Proceedings of the 1999 IEEE
International Symposium on Assembly and Task Planning
Porto, Portugal - July 1999

Determining Near Optimal Interference-free Polyhedral Configurations
for Stacking

V.R. Ayyadevara
Graduate Research Assistant
Department of Mechanical Engineering
Carnegie Mellon University
Pittsburgh, PA 15213
va2a@andrew.cmu.edu

K. Shimada
Assistant Professor
Department of Mechanical Engineering
Carnegie Mellon University
Pittsburgh, PA 15213
shimada@andrew.cmu.edu

Abstract

This paper uses a configuration space (c-space) approach
to finding a satisfactory stack of polyhedral parts; we
tested this method with industrial sheet metal parts. The
optimal configuration for a new part, added to an existing
stack, minimizes distance from a user-specified desired
position, lies inside a given c-space region and, avoids
interference with parts already in the stack. We present an
iterative c-space based method that works with discrete
orientations and yet produces interference-free
configurations close to the desired part configuration. Two
techniques are used to speed up the most computationally
intensive step of c-space obstacle computation. An
algorithm to compute orientation ranges within which
connectivity graph topology of the obstacle stays constant
is presented. Within such a range, extrapolation of c-space
obstacle geometry from one orientation to another takes at
most 15% of the time it takes to compute the obstacle from
scratch. For every discrete orientation, we construct only a
portion of the c-space obstacle in order to compute an
interference-free configuration. For some complex parts,
we determine the final configuration by considering less
than 1% of all pairs of interfering convex components. The
iterative method is guaranteed to converge.

1. Introduction

There are many applications that require the precise
relative placement of pairs of complex polyhedral parts:
e.g. packing, nesting, and stacking. Part stacking is
especially difficult, because it combines the problem of

0-7803-5704-3/99/$10.00©1999 IEEE

286

D.A. Bourne
Senior Systems Scientist
Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213
db@ri.cmu.edu

R.H. Sturges
Associate Professor
Department of Mechanical Engineering and
Department of Industrial and Systems Engineering
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061
sturges @vt.edu

final configuration (from packing and nesting domains)
with stability concerns (from assembly planning). A
desired part configuration can be determined to maximize
stability and/or minimize floor space utilization. Most
often interference between parts may preclude the desired
part configuration. Therefore, it is required to compute an
optimal configuration as close as possible to the desired
configuration. Closeness is determined using a user-
specified metric. '

Determination of the optimal configurations can be
performed in the configuration space (c-space) of the part.
The desired position of the new part maximizes stack
stability. Stack stability is maximized when the stack
center of gravity (c.g.) lies at the centroid of the stack base
and is as low as possible. If the new part in the desired
position interferes with the stack, an interference-free
configuration as close as possible to the desired position is
computed. Two parts interfere with each other if the
volume of their intersection is not zero. Hence, if they are
just touching each other, they are not considered to
interfere. The c-space of a part is six-dimensional: three
position parameters {p.pyp,} and three orientation
parameters {¢,y,0} (see Figure 1). These parameters
describe the location of the part with respect to a world
coordinate frame. A part configuration corresponds to a
point in c-space. The parts already in the stack are
stationary with respect to the world coordinate frame. A c-
space obstacle corresponding to the stack is the set of
configurations resulting in interference between the new
part and the stack. Free space is the set of all interference-
free configurations for the new part. For stacking
application, the parameters {¢,y} can be chosen using
stability maximizing heuristics such as selection of the

largest face of the new part [1]. Therefore, the c-space of
the new part is reduced to four-dimensional {py,py,p..0}-
space. Consider adding a part to an existing part stack
(Figure 2). A new part is inserted at the bottom of a three-
part stack. The parameter 0 is chosen initially as 0. In this
initial configuration (Figure 2(c)), the new part interferes
with the stack. In the final configuration Figure 2(d), the
new part has been translated in +z direction and rotated
about z-axis (changing) to avoid interference.

