
Iterative Flattening: A Scalable Method for Solving
Multi-Capacity Scheduling Problems�

Amedeo Cesta
IP-CNR

National Research Council
Viale Marx 15

I-00137 Rome, Italy
cesta@ip.rm.cnr.it

Angelo Oddi
IP-CNR

National Research Council
Viale Marx 15

I-00137 Rome, Italy
oddi@ip.rm.cnr.it

Stephen F. Smith
The Robotics Institute

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213, USA
sfs@cs.cmu.edu

Abstract

One challenge for research in constraint-based scheduling
has been to produce scalable solution procedures under fairly
general representational assumptions. Quite often, the com-
putational burden of techniques for reasoning about more
complex types of temporal and resource capacity constraints
places fairly restrictive limits on the size of problems that
can be effectively addressed. In this paper, we focus on
developing a scalable heuristic procedure to an extended,
multi-capacity resource version of the job shop scheduling
problem (MCJSSP). Our starting point is a previously de-
veloped procedure for generating feasible solutions to more
complex, multi-capacity scheduling problems with maximum
time lags. Adapting this procedure to exploit the simpler tem-
poral structure of MCJSSP, we are able to produce a quite
efficient solution generator. However, the procedure only in-
directly attends to MCJSSP’s objective criterion and produces
sub-optimal solutions. To provide a scalable, optimizing pro-
cedure, we propose a simple, local-search procedure called
iterative flattening, which utilizes the core solution generator
to perform an extended iterative improvement search. Despite
its simplicity, experimental analysis shows the iterative im-
provement search to be quite effective. On a set of reference
problems ranging in size from 100 to 900 activities, the itera-
tive flattening procedure efficiently and consistently produces
solutions within 10% of computed upper bounds. Overall, the
concept of iterative flattening is quite general and provides an
interesting new basis for designing more sophisticated local
search procedures.

Introduction
Constraint-based search techniques have gained increasing
attention in recent years as a basis for scheduling procedures
that are capable of accommodating a wide range of con-
straints. In its most basic form, a constraint based scheduling
model operates over some sort of constraint-network encod-
ing of the problem at hand, and problem solving proceeds
through the interleaving of three basic actions:

� Cesta and Oddi’s work has been supported by ASI (Ital-
ian Space Agency) under contract ASI-ARS-99-96 and by Ital-
ian National Research Council. Smith’s work has been spon-
sored in part by the US Department of Defense Advanced Re-
search Projects Agency under contract F30602-97-20227, and by
the CMU Robotics Institute.

Copyright c
 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

constraint propagation: a deduction step where conse-
quences of the current set of scheduling decisions are in-
ferred and inconsistent search states are pruned;

search decision commitment:a choice step where search
control heuristics are applied to assign some new value to
some decision variable, and move the scheduling search
forward;

search decision retraction: a choice step where one or
more previously made decisions are retracted, allowing
problem solving to back out of and continue from an in-
consistent or undesirable state.

Recent research has promoted techniques for each of these
basic actions as a means for addressing scheduling problems
with increasingly more complex temporal and resource ca-
pacity constraints. Work in constraint deduction (Baptiste &
Le Pape 1995; Baptiste, Le Pape, & Nuijten 1997; Nuijten
1994) has achieved strong performance through specifica-
tion of propagation rules that exploit the special structure
and character of particular classes of resource constraints.
Work in search control heuristics (Smith & Cheng 1993;
Cesta, Oddi, & Smith 1998; 1999; Beck & Fox 1999), al-
ternatively, has demonstrated the effectiveness of different
forms of constraint analysis in directing the scheduling pro-
cess toward good solutions. Progress with various local and
iterative sampling search frameworks (Zwebenet al. 1994;
Harvey & Ginsberg 1995; Bresina 1996; Crawford 1996;
Oddi & Smith 1997; Cesta, Oddi, & Smith 1999), while
not directly emphasizing treatment of more complex con-
straints, has provided several more effective alternatives to
simple, backtracking-search retraction schemes.

