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Abstract

In this paper, we present a car tracking system
which provides quantitative and qualitative motion es-
timates of the tracked car simultaneously from a mov-
ing observer. First, we construct three motion models
(constant velocity, constant acceleration, and turning)
to describe the qualitative motion of a moving car.
Then the models are incorporated into the Extended
Kalman Filters to perform quantitative tracking. Fi-
nally, we develop an Extended Interacting Multiple
Model (EIMM) algorithm to manage the switching be-
tween models and to output both qualitative and quan-
titative motion estimates of the tracked car. Accurate
motion modeling and e�cient model management re-
sult in a high performance tracking system. The ex-
perimental results on simulated and real data demon-
strate that our tracking system is reliable and robust,
and runs in real-time. The multiple motion represen-
tations make the system useful in various autonomous
driving tasks.

1 Introduction

Vehicle tracking is an important application of com-
puter vision. In an automated driving system, both
numerical or quantitative tracking and symbolic or
qualitative tracking are the prerequisites for the suc-
cess of other autonomous driving tasks such as motion
planning, obstacle detection, and path planning. Ac-
curate motion estimation allows safe and e�cient mo-
tion planning, while symbolic motion interpretation
simpli�es the reasoning procedure by presenting useful
information in an e�cient manner. So it becomes at-
tractive to integrate quantitative and qualitative mo-
tion analysis in a single tracking system, enabling an
automated car to react quickly and correctly to the
rapid maneuvers of other vehicles.

This paper presents a real-time vehicle tracking sys-
tem which provides quantitative and qualitative mo-
tion estimates simultaneously from a moving platform
and using a laser range�nder. The system was devel-
oped in the context of the Automated Highway Sys-
tem (AHS) project [1] and is intended to provide ac-
curate motion estimation, motion classi�cation, and
reliable maneuver detection. To our knowledge, this
is the �rst work that incorporates both quantitative
and qualitative motion estimates into a single algo-

rithm. Currently, most research has been focused on
how to quantitatively estimate the motion parameters
[2, 3, 4]. On the other hand, qualitative approaches
[5, 6] have been investigated in the context where nu-
merical motion estimates are unavailable, unstable, or
unnecessary. Little attempt has been made to pursue
quantitative and qualitative tracking simultaneously.
Our work, however, will contribute to this direction.
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Figure 1. Block diagram of our car tracking system

Our tracking system consists of three parts (see
Figure 1): car detection, car tracking, and quanti-
tative/qualitative motion estimations. The fact that
we can derive depth information directly from a laser
range�nder makes it a popular tool in many motion
analysis systems [7, 8, 9]. In this work, we use a 2D
laser scanner to obtain range data which greatly sim-
pli�es the car detection procedure. Thus, in this pa-
per, we focus on the motion analysis part. First, we
classify the vehicle motion into three qualitative kine-
matic modes: constant velocity mode, constant accel-
eration mode, and turning mode. Then, we derive
the motion model of each mode and incorporate each
model into an Extended Kalman Filter (EKF) [10] to
track vehicles separately. The advantage of employing
multiple motion models for tracking is that we can de-
tect and predict the car maneuver as a separate event,
and we can obtain more accurate motion interpreta-
tion in both quantitative and qualitative senses. The
Interacting Multiple Model (IMM) algorithm�rst pro-
posed by Blom [11] is a superior technique for multiple
model management and maneuvering target tracking
[12, 13]. Here we extend the algorithm to output both
quantitative and qualitative motion estimates, and we
call the extended IMM algorithm the EIMM algo-
rithm. Accurate motion modeling and e�cient model
management result in a high performance tracking sys-
tem. The experimental results on simulated and real
data demonstrate that our tracking system is reliable
and robust, and runs in real-time.

The remainder of the paper is organized as follows.
In Section 2, we brie
y explain the range image ac-
quisition and car detection/tracking procedures. In
Section 3, we describe the qualitative and quantita-



tive motion representations. In Section 4, we present
the motion analysis based on the EIMM algorithm.
Experimental results are given in Section 5, followed
by conclusions and future work in the last section.

2 Range Image Acquisition and Car
Detection/Tracking

2.1 Range Image Acquisition

Range images are obtained from a single-line laser
range�nder mounted on the front bumper of a moving
vehicle. The laser beam is controlled by a mirror that
rotates about the vertical axis, providing a 180� �eld
of view. Figure 2(a) illustrates a range image obtained
from this range scanner { two barriers on the roadsides
and two cars on the road. The simple range data allow
fast car detection and tracking.