P = {PubyP:}

Position: {p,,p,.p,}
Orientation: {¢,y,6}

Figure 1 Part Configuration Parameters

+9 9@

Stack Base
(a) Part (b) Three Part (c) Initial (d) Final
Stack Configuration Configuration

Figure 2 Addition of a Part to a Three Part Stack

This work applies c-space based techniques, used for robot
path planning, to compute a near optimal interference-free
configuration for a polyhedral part while adding it to an
existing part stack. The final configuration minimizes
distance from a user-specified position, lies inside a given
c-space region and, avoids interference with parts already
in the stack. The transfer of c-space based techniques from
robot path planning domain to stacking domain is not
straightforward. The desired location lies most often inside
a c-space obstacle. Further, since the distance between the
desired and optimal location, as measured by a user-
specified metric, is to be minimized, connectivity
information alone is insufficient. Only an exact
description of the bounding surfaces of the c-space
obstacle would enable the computation of the free
configuration closest to the desired configuration. The
requirement in path planning of guaranteeing that the path
lies completely in free space does not apply to optimal part
placement.

1.1. Previous Work

C-space based approaches have been popular with
researchers working in path planning [2-6] and mechanism
design [7-9]. In the case of path planning, given a start and
a goal configuration in free space, a path, if one exists, is
determined. If no path exists, the planner declares failure.
It is important to show that the path lies completely in free
space. Determining a feasible path, let alone an optimal

287

one, is a difficult task. In the case of mechanism design,
the desired behavior is plotted as a curve in c-space and
lookup tables are used to suggest different mechanisms
capable of achieving that behavior. The main difficulty
with c-space approaches in four or more dimensions is the
construction of the c-space obstacles. Researchers have
been successful by limiting the dimensionality of the
problem to three ({pxpy,P:} or {p.py.0}) [4,8,9], by
limiting the geometry of the parts to polyhedra [4], by
considering only qualitative descriptions of c-space [7], or
by performing incremental computation of c-space
obstacles using probabilistic methods [3]. A c-space
obstacle in {p,,py,p.} space corresponding to a polyhedral
obstacle is polyhedral. Schwartz and Sharir [5,6] study the
effect of varying {¢,y,0} on the c-space obstacle in
{Px:Py.Pz} space and divide {¢,y,0} into non-critical and
critical regions. In a non-critical region, the topology of
the c-space obstacle stays the same. Joskowicz and Sacks
[8] compute c-space obstacles for planar parts bounded by
straight and circular segments. Sacks and Bajaj [9]
investigate the effect of change in 6 on the two
dimensional obstacle in {p,,p,,p.} space. Avnaim and
Boissonnat [10] present a polynomial time algorithm for
construction of configuration space obstacles for one set of
planar polygons with respect to another set of planar

polygons. They determine the space of permissible
configurations of a polygon set by obtaining the
complement of the regions involving edge-edge

intersections. The algorithm developed by Brost {11], on
the other hand, uses facet intersections to construct the
obstacles in configuration space.

1.2. Interference-free Configurations and Part
Stacking

Optimal stacking polyhedral parts is very difficult. Even
the two-dimensional form, i.e. optimal nesting of blanks on
a sheet, with no stability concerns, has been shown to be
NP-hard by Li and Milenkovic [12]. Hence, determination
of a globally optimal part stack is virtually impossible. We
are currently working on a stacking planner that uses a
“generate and test” approach to generate good stacking
plans. Such a planner needs tools for interference analysis
and stack stability analysis. We have presented tools to
evaluate stack stability in [1]. This paper focuses on
another aspect of stacking: generating interference-free
part configurations. This problem is also of interest to
other areas such as part nesting, assembly planning and,
packing.

We present an iterative method that works with discrete
orientations and yet, produces very good configurations.
Two techniques are used to speed up the most
computationally expensive step of c-space obstacle
construction. The algorithm has been implemented and
tested successfully for planning stacking of sheet metal
parts. The theoretical formulation and the iterative method
can easily be extended to packing and nesting.

2. Problem Statement

Given a moving polyhedral set @, a stationary polyhedral
set T, a desired position py for @, and a space Q of
candidate positions for ®, compute the configuration Q" =
{p',e‘} as a solution to the problem:

minp, - p'|
subject to 1
o(p’,6°')NT=0 (

p eQ,0 €[0,27).