One challenge in extending constraint-based scheduling
models to accommodate more complex constraints is scal-
ability. Quite often, techniques for reasoning about more
complex types of temporal and resource capacity constraints
come at a computational cost that places fairly restrictive
limits on the size of problems that can be effectively ad-
dressed. Edge finding techniques, for example, provide a
very powerful basis for resource constraint propagation, but
are quite computationally heavy and are often impractical
in large-scale settings (Baptiste & Le Pape 1995). Like-
wise, the texture-based heuristics defined in (Beck & Fox
1999) for scheduling with alternative resources are effective
on small problems. But they rely on an explicit representa-

tion of the entire space of choices, which quickly becomes
intractable as larger problems are considered.

In this paper, we focus on developing a scalable heuristic
procedure to an extended, multi-capacity resource version of
the job shop scheduling problem (MCJSSP) first proposed
in (Nuijten 1994). Following from recent successes with
non-systematic, local search techniques, we de-emphasize
the use of sophisticated constraint propagation and analy-
sis techniques in the generation of any given schedule. In-
stead, our design approach is to define a simple (and ef-
ficient) greedy procedure for generating feasible solutions,
and then specify a decision retraction scheme that will allow
its repeated use within a larger iterative improvement search
framework.

Our starting point is the work of (Cesta, Oddi, & Smith
1998), which developed a procedure for generating feasible
solutions to a more complex class of multi-capacity schedul-
ing problem with maximum time lags. By customizing
this procedure to exploit the simpler temporal structure of
MCJSSP, we are able to produce a quite efficient (though less
general) solution generator. To addressMCJSSP’s objective
criteria of minimizing overall schedule makespan and define
a scalable, optimizing procedure, we introduce a novel local-
search framework callediterative flattening. The core solu-
tion generation procedure, which is designed to post prece-
dence constraints between activities to reduce (or flatten) re-
source contention peaks, is first applied to produce an initial
feasible solution. New contention peaks are then iteratively
created and flattened by (1) retracting some subset of previ-
ously posted constraints along the current solution’s critical
path and (2) restarting the solution generator from this par-
tially developed solution. Any time a lower makespan solu-
tion is produced during this iterative process, it becomes the
new current solution.

The remainder of the paper is organized as follows. First,
we define MCJSSP and a set of reference problems for ex-
perimental evaluation. We then describe and evaluate our
core greedy search procedure for generating feasible solu-
tions to MCJSSP instances. Next, we introduce our iter-
ative flattening framework for extended local search using
the core solution generator previously defined. Experimen-
tal results are given that demonstrate the efficacy of the ap-
proach across a range of problems of increasing scale. Fi-
nally, we briefly discuss opportunities for extending and en-
hancing the basic iterative flattening search concept.

MCJSSPand its Benchmarks
The Scheduling Problem. The Multi-Capacity Job-Shop
Scheduling Problem (MCJSSP) involves synchronizing the
use of a set of resourcesR = fr1 : : : rmg to perform a
set of jobsJ = fj1 : : : jng over time. The processing of
a job ji requires the execution of a sequence ofm activi-
ties fai1 : : :aimg, eachaij has a constant processing time
pij and requires the use of a single unit of resourceraij for
its entire duration. Each resourcerj is required only once
in a job and can process at mostcj activities at the same
time (cj � 1). A feasible solutionto aMCJSSPis any tem-
porally consistent assignment to the activities’ start times
which does not violate resource capacity constraints. An

optimal solutionis a feasible solution with minimal over-
all duration or makespan. Generally speaking,MCJSSPhas
the same structure asJSSPbut involves multi-capacitated re-
sources instead of unit-capacity resources.

Benchmarks. In (Nuijten & Aarts 1996) a method for cre-
ating challenging problems is proposed that starts from the
JSSPbenchmarks of (Lawrence 1984). The idea is to take
each originalJSSPproblem, double (or triple) the capacity
of each resource, and thenduplicate (or triplicate) the activ-
ities of each job. Since all activities continue to require 1
unit of resource capacity, the result is a similarly structured
MCJSSP.

