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Abstract

Existing approaches to super-resolution are not applicable to videos of faces because

faces are non-planar, non-rigid, non-lambertian, and are subject to self occlusion. We present

super-resolution optical 
ow as a solution to these problems. Super-resolution optical 
ow

takes as input a conventional video stream, and simultaneously computes both optical 
ow

and a super-resolution version of the entire video. In this paper we describe an initial

implementation of super-resolution optical 
ow, present detailed experimental results, and

describe the relationship between super-resolution optical 
ow and pyramid-based image

representations such as the Laplacian pyramid.
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1 Introduction

Suppose you can detect and track a human face in a video. Something you might like to

do next is produce a single image to summarize the sequence. This image might be used to

index the sequence, or instead might be passed as the input to a recognition system. What

are the properties that one would want of such an image?

Probably the image should be \suited for recognition." Such an image might be the

one in which the face is the most frontal, or has the most \neutral" or \relaxed" expression.

Another important property is the image resolution. Generally a higher resolution image

would be preferable to a lower resolution one. How do we obtain an image of the face with

the highest possible resolution?

Recently there has been considerable interest in the problem of extracting high res-

olution images from a lower resolution video. This process is usually referred to as super-

resolution because the output images have higher resolution than any of the images used

to create them. Can we extend any of these super-resolution techniques to maximize the

resolution of our face images?

1.1 Background: Super-Resolution

As discussed in [Chiang and Boult, 1996], there are four major steps to super-resolution. See

also Figure 1:

Registration: For each pixel in the high resolution image that we wish to construct, we

need to know the corresponding point (sub-pixel location) in all of the images in the

video sequence. Almost always it is assumed that this registration is known a priori.

Estimating this motion �eld is relatively easy if the world is rigid and planar. Then

1



��
��
��
���� �

�
�
�

Super-Resolution

Original
Images

Warped
Images

(4) Deblur

(3) Fuse

(2) Warp

(2) Warp

(1) Register (1) Register

Images

Figure 1: The four steps of super-resolution: (1) the input images are registered to �nd corre-

sponding pixels, (2) the original images are warped into the coordinate frame of one image, (3) the

warped images are fused to form a super-resolution image, and (4) the super-resolution image is

deblurred (optional).

we can use standard techniques from parametric motion estimation such as [Bergen et

al., 1992] or [Szeliski and Shum, 1997].

Warping: As soon as we know the mapping from pixels in the high resolution image to

points in the lower resolution images, we can warp [Wolberg, 1992] all of the lower

resolution images into the coordinate frame of the high resolution image. Performing

this warp involves interpolating the lower resolution images, a task that is normally

performed using one of the standard algorithms, such as nearest-neighbor, bilinear,

or cubic B-spline [Schultz and Stevenson, 1996]. Recently, Chiang and Boult [1996]

demonstrated the considerable e�ect that the choice of interpolation scheme has on

the performance of super-resolution.

Fusion: The warped low resolution images can be regarded as multiple estimates of an

underlying high resolution image. Most super-resolution research has focused on how

to \fuse" these estimates. The simplest approach is to average the estimates, taking

either the mean, the median, or a robust mean [Chiang and Boult, 1996]. Numerous

more sophisticated approaches have also been proposed. See [Dellaert et al., 1998],

[Elad and Feuer, 1998], [Hardie et al., 1997], [Patti et al., 1997], [Chiang and Boult,
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1997], [Schultz and Stevenson, 1996], [Bascle et al., 1996], [Irani and Peleg, 1993], and

the references enclosed therein.

Deblurring: Several super-resolution algorithms have included an optional post-processing

step to deblur the super-resolution image. See, for example, [Ur and Gross, 1992]

and [Chiang and Boult, 1996]. Standard deconvolution algorithms, such as the ones

described in [Pratt, 1991], can be used for this task.

Finally note that it is possible to combine the registration and fusion steps, estimating both

the registration and the super-resolution images at the same time. One such approach is

contained in [Hardie et al., 1997].

,

1.2 Di�culties Caused by Faces

There are several reasons why existing super-resolution algorithms are not applicable to

video sequences of faces:

Non-Planarity: Most existing algorithms assume that image registration can be performed

using simple parametric transformations, such as translations, a�ne warps, or projec-

tive warps. These transformations correspond to the implicit assumption that the

world is planar. Faces are not planar and so a more general approach is needed.