In the case of stacking, ® is the new part and I' is the
existing stack. The position pg is chosen to center the
stack c.g. with respect to the stack base and £ is the set of
positions such that the stack c.g. falls inside the convex
hull of the stack base. This is an essential condition for
part and stack stability. In Figure 2, the set @ is the new
part (Figure 2(a)), the set I is the part already in the stack
(Figure 2(b)), and € is the set of positions for the new part
such that its c.g. falls inside the stack base in Figure 2(b).
The space of candidate configurations A in {p,,py,p..0}-
space is obtained by sweeping along 8-axis from 0 to
2n. The desired configuration in {p,,p,,p;,0}-space is the
line segment {p = pg, 0€[0, 27)}. We use Euclidean
distance ipg—pll from the desired position pq4 as a metric for
a candidate configuration {p,0}.

3. Approach

The optimal interference-free configuration can be
obtained by constructing the c-space obstacle C(®,I) in
{PxP,:P-,0}-space, subtracting it from A, selecting the
configuration Q" closest to the line {p = pg, 6€[0, 2m)}.
However, computing a closed-form description of C(®,I')
in {px,py.P0}-space is much more difficult than
computing C(®,I,8,) in {pspy,p.}-space for a discrete
orientation 6,. First, we examine the effect of change in
orientation on a c-space obstacle in {p,,p,.p.}-space. Next,
we show that the number of non-linear optimization
problems to be solved to compute Q" using C(®,I') and A
is exponential in the number of convex components of ®
and I". In the case of stacking, the number of problems is
therefore, exponential in the number of stack parts and
number of convex components of a part. Finally we
describe a method that uses partial c-space obstacles and
discrete orientations to compute near optimal interference-
free part configurations.

3.1. Effect of Rotation on C-space Obstacle in
{PxPy:p}-space
Consider the pair of convex polygons A and B in Figure 3.

B is stationary and A is allowed to translate, but not rotate.
The polygons are shown on the left-hand side in world

288

coordinates and the c-space obstacle corresponding to B in
{pxDy}-space is shown on the right hand side. The
following discussion also applies to obstacles in {px,py,p.}-
space. The c-space obstacle C(A,B,8,) describes the set of
positions of A, with orientation 6y, resulting in interference
with B. It can be expressed as the Minkowski sum of B
and A reflected about the origin of world coordinate frame
[13]. Lozano-Perez [4] shows that C(A,B,8) is convex
and can be constructed using vertices V;* of A and vertices
V;® of B using the following equation:

C(A,B,6,)=Conv({P, =V} -V*(p.6,)}). 2

i:1’2’...,,“’]':1,2,...’””

This computation can be performed in O(nyng-log(nsns))
time where n, is the number of vertices of A, and ng is the
number of vertices of B.

VB -V,

VA VA VE VPR VR -V
VB-VA VB-VA
World Coordinate System Configuration Space

Figure 3 Construction of C-space Obstacle C(A,B,0)

Let us examine the effect on C(A,B) of allowing A to
rotate about z-axis of world coordinate frame. The points
Py used to compute C(A,B) can be divided into two
mutually exclusive sets: black extreme points of C(A,B)
and white interior points. As A is rotated, all points P;; are
transformed as follows:

B (8)=V! R Vai=12m, j=12:m, (3)
where R;g is the rotation matrix and Vo, i=1, 2, ..., my
are the vertices of A at 6 = 0. As A is rotated, the
connectivity graph topology of C(A,B) remains the same
as long as the black points remain extreme points and the
white points remain interior. As long as the topology
remains the same, C(A,B) for a different orientation can be
computed in O(nynp) time by just determining the new
location of the black points using Equation (3). If one of
the interior points becomes an extreme point or vice-versa
(see Figure 4), the topology changes and C(A,B) has to be
computed from scratch using Equation (2). The critical
orientation 6, when an interior point P;; becomes extreme is
given by the following equation:

[£,(8.)-Vs" (8.)]+n(8,)=0

4
,(8)xn(6.)>0. @

where Vf is a vertex on one of the faces of C(A,B) and n
is the normal of the same face.

The set B.(A, B, 1) = {8a< 9p< ...< O.5) of critical
values for B in the interval [0, 2m) can be enumerated by
solving a set of quadratic inequalities obtained using
Equation (4) for every point Py. Within the interval (8,
8.,41), the topology of C(A,B) stays the same. Hence, this
interval is called a constant topelogy orientation interval,
The range [0,27) can be expressed as [0,8,] W {64,011 W
... W [0,27). By computing geometry of C(A,B, 0) for one
orientation in every constant topology interval, the obstacle
is completely characterized over the range {0,2n).