2.2 Car Detection/Tracking
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Figure 2. (a) raw range image (in the observer coor-
dinate system) (b) line extraction (c) car detection (d) car
tracking

Car detection is based on the prior knowledge of the
rectangular shape, the limited size of vehicles, and the
ground plane assumption. In a 2D range image (Fig-
ure 2(a)), vehicles consist of one to two line segments.
The obvious features to detect are straight lines; this
is done with the Hough Transform (Figure 2(b)). To
group the extracted lines into cars, we �rst exclude
the line segments belonging to barriers by using the

length of the line segments and their poses with re-
spect to the laser scanner. Two lines are grouped to a
single car if they are close to each other and perpen-
dicular; otherwise they are identi�ed as two distinct
cars (Figure 2(c)).

The steps listed above constitute the procedure for
detecting cars in the �rst frame, requiring a search for
cars across the entire image. In the following frames,
the car is tracked by searching within a small area
around the position predicted by the motion estima-
tor (Figure 2(d): dotted box). This can be consid-
ered as soft gaze control, which is much simpler and
faster than hard gaze control [14]. If there are two cars
present in the area, the one nearest to the predicted
position is chosen. From the car detector and tracker,
the position and the heading of the tracked car are
obtained and sent to the motion estimator for further
analysis.

3 Qualitative and Quantitative Motion
Representations

Similar to other areas in computer vision, motion
representation has a great impact on the generality,
reliability, accuracy, and e�ciency of motion analysis
algorithms. Both quantitative and qualitative repre-
sentations as discussed by Thompson and Kearney [15]
have advantages and disadvantages. Qualitative rep-
resentation captures the signi�cant characteristics of
motion, but it has a low degree of precision. Quan-
titative representation, on the other hand, provides
detailed, numerical description of motion parameters,
but because of noisy measurements, problems of nu-
merical instability and estimation errors of the motion
parameters often occur. However, the two represen-
tations can complement each other and produce both
stable and accurate motion interpretation. So the best
strategy is to employ both qualitative and quantita-
tive representations in the tracking system, and this
is what we have done in this work.

3.1 Qualitative motion representation

Table 1. Motion Classi�cation

Vcv Vca Vt motion classes

1 0 0 constant positive speed
-1 0 0 constant negative speed
0 1 0 constant acceleration
0 -1 0 constant deceleration
0 0 1 turning to the left hand side
0 0 -1 turning to the right hand side

Following Thompson and Kearney's de�nition of
qualitative representation [15], we de�ne the qualita-
tive motion representation as a set of labels of the kine-
matic behaviors of vehicles, including constant veloc-
ity mode (CV), constant acceleration mode (CA) and
turning mode (T). The �rst step is to assign to each
kinematic behavior CV, CA, T a qualitative variable



Vcv, Vca, and Vt, respectively. Each variable has three
values: -1, 0, 1. So there are 33 possible combina-
tions or labels in the (Vcv, Vca, Vt) base. However, the
actual qualitative description includes only 6 motion
classes corresponding to a subset of all these combi-
nations, as shown in Table 1.

3.2 Quantitative Motion Representation

The quantitative motion representation is straight-
forward. It is assumed that the car moves in the
ground plane; thus, the state of the tracked car is de-
scribed by a six dimensional vector (x; y; �; s; _�; _s)T ,
where (x; y)T is the position of the car, � is the di-

rection of travel, s is the speed, _� is the turning rate
and _s is the acceleration. The reason that we choose
to represent the direction of travel (�) instead of the
direction of heading (�h) is that they are not equiv-
alent when the car is moving at high speed. In fact
� = �h + �, where � is the slip angle [16]. Since the
direction of travel is more relevant to our autonomous
driving task, accordingly we choose to represent the
turning rate of the travel direction instead of that of
heading. All variables are de�ned with respect to the
world coordinate frame attached to the initial position
of the observer car, so that the tracking is carried out
in the world coordinates. This has a clear advantage
for any predictive or gaze control scheme, but requires
prior knowledge of the observer's egomotion which, in
this case, is obtained from a GPS receiver.

4 Motion Analysis Based on the
EIMM Algorithm

In order to get the qualitativemotion interpretation
of the tracked car and to detect its maneuvers, which is
critical to later motion planning and control, we con-
struct three models corresponding to the three kine-
matic behaviors of vehicles as shown in Section 3:1.
Each model is incorporated into an Extended Kalman
Filter (EKF), and the set competes in the framework
of the Extended Interacting Multiple Model (EIMM),
which selects the most appropriate model to represent
the dynamics of the tracked car at any time. The fol-
lowing two subsections describe the EKFs for three
models and the EIMM algorithm, respectively.