We have used this procedure to obtain 80MCJSSPs from
Lawrence’s 40 original problems: 40 problems with re-
sources of capacity 2 and 40 with resources of capacity 3.
The generated problems range in size from 100 to 900 ac-
tivities. To organize the presentation of results we subdivide
the 80 problems in 4 sets of 20 each:

Set A: LA1-10 x2 x3 (Lawrence’s problems numbered 1
to 10, duplicated and triplicated). Using the notation
#jobs� #resources (resource capacity), this set consists
of 5 problems each of sizes20x5(2), 30x5(3), 30x5(2),
45x5(3).

Set B: LA11-20 x2 x3. 5 problems each of sizes40x5(2),
60x5(3), 20x10(2), 30x10(3).

SetC: LA21-30 x2 x3. 5 problems each of sizes30x10(2),
45x10(3), 40x10(2), 60x10(3).

Set D: LA31-40 x2 x3. 5 problems each of sizes60x10(2),
90x10(3), 30x15(2), 45x15(3).

Why have we chosen this benchmarks? From one side be-
cause in relatively few instances they cover a wide range
of problem sizes; from the other because they also provide
a direct basis for comparative evaluation. In fact, as noted
in (Nuijten & Aarts 1996), one consequence of the problem
generation method is that the optimal makespan for the orig-
inal JSSP is also a tight upper bound for the corresponding
MCJSSP. Hence, distance from these upper-bound solutions
can provide one useful measure of solution quality.

The problems in set A and the smallest, 20x10 problems
in set B have also been solved by (Nuijten & Aarts 1996),
providing a further basis for calibrating and evaluating per-
formance on the smaller problems. Nuijten’s approach relies
on a quite sophisticated set of resource propagation rules in-
cluding edge-finding, and is well known for its strong per-
formance on this problem subset. The goal of our current in-
vestigation is not to perform a competitive comparison with
this work per se, but to instead develop aMCJSSPproce-
dure that avoids the computational cost of sophisticated con-
straint analysis techniques and effectively scales to larger-
scale problems such as those in Sets C and D.1

1For example, Nuijten’s approach incorporates a family of
propagation rules of different computational complexity. The most
effective rule of his set is cubic in the number of activities on a re-
source, which becomes increasingly problematic as the number of
activities increases. The decision step of the algorithm we present

A Greedy Algorithm for MCJSSP

As indicated earlier, our approach to designing a scalable
heuristic procedure for solvingMCJSSPs follows an iterative
improvement schema. Our procedure is composed of two
basic steps: (a) a greedy search algorithm is first applied to
produce an initial feasible solution; (b) a local-search algo-
rithm is then used to iteratively improve the quality of the
current solution until a termination condition is met. In this
section we first consider the core procedure for generating
feasible solutions. In the next, we turn attention to the ex-
tended local search process.

Our greedy search algorithm is inspired by prior work on
the Earliest Start Time Algorithm (ESTA), proposed origi-
nally in (Cesta, Oddi, & Smith 1998) and further refined in
(Cesta, Oddi, & Smith 1999).ESTAwas designed to address
more general, multi-capacity scheduling problems with gen-
eralized precedence relations between activities (i.e., corre-
sponding to metric separation constraints with minimum and
maximum time lags). We briefly summarize the basic ideas
that have been taken from this work, and then describe the
modifications made to better address theMCJSSPdomain.

Previous Profile-Based Work. ESTAis a variant of a class
of profile-based scheduling procedures, characterized by a
two-phase, solution generation process:

Construct an infinite capacity solution:
A constraint based representation of the current problem
is formulated as an STP (Dechter, Meiri, & Pearl 1991)
temporal constraint network.2 In this initial represen-
tation temporal constraints are modeled and satisfied
(via constraint propagation) but resource constraints are
ignored, yielding a time feasible solution that assumes
infinite resource capacity.