Ve
yA
AR
VA VR Vp

Vb

World Coordinatc System

Figure 4 Effect of Rotation of A on C(A,B,9)

3.2, Effect of Concavity of ® and T on
Computation of C(D,I')

First, consider the case when @ and T" are convex. Let
C(P.,I',8) be known for 6 € [0,.,0,) and be described by
faces F|, Fs, F;r. The position py lies inside C(d,I) if
d, when positioned at pg, interferes with I, For fixed 0,
the interference-free position closest to pg lies on one of
the faces. The position, closest to pg, lying on face F with
vertices {V,F, VZF y eiey V,,qF } over the interval [8,.;,0.],
Qg = {Prg B), is the solution of the following non-
linear problem;

minfe, ~7

subject to
zwk‘f:‘ (alq)_p: =0
= (5)
Yw, =1

k=1
w20, i=12,..,n,

erq € (err—l ’ ecr)

This optimization problem can be solved using a guasi-
Newton method like BFGS algorithm [13]. The objective
function is smooth and the constraints are linear. The
optimal configuration Q" from Section 2 is computed as
the best configuration Q,,q' over all abstacle faces within a
constant topotogy interval, and over all constant topology
orientation intervals,

Computation of the optimal configuration is very
expensive in the general case where ® and I" are concave.
First, ® and I' are decomposed into sets of convex
polyhedra {®, i= 1,2, ..., n}and {T}, j=1,2, ..., m}

289

respectively. The c-space obstacle C(b,I) is the union of
the obstacles {C{®, [}, i=1,2,...,nandj=1,2, ..., m}.
The c-space obstacle C(CDi,I“jz is computed using Equation
(2). The optimal position p lies on one of the faces of
C(,I") for some orientation 8°, A face of C(®,I") is cither
a face of one of its constituents, C(®;, Iy, or a portion of
such a face, The configuration Qij' = {pﬁ',eﬁ'}, with p;j'
lying on C(d),-,l"j,B;j‘) is computed using Equation (5) and
enforcing an additional constraint that p;’ lie outside the
other constituent obstacles C(,I0,8;"), k # f or | # j.
Consider one such obstacle C(®,,I',8;"). Let G,, Gy, ...
G, be the faces of C(Cbk,n,ei,-'). The exclusion constraint
is equivalent to the following condition:

3re {1,2,+.n.} such that [p,~v¢(8;)]en,(6,)20 (6)

where
V© is a vertex of face G, and
n, is the face normal of G,.

From Equation (6), the number of nen-linear problems to
be solved to compute Qij' with pij. lying outside
C((Dk,I".,O,-,-') is at most ng. The number of faces of a
regular solid is of the order of the number of vertices [13].
Using Equation (2), we have ng = O(nay), where n; is the
number of vertices of @, and #; is the number of vertices
of Tj. Since Qij' should satisfy Equation (6) for all ij(eij‘),
k=jorl#}j we have to solve nn™ non-linear
optimization problems. This computation has to be
repeated for each constant topology orientation range. For
the stacking problem, n = M, the number of convex
components of the part, m = NM where N is the number of
stack parts. The number of vertices of an obstacle C(®,,I3)
is bounded by V2, where V is the number of part vertices.
Hence, if a new part is being added to an existing part
stack, the number of problems to solve even for a single
constant topology orientation range is O(V*"™?), This
combinatorial e¢xplosion in the number of non-linear
problems to be solved justifies the use of approximation
methods with discretization in one or more axes to search
for the optimal configuration.

3.3. Computation of Q" using Partial C-space
Obstacles and Discrete Orientations

The high complexity of computing Q" arises primarily
from the effect of change in crientation on the topology of
C(®,IN). The problem is simplified by considering only
discrete orientations of 6: 0, A9, 2A8, ..., 2n-A8. The
quality of the final configuration computed is inversely
proportional to the discretization step A8. Hence, the
discretization step should be chosen as small as possible.
Once again @ and T are decomposed into sets of convex
polyhedra {&y, i=1,2, .., r}and {I}, j=1,2, ..., m}
respectively. For each discrete orientation O, the
interference-free position p, minimizing lipepi for

orientation 6, is computed. The final configuration Q" is
chosen as the best of all configurations Q,” = {py ,6,}.