4.1 The Filters for Three Models

For the purpose of computation uniformity in the
EIMM algorithm, we selected a unique state vec-
tor as described in Section 3:2 for all �lters: X =
(x; y; �; s; _�; _s)T . The measurement vector is Z =
(x; y; �)T , and so the measurement equation is the
same for all �lters: Z = HX + w, where H is the
measurement matrix, and w the measurement error
vector. The state transition functions are obtained by
integrating the following stochastic di�erential equa-
tions over time t � 0.

Model 1. The Constant Velocity Model (CV)
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Here e _� and e _s are gaussian white noise terms used
to absorb the error made by using the constant veloc-
ity assumption.
Model 2. The Constant Acceleration Model (CA)
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Here e _� and e�s are noise terms used to absorb the
error made by using the constant acceleration assump-
tion.
Model 3. The Turning Model (T)
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Similarly, e�s and e�� are noise terms used to account
for jerk and angular acceleration, respectively.

4.2 Motion Estimation Using the EIMM
Algorithm

After motion models have been developed, the next
step is to use these models to analyze the dynamic
behaviors of the tracked car. The IMM algorithm is
a superior and an attractive technique for managing
multiple models and for tracking maneuvering targets.
It provides good state estimates and it is real time.
Good state estimates result in good model probability
estimates and vice versa. Since its model probability
computation [10] is based on the model likelihoods and
the model switching matrix governed by the Markov
chain, which provides a good statistical criterion for
motion classi�cation or qualitative motion interpreta-
tion, it is therefore straightforward to extend the IMM
algorithm to provide qualitative motion analysis. We
call the extended algorithm the EIMM algorithm.

Let X̂j

k be the state estimate at time step k based on
model j, �k be the vector of model likelihoods at time
k, X̂k be the state combined from all model estimates
and �k be the vector of the model probabilities at
time k when all the likelihoods have been considered.



One cycle of the EIMM algorithm for tracking with N
models is outlined in the following 5 steps:
Step 1: Mixing of State Estimates

Starting with a priori state estimates X̂i
k�1, one

computes the mixed state estimate and the mixed
state error covariance as follows:

X̂0j

k�1 =
NX
i=1

X̂i
k�1Jk�1(ij) (4)

where

Jk�1(ij) = pij�
i
k�1=�cj; �cj =

NX
i=1

pij�
i
k�1 (5)

and pij is the assumed transition probability for
switching from model i to model j, i.e., the (i; j) ele-
ment of the model switching matrix �k�1.

P 0j

k�1
=

NX
i=1

[P i
k�1+ (X̂i

k�1 � X̂0j

k�1
)

(X̂i
k�1 � X̂0j

k�1)
T ]Jk�1(ij) (6)

Step 2: Model State Updates
The EKFs provide the model updates. The val-

ues of X̂0j
k�1 and P 0j

k�1 are used as input to the EKF

matched to model j to yield X̂j

k and P j

k .
Step 3: Model Likelihood Computations

Model Likelihood Computations are based on the
�lter residuals, the covariance of the �lter residuals,
and the assumption of Gaussian statistics.

�j
k =

1q
j2�T j

k j
exp[�0:5( ~Zj

k)
T (T j

k )
�1 ~Zj

k] (7)

where ~Zj
k is the �lter residuals, and T j

k the covari-
ance of the �lter residuals.
Step 4: Model Probabilities Update

The model probabilities are updated according to
model likelihoods and the model switching matrix gov-
erned by the Markov chain.

�k(j) =
�j
k�cjPN

i=1 �
i
k�ci

(8)

Step 5: Quantitative and Qualitative Motion Esti-
mates

The quantitative motion estimates are obtained
from a probabilistic sum of the individual �lter inputs:

X̂k =
NX
i=1

X̂i
k�

i
k (9)

Pk =
NX
i=1

�ik[P
i
k + (X̂i

k � X̂k)(X̂
i
k � X̂k)

T ] (10)

The qualitative motion estimate or the motion la-
beling is based on the model probabilities:

Labelk =

(
(sign(s); 0; 0) if m = 1
(0; sign( _s); 0) if m = 2

(0; 0; sign( _�)) if m = 3
(11)

where
m = argmax

j

�jk (12)

5 Experimental Results

Experiments on simulated and real range data were
conducted to investigate the performance of our track-
ing system. The real range images were obtained from
the laser scanner mounted on Navlab5 travelling on
Rte. 376(Figure 3) ( The Navlabs are the experimental
platforms for the Automated Highway System (AHS)
research being conducted at Carnegie Mellon Univer-
sity.).