Level resource demand by posting precedence:
Resource constraints are super-imposed by project-
ing “resource demand profiles” over time. Detected
resource conflicts are then resolved by iteratively post-
ing simple precedence constraints between pairs of
competing activities.

To perform the process of constraint postingESTAfollows a
four step cycle:

(a) An ESS (for Earliest Start Solution) consistent with cur-
rently imposed temporal constraints is computed. This
can be done quickly since the earliest start values of all
nodes in any STP network are known to constitute a tem-
porally feasible solution.

(b) Given the ESS, acontention peakis recognized on re-
sourcerk at timet if conditionreqk(ESS; t) > ck holds
(with reqk being the sum of requirements of resourcerk

below is also cubic in the worst case. But within the local search
framework we propose, this algorithm is executed from scratch
only once, as opposed to repeatedly in Nuijten’s case.

2In a STP (Simple Temporal Problem) network: temporal vari-
ables (nodes or time-points) represent beginning and end of ac-
tivities and beginning and end of temporal horizon; distance con-
straints (edges) represent duration of activities and separation con-
straints including simple precedences.

at timet). Intuitively, a contention peak on resourcerk
identifies a set of activities that simultaneously requirerk
with a combined capacity requirement> ck.

(c) For each peak, Minimal Critical Sets (MCSs) are com-
puted. AMinimal Critical Set (MCS) specifiesa set of
activities that simultaneously require a resourcerk with a
combined capacity requirement> ck, such that the com-
bined requirement of any subset is� ck. The important
advantage of isolatingMCSs is that a single precedence
relation between any pair of activities in theMCS elimi-
nates the conflict. Since complete enumeration ofMCSs
is a combinatorial problem, asampling strategyof fixed
computational complexity (e.g., linear, quadratic in the
number of activities) is proposed in (Cesta, Oddi, & Smith
1999) to collect some subset ofMCSs in each peak.

(d) A singleMCS is selected and resolved by posting a prece-
dence constraint between two of the constituent activities.
MCS selection (variable ordering) is performed according
to theK estimator proposed in (Laborie & Ghallab 1995).
The specific constraint to be posted (value ordering) is de-
termined so as to preserve maximal temporal slack (in a
style similar to that proposed in (Smith & Cheng 1993)).

Previous research has shownESTA to be effective in over-
coming efficiency problems that have plagued other profile-
based scheduling procedures, while tending to better mini-
mize the number of precedence constraints posted. As such,
it seems a good starting point for building a heuristic ap-
proach toMCJSSP.

Adapting ESTA to MCJSSP. Though the basicESTA pro-
cedure just described is directly applicable toMCJSSP, the
simpler temporal structure of this problem domain suggests
two adaptations in the interest of obtaining a computation-
ally lighter procedure for initial solution generation.

A first change concerns the choice of how to sample
MCSs. Previous point (c) performsMCS sampling on each
peak detected in the current solution. Simplifying, we not
only pay attention to non-redundancy in peak computation
but also restrictMCS sampling to only the “maximal peaks”,
i.e., those peaks that contain the maximum number of ac-
tivities. This choice is motivated by the observation that in
the absence of maximal time lags the criticality of a given
resource conflict is more clearly a function of its size.

A second change involves the propagation algorithms
used to maintain consistency of the problem’s temporal in-
formation. The solution of scheduling problems with gener-
alized precedence relations require computation of the tran-
sitive closure of the STP representation of the current solu-
tion (Dechter, Meiri, & Pearl 1991). Computation of this
information is fundamental, for example, for early detec-
tion and pruning of temporally infeasible search states. It
is well known that such information is computable via all
pairs shortest path algorithms, which are quadratic in space
and cubic in time with regard to the number of temporal
variables in the network. Unfortunately, as problem size
increases, this computation tends to increasingly dominate
overall solution time.