Let Ly be a subset of set of all possible convex polyhedral
pairs (®,15),i=1,2,..,n,andj=1,2, ..., m. Let C(Ly
be the set of positions resulting in pair-wise interference
between members of interference pairs of L for
orientation 8. Clearly, C(Ly) is a subset of C(®,I",0,) and
is obtained as follows:

= C(d
cy= U C(®.T,6)

(7)

Consider the region F(Ly) = Q - C(Ly). For any position
(of ®) in F,, there is no interference between the
interference pairs of L. If F(Ly) is empty, no interference-
free position exists for orientation 6. Otherwise, let pri.
€ F(Ly be the position closest to pg. Algorithm 1 shows
the computation of ka‘. Whenever possible, C(®;,I';,8y) is
extrapolated from another orientation in the same constant
topology orientation range. Otherwise, the obstacle is
computed using Equation (2). In Figure 5, the part has 79
convex components. The initial configuration of &,
{pq4,9¢}, is not interference-free. The space of permissible
positions Q is a region in p, = O plane. The interference
pairs are identified and the correspondmg obstacle C(Ly),
free region F,, and position Pk are computed As no
further interference is observed, ka = pk From Figure 6,
we can see that C(L,) is a small subset of C(®,I,6,).

are added to Lk and re-compute pu' The new
configuration {ka O} is added to the priority queue with
the new cost. If no valid ka is found because F, is empty,
the orientation 0, is discarded. The process is repeated till
an interference-free configuration is found or all
orientations are discarded.

Fk «—Q
Fori=1,2, ..,
if6xe ©

Compute C(®),I;,6«) using obsList and Eqn.(3).
Else
Compute C(®,,T;,6¢) using Equation (2).
Compute constant topology orientation range ©x
00Uk
Fx « Fx~ G(®,,1,6k)
Add (C(®;,T},6x), O to obsList
End if
End for
fFczQ .
Compute px € Fx minimizing ilpa — pu !l
End if

n{L«)

Algorithm 1 Computation of py,” for an Convex
Polyhedral Pair List Ly

Figure 6 C-Space Obstacle C(®,I',0,)

Desire! posx! on p,

(a) Convex (b) Candidate {c) Initial (d) Interference
Decomposition Positions Position Pairs Ly
P
2 4
(e) C-space (f) Free Space (g)})l:itrcsrt;ef:zlce (h) Final
Obstacle C(Ly) F(Ly Configuration

moving to pry

Figure § Computation of ka. using C(L,)
Algorithm 2 shows the procedure for computing Q using
partial c-space obstacle information. For each orientation
0 =0, AB, 2A6, ..., 211-A9, the list Ly of interfering convex
polyhedral pairs (interference pairs) and corresponding
position pry are computed.

L={®,T)|® AT, #@,i=12,,n,j=12,-m} (8)

This list can be constructed using algorithms for fast
interference detection, e.g. RAPID [15]. The configuration

P {oo,00,0), 8 ¢« 0°, © @
List obsList « &, Priority Queue P « &
For 6k = 0, A9, 2A6, ..., 2n-A8
Construct list Ly
Compute pux using Algorithm 1
if lipa —~ px H # oo
Add (pu(, Bk, L, lpa ~ pux ”) toP
End if
End for
While P2 Q0 .
Remove (puk, 8k, L) from P
Set configuration of ® to {pux ,0x}
If @ and I" do not interfere
Q « {puk, 6}
Stop
End if
Add mterference pairs (®;,I) to L.
Compute ka using Algorithm 1.
If llpd — PL I| # oo
Add (PLk O, Lk, ”Pd - Pk ||) toP
End if
End while
Q¢ {foe oo =I",0}

Qu = {puc O} is stored in a priority queue with the
associated cost llpg — ka'll. The cheapest configuration is
removed from the queue. The polyhedral set ® is moved
to configuration Q" and tested for interference with I. If
no interference exists, Q. is the optimal configuration Q.
Otherwise, the additional interference pairs encountered

290

Algorithm 2 Computation of Q" using Interference Pair
Lists

Algorithm 2 is essentially an A”-search. The heuristic cost
at a node is the minimum distance to be moved by @, from

the desired position pg, to avoid interference between
member-pairs of Ly. This is a lower bound of the actual
distance to be moved by ® to avoid interference between
® and I'. Therefore, the method is guaranteed to perform
as well as a discretization approach that considers all
interference pairs for every discrete orientation. Further,
this method is guaranteed to converge as every orientation
O eventually yields either a non-empty F; that can be used
to determine py or a null-set implying that no solution
exists for this particular orientation. The complexity of
Algorithm 2 is O(Ngny{(nenplog(nenr)) where Ny is the
number of discrete orientations considered and ng and np
are the number of vertices of @ and TI" respectively. The
parameter n; is the total number of interference pairs
considered and is the sum of the number of interference
pairs in all L. The maximum value of n; is still the total
number of interference pairs mn. However, we have seen
through tests that for complex parts, n; << 0.01mn.