Non-Rigidity: Besides being non-planar, faces are also non-rigid; amongst other things

they deform in complicated ways as facial expression changes. Again most existing

approaches to super-resolution cannot cope with non-rigid scenes. Some approaches

can deal with independently moving objects, however each object is assumed to be

rigid [Schultz and Stevenson, 1996].
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Visibility and Occlusion: Another di�culty with faces is that they lead to occlusions. As

the head rotates, various parts of the face will no longer be visible because they are

occluded by the rest of the head. In particular, the nose often occludes large parts of

the the face in pro�le views. Existing approaches do not take into account possible

occlusions of parts of the scene.

Illumination and Re
ectance Variation: Since faces are somewhat specular objects,

highlights on the forehead, the cheeks, and the nose will move as the head rotates. Not

only does this e�ect make registration more di�cult, but it also introduces outliers

into the fusion process. There has been some work on robustifying super-resolution al-

gorithms to varying illumination conditions, however these approaches have used edge

based techniques that are not appropriate for faces [Chiang and Boult, 1997].

One partial solution to these di�culties is the reconstruction of a 3D model of the face.

(Related approaches have been used for other 3D surfaces [Cheeseman et al., 1994] [Shekar-

foroush et al., 1996].) Image registration can then be performed by mapping via the 3D face

model. It may also be possible to reason about visibility, and to compensate for illumination

variation and specular re
ection. The non-rigidity of the face is still problematic however.

1.3 Super-Resolution Optical Flow

One way of alleviating the problem of non-rigidity is to allow the image registration to be

an arbitrary 
ow �eld. Then as is illustrated in Figure 2, the goal of super-resolution is the

simultaneous estimation of both optical 
ow and the super-resolution video. In this paper,

we attempt exactly this for videos of faces. Reasoning about visibility and illumination

variation is not as easy as it would be with an explicit 3D model, however robust estimation

techniques can be used to address these problems.
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Figure 2: The goal of super-resolution optical 
ow is to take a conventional video sequence and

compute both optical 
ow and a higher resolution version of the video simultaneously.

Naturally the idea of allowing the registration to be an arbitrary 
ow �eld is not

entirely new. Elad touched upon the idea in his thesis [Elad, 1996], however he did not

attempt simultaneous recovery of super-resolution and optical 
ow as we do. He simply

used previously computed optical 
ow as an a priori registration. On the other hand,

Hardie et al. [1997] considered the simultaneous estimation of a parametric registration and

super-resolution. However, they did not attempt recovery of optical 
ow.

The remainder of this paper is organized as follows. In the next section, we describe

our super-resolution optical 
ow algorithm. In Section 3 we present experimental results

obtained using this algorithm. Afterwards we conclude with a summary, suggestions for

future work, and a discussion of the relationship between super-resolution optical 
ow and

pyramid image representations such as [Burt and Adelson, 1983].

2 Implementation

Direct approaches to super-resolution, such as [Chiang and Boult, 1996], perform reasonably

well and yet are far easier to implement and run much more e�ciently than other methods.

Our algorithm (which is similar to [Chiang and Boult, 1996] and [Ur and Gross, 1992] but

attempts to recover a full optical 
ow) is illustrated in Figure 3.
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Figure 3: Our super resolution optical 
ow algorithm. First the input sequence is interpolated.

Then for each image in turn, optical 
ow, warping, and averaging are iterated until the super-

resolution image converges. Finally all of the images are deblurred.

A Direct Super-Resolution Optical Flow Algorithm

1. Interpolate every image in the input sequence using bilinear interpolation (to twice the

input resolution.)

2. For each image in the sequence in turn, starting with the third one and continuing

until the third from last, iterate the following 3 steps until the super-resolution image

converges (or for a �xed number of iterations):

(a) Compute the optical 
ow from this image to the 2 previous ones, and to the 2

following ones. We used a hierarchical version of the Lucas-Kanade algorithm

[Lucas and Kanade, 1981]. (Any other optical 
ow algorithm could be used.)

(b) Using the optical 
ow, warp the previous 2 images forward, and the following 2

images backward, into the coordinate frame of this image.

(c) Re-estimate this super-resolution image using a robust mean of this image and

the 4 warped ones.

3. Deblur every super-resolution image using a Wiener deconvolution �lter [Pratt, 1991].
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Figure 4: One of the images used in our experiments. This image is of size 768 � 512 pixels and is

one of 40 taken simultaneously using a multi-baseline stereo camera. We down-sampled all of the

images 4 times to a size of 192 � 128 before using them. Although we used the �rst 20 images,

each super-resolution image in Figure 5 is computed using only 5 consecutive images.