ESTAM (Problem)
1. TCSP CreateCSP(Problem)
2. loop
3. Propagate(TCSP)
4. ConflictSet ComputeResourceConflicts(TCSP)
5. if Empty(ConflictSet)
6. then return (ExtractSolution(TCSP))
7. else
8. if Unsolvable(ConflictSet)
9. then return (EmptySolution)
10. else
11. Conflict SelectConflict(ConflictSet)
12. PrecedenceConstraint

 SelectPrecedence(Conflict)
13. PostCostraint(TCSP, PrecedenceConstraint)
14.end-loop
15.end

Figure 1: BasicESTAM Search Procedure

A second observation concerningMCJSSPhelps in this case:
in any MCJSSPall separation constraints between activities
are simple precedence, and the only metric temporal con-
straints present are activity durations. This being the case, it
is possible to detect infeasible orderings between pairs of ac-
tivities using simpler, single source shortest path algorithms.
In fact, temporal consistency can be maintained by a sin-
gle source shortest path algorithm whose complexity instead
depends on the number of edges (or temporal constraints)
in the network. Because the STP network representing a
scheduling problem is typically sparse (few edges, number
of edges of the same order as number of nodes) this leads
to a real advantage in terms of lightening the algorithm on
problems of significant size.

One side-effect of this shift to a more efficient (but less
informative) propagation algorithm is a simplification of the
theK estimator computation utilized by the basic search al-
gorithm, In particular,K is instead computed in terms of
simple calculations of temporal slack (i.e., given a pair of ac-
tivities ai aj, slack(ai; aj) is defined as the difference bet-
weenaj ’s latest start time the andai’s earliest finish time).

We refer to the procedure resulting from incorporation
of the above changes asESTAM , where the suffixM indi-
cates the modified version. A schematic view ofESTAM
is given in Figure 1. In this formulation we have hid-
den details of the previous points (a)-(c) in Step 4, where
ComputeResourceConflicts performs both peak de-
tection on the ESS, andMCS sampling on the maximal peak.

Experimental Evaluation
In Table 1 we show the performance ofESTAM on the four
benchmark problem sets. The algorithm is implemented in
Allegro Common Lisp and the reported results are obtained
on a SUN UltraSparc 30 (266MHz). Foreach algorithm and
for each set we report�UB% (upper row), the average rel-
ative deviation from the known upper bound, andCPUsec
(lower row), the average CPU time in seconds. The column
“All” gives the average values over all 80 problems. We

also include the performance results obtained in (Nuijten &
Aarts 1996) (the rows labelled CCA), which unfortunately
are available only for set A and a few instances of set B.3

But we note again that the upper-bound reference also pro-
vides a very good comparison value.

Observing the Table, two comments are appropriate: (a) it
is not surprising that, compared with an algorithm like CCA
aimed at finding a solution with an optimal makespan, a sin-
gle run ofESTAM is generally not able to find an optimal so-
lution. ESTAM does not contain any attempt at optimizing,
but is designed to simply search for a feasible solution. The
fact that it attempts to minimize the number of precedence
constraints posted will at best contribute only indirectly to
minimizing makespan; (b) Generally,ESTAM finds a so-
lution quite efficiently, with resulting makespan that varies
from 15 to 25% of the upper bound. In fact, the 758 sec-
onds required on average for set D are due mostly to the 5
largest, 900 activity, problems which on average took over
2450 seconds to solve. These problems are characterized by
huge peaks that require large numbers of precedence to be
leveled. This is the only subset in which the time spent is
really relevant.

Table 1: ESTAM vs. CCA

Algorithm Set A Set B Set C Set D All
ESTAM 17.91 16.04 25.27 24.83 21

45 125 190 758 279
CCA 1.57 * – – –

369 * – – –

Improving ESTAM by Local Search
Given an efficient procedure for generating feasible solu-
tions toMCJSSP, the important remaining design issue con-
cerns how to exploit it to perform an extended optimizing
search. In both (Nuijten & Aarts 1996; Cesta, Oddi, & Smith
1999), an iterative sampling framework is used to provide a
basis for optimization. However, in the interest of scalabil-
ity we choose instead to emphasize a local search approach.
The intuition is simply that computation of neighborhood
solutions is likely to be more cost effective than solution re-
generation. But this requires an effective approach to gener-
ating neighborhood solutions.