4. Implementation and Results

4.1. Implementation

Algorithm 2 has been used for planning stacking of
polyhedral sheet metal parts. This implementation is part
of a bigger project on automating process planning for
sheet metal bending [16]. Sheet metal parts are difficult to
stack because of flanges, holes and tabs. The algorithm
described in the paper forms the interference analysis
module of the stacking planner. The planner builds the
stack incrementally and uses the interference analysis to
evaluate candidate stacks. Stability based heuristics [1] are
used to determine the parameters {¢,y} for the i part.
Thus, the c-space dimensionality is reduced from six to
four: {p.py.p.0}. As far as the interference analysis
module is concerned, when the i* part is added to a stack
with i-1 parts, the i-1 parts are considered stationary. The
algorithm has been implemented successfully using C++
on a PC with a 266 MHz Pentium Pro processor. The
discretization step A@ (see Section 3.3) is chosen as 1°.
RAPID library [15] is used for interference detection, ghull
library [17] is used for convex hull computation, and ACIS
geometric kernel is used to model the parts and the c-space
obstacles. Convex components of the sheet metal part are
generated by triangulating all the concave faces of a zero
sheet thickness model of the part and extruding the
resulting polygons by the sheet metal thickness.

4.2. Results and Discussion

Two types of cases are presented. The first case is to add a
new part to an existing three-part stack. The space of
allowable positions € is three-dimensional. The desired
position for the part py places the part c.g. at centroid of
the stack base. The second case discussed restricts Q to a
plane parallel to the p, = O plane and p, is chosen as
before. This case arises when the stacking planner has
determined z-coordinate by choosing a set of edges and/or

291

faces from the i-I parts to support the i part [1]). That
leaves only {p,,p,,0} to be determined. For all the four
parts, the stack orientation is chosen randomly and the
initial new part orientation is chosen as 0°.

Parts #1 and #2 are considered for the first case. The
corresponding stacks are shown in Figure 7 and Figure 8.
In Figure 7(c), the new part interferes with some flanges of
parts 1 and 2. The algorithm evaluates different
orientations for the new part and chooses the orientation
shown in Figure 7(d) (the new part is almost overlapping
with part 1). In this configuration, the new part still
interferes with parts 1 and 2, but the interference pairs are
different. The algorithm moves the part up to avoid
interference first with parts 1 and 2, and then finally with
part 3. The final part configuration is such that the parts
are nested. The algorithm works similarly for Part #2 in
Figure 8 to produce a nested stack. This is one of the main
advantages of using c-space representation. It helps us
obtain nested stacks without explicitly looking for part
features conducive to nesting.

799

(b) Three Part
Stack

(c) Initial (d) Intermediate

(a) Part #1 Configuration Configuration #1

(e) Intermediate
Configuration #2

(f) Intermediate
Configuration #3

Figure 7 A Four-Part Stack for Part #1

(g) Final
Configuration

Part |

Pin2
(b) Three Part
Stack

(c) Initial (d) Intermediate

(2) Part #2 Configuration Configuration #1

(e) Intermediate
Configuration #2

(f) Intermediate
Configuration #3

Figure 8 A Four-Part Stack for Part #2

(g) Final
Configuration

Parts #3 and #4 are tested for the application restricting £
to a plane parallel to the p, = O plane. The corresponding
stacks are shown in Figure 9 and Figure 10. These parts
have a large number of convex components and
positioning them requires the accommodation of
protruding flanges in holes. Once again, searching in c-
space automatically enables us to accommodate flanges in
holes without explicitly looking for such features.