3 Experimental Results

In Figure 5 we display some of the results obtained by applying our algorithm to an image

sequence containing 20 images, each of size 192 � 128 pixels. A higher resolution version

(i.e. before we down-sampled it) of one of the images in the sequence is displayed in Figure 4.

Although the sequence contains 20 images, each super-resolution image is actually computed

using just 5 consecutive images from the sequence. Note that, compared to the experiments

presented in other papers, 5 is a relatively small number of input images to use.

In the left column of Figure 5, we display 50 � 50 pixel cropped regions from the

input sequence. In the center column, we display 100 � 100 images created by bilinearly

interpolating the images in the left column. In the right column, we display the output of

our algorithm, 100 � 100 super-resolution images of the regions shown in the left column.

Several points should be noted about these results:

� As would be expected, the super-resolution images are clearer and contain far more

detail than the other images. For example, the texture of the hair is only visible in the

super-resolution images. Also, it is hard to tell that the person in Figures 5(d) and (e)
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Figure 5: Super-resolution images of 4 of the people in Figure 4. In the left column we display 50

� 50 pixel cropped regions from the input sequence. In the center column, we display 100 � 100

pixel images created by bilinearly interpolating the images in the left column. In the right column,

we display 100 � 100 pixel super-resolution images, each estimated using only 5 images.
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is wearing glasses, but in Figures 5(f) the shadow under the rim is clearly visible on the

left side of the face. A �nal example are the shadows under the eyelids in Figure 5(l),

which are not clear at all in Figures 5(j) and (k).

� A number of artifacts can be seen around the edges of the faces in the super-resolution

images. These are caused by the fact that the optical 
ow algorithm which we used

performs quite poorly at motion discontinuities (such as those caused by depth discon-

tinuities in the scene.)

Some more results obtained using our algorithm are shown in Figure 6. The �rst row

of the �gure shows 3 images from a video of someone entering a room, looking around and

leaving. The results of applying a face detector [Rowley et al., 1998] to these images are

overlaid on the images. The second row shows the faces cropped from the video, and the

third row shows the results of resolution enhancement. Note how the facial features, such

as the eye pupils and the lobe of the ear, are much clearer. Also note how the eye pupils

are recovered, even though they are moving independently of the rest of the face. With

other super-resolution algorithms, the pupils would be blurred since independently moving

components are not modeled.

4 Conclusion

4.1 Summary

We have proposed super-resolution optical 
ow as way of enhancing the resolution of video

sequences of objects that are neither planar nor rigid. We have described an initial implemen-

tation and presented some experimental results. Theoretically, super-resolution optical 
ow

can be used to enhance the resolution of any video sequence with no other input, however,

in practice, good performance relies upon robust optical 
ow.
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Figure 6: More results of applying our super resolution optical 
ow algorithm. A human face is

detected in a surveillance video using a face detector [Rowley et al., 1998]. The cropped images of

the face are enhanced using our algorithm. Note how the facial features are much clearer in the

enhanced sequence. In particular, the pupils of the eyes, which move independent of the rest of the

head, are well recovered.

4.2 Future Work and Applications

In [Hardie et al., 1997] an algorithm is proposed to perform registration and fusion at the

same time. Within a maximum a posteriori (MAP) framework, super-resolution is posed as

a global optimization over both the super-resolution image and the registration parameters.

The optimization is performed by iterating over the two sets of parameters; ie. �rst register,

then fuse, and �nally iterate. The MAP framework in [Hardie et al., 1997] can easily be
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extended to handle optical 
ow.

Once it is complete, we hope to use super-resolution optical 
ow to measure the

performance of optical 
ow algorithms. We plan to take a large number of video sequences,

down-sample them, and then apply super-resolution optical 
ow. The degree to which the

original videos are reconstructed can be used as a measure of performance.

4.3 Relationship with Image Pyramids

Finally, we note the relationship between super-resolution optical 
ow and pyramid-based

image representations such as the Laplacian pyramid [Burt and Adelson, 1983]. Many im-

plementations of optical 
ow (including the one we used) are based on such pyramids. In

this setting, super-resolution optical 
ow can be thought of as adding a layer to the pyramid

above the resolution of the original image; ie. at the bottom of the pyramid.
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