To describe our approach, we first introduce a few def-
initions. Assume that a given solutionSol to a MCJSSP
produced byESTAM is represented as a directed graph
GS(A;E). A is the set of activities specified inMCJSSP,
plus a fictitiousasource activity temporally constrained to
occur before all others and a fictitiousasink activity tem-
porally constrained to occur after all others.E is the set
of precedence constraints imposed between activities inA.
E can be partitioned in two subsets,E = Eprob [Epost,

3Only the smallest 5 20x10 problems were solved (not enough
for comparison on the whole set). The performance amounts to an
average� of -0.84% and an average CPU of 591 seconds (i.e., very
good solutions but with substantially increasing CPU times).

whereEprob is the set of precedence constraints originating
in the problem definition, andEpost is the set of precedence
constraints posted byESTAM to resolve various resource
conflicts. A path in GS(A;E) is a sequence of activities
a1 : : : ak, such that,(ai; ai+1) 2 E with i = 1 : : : (k � 1).
The length of a path is the sum of the activities’ process-
ing times and acritical path is a path fromasource to asink
which determines the solution’s makespan.

As is well recognized in the scheduling literature, infor-
mation aboutcritical pathscan provide a strong heuristic ba-
sis for makespan minimization. In the case of solutions gen-
erated byESTAM , any improvement in makespan will nec-
essarily require retraction of some subset of precedence con-
straints situated on thecritical path, since these constraints
collectively determine the solution’s current makespan. Fol-
lowing this observation, we propose a simple, two-step
method for generatingmovesin the neighborhood of a given
solution:

Shrinking Step: We first randomly retract a subset of
precedence constraintspci 2 Epost which fall on the so-
lution’scritical path. In this way, the Earliest Start Solu-
tion is compressed and new peaks appear in the resource
profiles.

Flattening Step: We then re-apply theESTAM algorithm to
level (or flatten) the newly introduced resource conflicts
by posting new precedence constraints.

Because of the character of this local search cycle, we call
the algorithmiterative flattening(i-FLAT).

From a performance standpoint, note thatESTAM is not
applied from scratch (as is done on the initial problem for-
mulation), but in an incremental way to a partially generated
solution. In fact, the removal of a subset of precedence con-
straints generally creates both fewer and smaller peaks than
the set of peaks contained in an initial infinite capacity so-
lution. Additional efficiency gains are obtained through use
of temporal reasoning techniques that support incremental
retraction of precedence constraintspci 2 Epost (Cesta &
Oddi 1996).

Figure 2 shows theiterative flatteningalgorithm in more
detail. It takes as input three elements: (1) a starting solution
Sol; (2) an integer number Prem 2 1::100 designating the
percentage of precedence constraintspci 2 Epost on the
critical path to be removed at each execution of the basic
move; and (3) a positive integerMaxFail which specifies
the maximum number of moves without an improvement in
makespan that the algorithm will tolerate before terminating.

After initialization (Steps 1-2), within theWhile
loop at Step 3, a solution is repeatedly modified
by the application of the following subprocedures:
SamplingCriticalPath is first applied to randomly
select a set of previously posted precedence constraints on
the solution critical path;RemovePrecedence then re-
moves this set of constraints through application of incre-
mental temporal reasoning algorithms;ESTAM is next in-
voked to find a new earliest start time solution. In the case
that a better makespan solution is found (at Step 7), the new
solution is stored in Sbest and the counter is reset to 0 (Steps
9-10). Otherwise, if no improvement is found inMaxFail

i-FLAT (Sol,Prem,MaxFail)
1. Sbest Sol

2. counter 0
3. while (counter� MaxFail)do begin
4. PrecedenceToRemove

 SamplingCriticalPath(Sol,Prem)
5. RemovePrecedence(Sol,PrecedenceToRemove)
6. Sol ESTAM (Sol)
7. if Mk(Sol)< Mk(Sbest)
8. then begin
9. Sbest Sol
10. counter 0
11. end
12. elsecounter counter + 1
13.end-while
14.return (Sbest)
15.end