However, the final configuration in Figure 10 might not be
amenable to automated stacking as the flange is very close
to the edge of the hole. Robot positioning error can cause
parts to get tangled. One way of avoiding tangle is to
prescribe an upper bound on robot positioning error and
the final part configuration chosen should be at least that
far from the c-space obstacle. Figure 10(b) shows the
convex decomposition of the part into 79 convex
components. One problem with the present triangulation
scheme is evident from part configurations in Figures
Figure 10(e) and Figure 10(f). In the configuration in
Figure 10(e), there is a small triangular component of the
moving part that is interfering with a component of the
stationary part. An additional step is required to compute
the small translation to the interference-free configuration
in Figure 10(f). Such steps can be avoided by combining
narrow and small triangles with neighboring triangles to

Create larger convex components,

(d) Final

(b) Initial
Configuration Configuration

(c) Intermediate
Configuration

Figure 9 Planar Configuration for Part #3

(b) Convex
Components

(c) Initial
Configuration

(d) Intermediate
Configuration #1

(e) Intermediate
Configuration #2

(f) Final
Configuration

Figure 10 Planar Configuration for Part #4

The performance of the algorithms for the four parts is
shown in Tables 1-3. The times shown Tabie 1 are total
computation time, time spent in interference checking,
constructing c-space obstacles from scratch, and
constructing them by extrapolation. Please note that the
total computation time o includes time taken for
functions other than the above mentioned ones. Table 2
shows the computation time per function call. Table 3
shows the number of potential interference pairs [(D,)i
=12 ..,nj=12 --» m} and the actual number of
interference pairs for which c-space obstacle is computed.
The interference detection routine takes only 0.1% of the
time it takes to compute a c-space obstacle (see Table 2). 1t
ends up analyzing up to 66% of all interference pairs for
the simple parts #1 and #2 (see Table 3). This is not a

problem as c-space obstacle computation for such parts is
not time-consuming. For the complex parts #3 and #4, it
analyzes less than 0.5% of the potential interference pairs
(see Table 3) for c-space obstacle computation. This
prevents the computation time from increasing rapidly as
the number of convex components increases for a part. The
extrapolation method for constructing C-space obstacles
(presented in Section 3.1) takes only 10% of the time it
takes to compute the obstacle from scratch (see Table 2).
This enables us to choose a fine discretization step, 1°, for
6. As expected, planar configuration problem for the more
complex parts takes the same as the three-dimensional
problem for the simpler parts.

tintcrfemce t i ! polati tiotal
ll I ® © ®)
Part #1
3 | Mos | 30386 | 512 | 8101 | 188420
D | Part 2| 58937 | 22567 | 14414 | 29893
Part #3
2 | M=ag | 94305 | 1254 | 1015 | 124569
D | Part#4
L M=79 | 151198 | 2803 | 8654 | 271641

Table 1 Computation Time for Interference Detection
and C-space Obstacle

Q] Pat | G | Somten | b
3 | ot® 1 00014 | 00105 | 00013
P an#2 | 00015 | 00155 | 00016
2 faa:ﬁz 0.0001 | 0.0104 | 0.0013
P i | 63es | oot o.oous«]

Table 2 Computation Time Per Function Call

292

E Part Total No. of No. of Interference
ar Interference Pairs Pairs Evaluated

Part #1

3 M=3 9720 6960

D | Part#2
M=6 38880 9951
Part #3

2 | M=45 761760 1587

D | Part#4
M=79 2246760 6751
Table 3 No. of Interference Pairs Evaluated to

Compute Q*

4.3. Limitations

All the configurations generated by the c-space approach
satisfy the necessary condition for part stability, i.e., part
c.g. should fall inside the stack base, However, no
information is available currently about satisfaction of a

sufficient condition for stability: presence of part-part
contacts that constrain the part and prevent it from tipping
over. It will be useful to identify c-space regions that
provide at least three contacts for the parts. This
information combined with the necessary condition for
stability will make searching for stable part configurations
easier. Currently, the algorithm does not exploit part
symmetry to reduce the number of discrete orientations
considered. This might result in significant savings for
certain part shapes.

