’s mechanical efficiency
by minimizingthe power consumed by the musclesat each
time step, which for each jointisthe product of themuscle
force and the joint’s angular velocity. Our preliminary
observation is that this criterion produces relatively fluid
and natura motion, compared to kinematic smoothness
criteriain terms of velocity and acceleration, which tend
to come out looking somewhat arthritic.

Figure3 showsaseries of iterationsleading from anini-
tiad motion in which Luxo trand ates, floating well above
the floor, to a finished jump in which al the constraints
are met and the objective function is minimized. Note
that the elements of realistic motion already appear after
the first iteration. The final motion shows marked antici-
pation, squash-and-stretch, and follow-through. From its
pre-defined initial pose, Luxo assumes a crouch providing
a pose from which to build momentum. The crouch isfol-
lowed by a momentum-building forward-and-upward ex-
tension to a stretched launching position. Whilein flight,
the center of mass movesballistically long aparabolicarc
determined by thelaunch vel ocity and by theforceof grav-
ity. Toward theend of theflight, Luxo once again assumes
a crouched position in anticipation of landing, extending
slightly while moving toward impact. This “stomp” ma-
neuver hasthe effect of transferring kinetic energy intothe
base, where it vanishes in the indlastic collision with the
floor. Followingimpact, luxo extends forward whilecom-
pressing slightly, dissipating the remaining momentum of

flight, then rises smoothly to its pre-specified final pose.

Inthefirst variation on the basic jump, we add an addi-
tional constraint fixing the contact force on landing. The
value we choose providescontrol over ahard-to-soft land-
ing dimension—alarge landing force leads to an exagger-
ated stomp, as if trying to sguash a bug, while a small
value leads to a soft landing, as if trying to avoid break-
ing something fragile. Figure 4 shows a relatively soft
landing, generated under the same conditionsas the basic
jump except for the contact force constraint. Comparing
the motion to the basic jump, we see that Luxo softened
the blow of impact by squashing while moving toward im-
pact, reducing the velocity, and hence the kinetic energy
of thebase. In contrast, the basic jump has a small stretch
before impact, producing an energy-absorbing stomp.

The next variation has the same conditions as the basic
jump, but the mass of the base has been doubled. The
final motion is shown in Figure 5. As expected, both the
anticipation and follow-through are exaggerated in com-
pensation for the greater mass.

A final variation, shown in Figure 6, has the conditions
of the soft-landing jump, but with a hurdle interposed be-
tween start and finish, and an additional constraint that
Luxo clear the hurdle. As one would expect, the extra
height required is gained by sguashing vigorously on ap-
proaching the wall.

The jumping examples each took under 10 minutes to
compute on a Symbolics 3640. While this is hardly in-
teractive speed, it constitutes a tiny fraction of the cost of
high-quality rendering.

6.2 Ski Jumping

Figure 7 shows Luxo descending a ski jump. Asin the
previous case, Luxo is constrained to be on the ski jump
and the landing at particular time samples. The biggest
difference between the ski-jump and the infinite-friction
floor of the previous example isthat Luxo isfree to dlide,
with the exact positions on the ski jump and the landing
left unspecified except at the top and bottom of the ski
jump. In addition, thereis aconstraint that the orientation
of the base must be tangent to the surface it isresting on.

Both the ski jump and landing exert forces on Luxo.
There is a normal force which keeps him from falling
through and africtional force which is tangent to the sur-
face and proportional to the tangentia velocity. The coef-
ficients of friction were state variabl esin the optimization.

At one time instant while Luxo is in the air, the height
of his base is constrained. In addition, there is a term
in the objective function which gives him a preference
for a particular pose while in the air. Thisis a “style’
optimization without which Luxo is content to go through
theair in abent position.

Luxoisalso given pose constraints at the beginning and



end of the motion. Unlike the previous jumps, however,
hisinitia velocity isunconstrained.

Theinitial condition for the optimizationwas auniform
trandation in the air above both the ski jump and the
landing. In the first iteration, Luxo puts his feet on the
ski jump and landing. By iteration 4, there is significant
anticipationand follow through. Figure7 istheresult after
16 iterations.

Both the ski jump and landing are built from two B-
spline segments. The entire jump was computed with 28
time samples in the optimization. There were 223 con-
straints and 394 state variables. The Jacobian contained
3587 non-zero entries, about 4% of the total number of
entries. The entire motion was computed in 45 minuteson
a Symbolics 3600.

7 Discussion

Our results show that spacetime methods are capable
of producing redistic, complex and coordinated motion
given only minima kinematic constraints. Such ba
sic attributes as anticipation, squash-and-stretch, follow-
through, and timing emerge on their own fromtherequire-
ment that the kinematic constraints be met in a physically
valid way subject to simple optimization criteria.

The principleadvantage of spacetimemethodsover sim-
ple keyframing is that they do much of the work that the
animator would otherwise be required to do, and that only
a skilled animator can do. Motions that would require
highly detailed keyframe information may be sketched
out at the level of “start here” and “stop there.” Thisisa
profoundly different and more economical means of con-
trol than conventional keyframing affords, an advantage
that easily outwei ghsthe greater mathematical complexity
and computational cost of the method.

Beyond sparser keyframing, spacetime methods offer
really new forms of motion control. For example, we saw
in the previous section that constraints on forces, such as
the force of a collision, can be used in adirect and simple
way to say “hit hard” or “hit softly,” producing subtle but
very effective changes in the motion.

Of the new opportunities for motion control, perhaps
the most exciting is the selection of optimization criteria
to affect the motion globally, an area we have only begun
to explore. With alittle thought, it is clear that a magic
“right” criterion, whether based on smoothness, efficiency
or some other principle, is unlikely to emerge and would
in any case be undesirable. Thisis because the “optimal”
way to perform a motion, as with any optimization, de-
pends on what you're trying to do. Consider for example
several versions of a character crossing a room: in one
case, walking on hot cods; in another, walking on eggs;
in another, carrying a full bow! of hot soup; and in still

another, pursued by abear. Plainly the character’sgoals—
and attendant criteria of optimality—are very different in
each case. We would hope to see these differing goals
reflected in the motion. The possibility of controlling mo-
tion directly in terms of its goas, not just where it goes
but how, is one weintend to explore.
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10

Figure 3: From top to bottom, a series of iterations lead-
ing from an initial motion in which Luxo trand ates, float-
ing above the floor, to a finished jump in which all the
constraints are met and the optimization function is min-
imized. The final motion shows marked anticipation,
sguash-and-stretch, and follow-through.



Figure4: A variation on the basic jump in which the con-
tact force on landing is constrained to be small. Theforce
of impact isreduced by squashing just before landing, re-
ducing the velocity and hence the kinetic energy of the
base. In contrast, the jump in Figure 3 exhibits a dight
stretch before impact, producing an energy-absorbing
stomp.

Figure 5: The mass of Luxo's base has been doubled.
In other respects, the conditions are the same as those
producing the basic jump.

Figure 6: Hurdle Jump
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Figure 7: Ski Jump

Figure 8: Spacetime constraints: a cartoonist's view. (C)
1988 by Laura Green, used by permission.