Figure 2: TheIterative FlatteningAlgorithm

Table 2:i-FLAT Performance

Algorithm Set A Set B Set C Set D All
ESTAM 17.91 16.04 25.27 24.83 21

45 125 190 758 279
i-FLAT(E+1) 8.99 8.29 14.61 12.22 11

60 161 286 1199 426
i-FLAT(E+5) 7.76 7.10 13.03 11.92 9.95

124 329 657 1875 746

moves, the algorithm terminates and returns the best solu-
tion found.

Experimental Results
Table 2 shows the performance ofi-FLAT on the benchmark
problem set. For this set of experiments, Prem was set to
10% andMaxFail to 300. The version ofESTAM used
within i-FLAT is the same as the basic version. We report re-
sults for basicESTAM , for i-FLAT starting from the solution
produced byESTAM (row labeledi-FLAT(E+1)), and for an
extended execution ofi-FLAT (row i-FLAT(E+5)) that will
be explained below. CPU times reported for thei-FLAT rows
include the initial execution ofESTAM , giving the total time
taken by the algorithm to produce its best solution.

Two observations are immediate: (a) the time spent by
ESTAM in generating an initial solution dominates the time
spent improving it by the iterativei-FLAT process across all
problem sets (e.g., 45 seconds versus 15 seconds in the case
of Set A); (b) the improvement ofESTAM ’s initial solution
by i-FLAT is rather significant (lowering an average devia-
tion of 21% to 11%).

It should be noted thati-FLAT currently performs a rela-
tively undirected search (basically a random walk) and there
appear several opportunities for further empowering the lo-
cal search strategy (see concluding discussion below). Here,
we consider an alternative approach to improving experi-
mental performance, by simply restartingi-FLAT multiple

times from the sameESTAM solution. This approach is
justified by the random stepSamplingCriticalPath ,
which guarantees different execution on different restarts.
Table 2 shows the results obtained with 5 random restarts of
i-FLAT (labeledi-FLAT(E+5)). In this case, performance is
improved on all four problem sets and the overall average
deviation is lowered below 10%.

Finally, a comment concerning comparison with Nuijten’s
work. The performance of the twoi-FLAT configurations
on Set A should be seen as quite positive in relation to the
results obtained by the CCA algorithm. If we consider the
relatively simple steps thati-FLAT executes in contrast to the
rather sophisticated resource propagation rule that is coupled
with random restarting in the CCA approach, the difference
in deviation of about 6% is quite respectable. If we consider
further thati-FLAT’s deviation from upper-bound solutions
does not worsen substantially with increasing problem scale,
and that CCA scalability (particularly with use of the most
effective propagation rules) is an open issue, then the results
obtained withi-FLAT assume even greater significance.

Conclusions and Future Work
This paper has presented a new iterative improvement tech-
nique, called iterative flattening for solving large-scale
multi-capacity scheduling problems.

Several aspects of this algorithm are worth underscoring.
First, the algorithm provides a novel, local search model that
integrates naturally with typical constraint-guided sched-
ule generation methods and heuristics. Second, the al-
gorithm is quite general and is applicable not only to
the MCJSSP, but also to problems such as resource con-
strained project scheduling where activities require multi-
ple resources and/or resource capacity of varying amounts.
Finally, the algorithm has be shown to scale effectively to
large-scale problem instances of theMCJSSP, creating a ref-
erence point (being within 10% of computed upper bounds)
for other approaches on a rich set of benchmark problems.