5. Conclusions and Future Work

This paper shows that the complexity of using c-space
based techniques for optimal polyhedral placement is
O(V*™™). The paper also presents an extrapolation method
to speed up c-space obstacle computation. The interval of
orientations within which the topology of the c-space
obstacle stays constant is obtained by solving a set of
quadratic inequalities. A heuristic based method working
with discrete orientations is presented. The method uses a
small discretization step by taking advantage of the
constant topology orientation interval. The final
configuration is determined by looking at a small
percentage of the potential interference pairs. ‘

For applications like stacking, it will be advantageous to
build in information about specific contacts (edge-face,
face-face etc.) into the search for interference-free
configuration. This will eliminate an additional stage of
verifying that each part is constrained to be stable by
contacts with the other parts. We also plan to work on
using c-space information to determine if a stack is robust
to robot positioning errors and tangling of parts.

Acknowledgements

We thank US Amada Inc. for supporting this work. We
would like to thank Mr. Duane Williams for his
suggestions regarding the abstract and the paper. Thanks
are also due to Dr. Cheng-Hua Wang for help with
software development.

References

[1] V.R. Ayyadevara and R.H. Sturges, “Automated
Planning for Stacking of Bent Sheet Metal Parts,”
Proc. 1997 ASME DETC, Sacramento, CA, Sept.
1997.

[2] B.R. Donald, “A Search Algorithm for Motion
Planning with Six Degrees of Freedom,” Artificial
Intelligence, Vol. 31, No. 3, pp. 295-353, 1987.

[31 L.E. Kavraki, P.Svestka, J.C. Latombe, and M.
Overmars, “Probabilistic Roadmaps for Path Planning
in High-Dimensional Configuration Spaces,” IEEE
Transactions on Robotics and Automation, Vol. 12,
No. 4, pp. 566-580, 1996.

[4] T. Lozano-Perez, “Spatial Planning: A Configuration
Space Approach,” IEEE Transactions on Computers,
Vol. 32, No. 2, pp. 108-120, Feb. 1983.

[5] J.T. Schwartz and M.A. Sharir, “On the Piano
Movers’ Problem I: The Case of a Two-Dimensional
Rigid Polygonal Body Moving amidst Polygonal
Barriers,” Communications on Pure and Applied
Mathematics, Vol. 36, pp. 345-398, 1983.

[6] J.T. Schwartz, “On the Piano Movers’ Problem V:
The Case of a Rod Moving in Three-Dimensional
Space amidst Polyhedral Obstacles,”
Communications on Pure and Applied Mathematics,
Vol. 37, pp. 815-48, 1984,

[71 T.F. Stahovich, SketchIT: A Sketch Interpretation
Tool for Conceptual Mechanical Design, MIT
Artificial Intelligence Laboratory Technical Report
1573, Mar. 1996.

[8] L. Joskowicz and E. Sacks, Computer-Aided
Mechanical Assembly Design Using Configuration
Spaces, Purdue University CS Tech Report 97-001,
1997.

[91 E. Sacks and C. Bajaj, “Sliced Configuration Spaces
for Curved Planar Bodies,” International Journal of
Robotics Research, Vol. 17, No. 6, pp. 639-651,
1998.

[10] F. Avnaim and J.D. Boissonnat, Polygon Placement
under Translation and Rotation, INRIA Report #899,
Institut National de Recherche en Informatique et en
Automatique, France, August 1988.

[11] R.C. Brost, Analysis and Planning of Planar
Manipulation Tasks, Ph.D. Thesis, Carnegie Mellon
University, January 1991.

[121 Z. Li and V. Milenkovic, “Compaction and
Separation Algorithms for Non-Convex Polygons and
Their Applications,” European Journal of
Operational Research, Vol. 84, pp. 539-561, 1995.

{131 J. O’Rourke, Computational Geometry in C,
Cambridge University Press, 1994.

[14] S.G. Nash and A. Sofer, Linear and Nonlinear
Programming, McGraw Hill, 1996.

[15] S.C. Gottschalk, M.C. Lin, and D. Manocha, OBB-
Tree: A Hierarchical Structure for Rapid Interference
Detection, Univ. of North Carolina CS Tech. Report
TR96-013, 1996.

[16] S.K. Gupta, D.A. Bourne, K.H. Kim, and S.S.
Krishnan, “Automated Process Planning for Sheet
Metal Bending Operations,” Journal of
Manufacturing Systems, Vol. 17, No. 5, pp. 338-360,
1998.

[17] C.B. Barber, D.P. Dobkin, and H.P. Huhdanpaa, “The
Quickhull Algorithm for Convex Hulls,” ACM
Transactions on Mathematical Software, Vol. 22, No.
4, pp. 469-483, Dec. 1996.