Figure 3. the Navlab5 testbed

The frame rate of the laser scanner is 0.16 sec-
onds/frame, while the EIMM algorithm runs paral-
lel to the range image grabbing process at 0.05 sec-
onds/frame, so the whole tracking system runs in real
time on a Pentium Pro PC. Before conducting experi-
ments, we need to choose the parameters for the prior
model probabilities �0 and the model switching prob-
ability matrix �. In this case, we empirically chose
�0 = (0:8; 0:2; 0:0) and

� =

"
0:85 0:14 0:01
0:20 0:70 0:10
0:10 0:20 0:70

#
:

One of our key aims in this work is to detect car
maneuvers, especially lane changing, at the very be-
ginning of the maneuver execution. Figure 4 illus-
trates the recovered trajectory of a tracked car chang-
ing lanes once, and the corresponding model proba-
bilities. It can be seen that our tracking system can
detect the model switching reliably, and select the cor-
rect model at each time step. This also re
ects the ac-
curacy of the quantitative estimates on which motion
classi�cation or qualitative interpretation is based.

The bouncing of the observer vehicle can result in
missing data of the tracked car. In this case, the



tracker relies completely on the prediction (Figure 5:
dotted box) from the EIMM algorithm for motion es-
timation. Figure 5 shows that the tracker can still
keep on tracking when the tracked car was missed in
Frames 513 and 514. The EIMM algorithm predicted
the position of the car accurately enough that the car
was re-acquired in Frame 515. It demonstrates the
robustness of our tracking system.
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Figure 4. (a) the trajectory of the tracked car (in the
world coordinate system) (b) model probabilities
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Figure 5. Car tracking over missing data of the tracked
car

The tracking system was tested on simulated data
to evaluate its accuracy. The simulations consisted of
100 Monte Carlo runs using the same �ltering param-
eters and the model switching probabilites as those
used in real experiments. Since the state estimate er-
rors are relatively very small to the true state values,
we plot only the state Root Mean Square (RMS) er-
rors in Figure 6. The curves presented in Figure 6
lead to the following conclusion: the errors of the es-
timated states including position, direction of travel,
speed, turning rate,and acceleration are quite low.
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6 Conclusions and Future Work

We have presented a range image-based real-time
car tracking system. In contrast to previous tracking
systems which used a single motion representation, our
tracking system interprets the kinematic behaviors of
the tracked car both quantitatively and qualitatively.
This has been achieved by classifying the car behav-
iors into three signi�cant motion modes distinguished
by three motion models competing in the framework
of the EIMM algorithm. Thanks to the accurate mo-
tion modeling and e�cient model management, the
resulting system provides accurate motion estimates,
motion classi�cation and reliable maneuver detection.



Its multiple motion representation makes the track-
ing system useful in various autonomous driving tasks
involving low level control or high level reasoning.

In the current EIMM algorithm, the probability pij
of switching from model i to model j is assumed to
be uniform between each measurement update. How-
ever, for a tracked car moving under changing tra�c
situations, for a sensor with missed data points or for
multiple sensors operating asynchronously, the proba-
bility of maneuvers may di�er between measurements.
Therefore, we are constructing time-dependent model
switching probabilities to overcome this limitation.

Although the results presented in this paper used
simulated or 2D range data, the EIMM algorithm is in-
dependent of the image nature of the underlying data.
It is readily applicable to the tracking systems based
on intensity images or 3D range images. In fact, we are
investigating car tracking from sequences of 3D range
images, so that the ground plane assumption can be
removed. We also plan to incorporate the information
from the intensity images into our tracking system in
order to distinguish the lane changing maneuver from
curved road following behavior by taking road curva-
ture into consideration. Our tracking system can also
track multiple vehicles simultaneously, and we will ad-
dess this problem speci�cally in the future.

Considering the various levels of tasks in an au-
tonomous driving system, multiple motion representa-
tion is a very promising research topic. We hope that
our current work and future work will result in a gen-
eral car tracking system, enabling other autonomous
driving tasks to be successfully accomplished and �-
nally brings fully autonomous vehicles into reality.
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