The basic concept of iterative flattening presented in this
paper is very general, and many possibilities of performance
enhancement through incorporation of more sophisticated
and better informed local-search procedures appear possi-
ble. Among the directions we are considering for future
work are the following: examination of different precedence
constraint retraction strategies; enrichment of the basic ran-
dom search with standard concepts such as neighborhood
analysis or a taboo-list; and, more generally, the insertion of
iterative flattening within ametalocal search strategy (e.g.,
(Nowicki & Smutnicki 1996) for the classicalJSSP).

References
Baptiste, P., and Le Pape, C. 1995. A Theoretical and
Experimental Comparison of Constraint Propagation Tech-
niques for Disjunctive Scheduling. InProceedings of the
14th Int. Joint Conference on Artificial Intelligence.

Baptiste, P.; Le Pape, C.; and Nuijten, W. 1997. Sati-
fiability Tests and Time-Bound Adjustments for Cumula-
tive Scheduling Problems. Technical report, University of
Compiégnie. to appear inAnnals of Operations Research.

Beck, J., and Fox, M. 1999. Scheduling Alternative Ac-
tivities. In Proceedings16th National Conference on AI
(AAAI-99).
Bresina, J. 1996. Heuristic-biased Stochastic Sampling. In
Proceedings13th National Conference on AI (AAAI-96).
Cesta, A., and Oddi, A. 1996. Gaining Efficiency and Flex-
ibility in the Simple Temporal Problem. InProceedings of
the Third International Workshop on Temporal Represen-
tation and Reasoning (TIME-96).
Cesta, A.; Oddi, A.; and Smith, S. 1998. Profile Based Al-
gorithms to Solve Multiple Capacitated Metric Scheduling
Problems. InProceedings of the4th Int. Conf. on Artificial
Intelligence Planning Systems (AIPS-98).
Cesta, A.; Oddi, A.; and Smith, S. 1999. An Iterative Sam-
pling Procedure for Resource Constrained Project Schedul-
ing with Time Windows. InProceedings of the16th Int.
Joint Conference on Artificial Intelligence (IJCAI-99).
Crawford, J. 1996. An Approach to Resource Constrained
Project Scheduling. InProceedings of the1996 Artificial
Intelligence and Manufacturing Research Planning Work-
shop.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal Con-
straint Networks.Artificial Intelligence49:61–95.
Harvey, W., and Ginsberg, M. 1995. Limited Discrepancy
Search. InProceedings of the14th Int. Joint Conference
on Artificial Intelligence (IJCAI-95).
Laborie, P., and Ghallab, M. 1995. Planning with Sharable
Resource Constraints. InProceedings of the14th Int. Joint
Conference on Artificial Intelligence (IJCAI-95).
Lawrence, S. 1984. Resource Constrained Project Schedul-
ing: An Experimental Investigation of Heuristic Schedul-
ing Techniques (Supplement). Technical report, Graduate
School of Industrial Administration, Carnegie Mellon Uni-
versity.
Nowicki, E., and Smutnicki, C. 1996. A Fast Taboo Search
Algorithm for the Job Shop Problem.Management Science
42:797–813.
Nuijten, W., and Aarts, E. 1996. A Computational Study of
Constraint Satisfaction for Multiple Capacitated Job Shop
Scheduling. European Journal of Operational Research
90(2):269–284.
Nuijten, W. 1994. Time and Resource Constrained
Scheduling - A Constraint Satisfaction Approach. Ph.D.
Dissertation, Eindhoven University of Technology, The
Netherlands.
Oddi, A., and Smith, S. 1997. Stochastic Procedures for
Generating Feasible Schedules. InProceedings14th Na-
tional Conference on AI (AAAI-97).
Smith, S., and Cheng, C. 1993. Slack-Based Heuristics for
Constraint Satisfaction Scheduling. InProceedings11th

National Conference on AI (AAAI-93).
Zweben, M.; Duan, B.; Davis, E.; and Deale, M. 1994.
Scheduling and Rescheduling with Iterative Repair. In
Zweben, M., and Fox, S. M., eds.,Intelligent Scheduling.
Morgan Kaufmann.

