
A Constraint-Based Method for Project Scheduling

with Time Windows�

Amedeo Cesta 1 and Angelo Oddi 1 and Stephen F. Smith 2

1 IP-CNR, National Research Council of Italy

Viale Marx 15, I-00137 Rome, Italy, fcesta, oddig@ip.rm.cnr.it

Phone: +39-06-86090-209

2 The Robotics Institute, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213, USA, sfs@cs.cmu.edu

Phone: +1-412-268-8811

Abstract

This paper presents a heuristic algorithm for solving RCPSP/max, the resource constrained

project scheduling problem with generalized precedence relations. The algorithm relies, at its core,

on a constraint satisfaction problem solving (CSP) search procedure, which generates a consistent

set of activity start times by incrementally removing resource con
icts from an otherwise temporally

feasible solution. Key to the e�ectiveness of the CSP search procedure is its heuristic strategy for

con
ict selection. A con
ict sampling method biased toward selection of minimal con
ict sets that

involve activities with higher-capacity requests is introduced, and coupled with a non-deterministic

choice heuristic to guide the base con
ict resolution process. This CSP search is then embedded

within a larger iterative-sampling search framework to broaden search space coverage and promote

solution optimization. The eÆcacy of the overall heuristic algorithm is demonstrated empirically on

a large set of previously studied RCPSP/max benchmark problems.

� Corresponding author: Amedeo Cesta, IP-CNR, Viale Marx 15, I-00137 Rome, Italy, phone: +39-06-86090-209, fax:

+39-06-824737, e-mail: cesta@ip.rm.cnr.it.

1

Contents

1 Introduction 1

1.1 The RCPSP/max Problem . 1

1.2 A CSP Approach to RCPSP/max . 2

2 Related Research 5

2.1 Overview of OR Approaches . 5

2.2 Overview of CSP Approaches . 6

3 Constructing a Feasible Solution 7

3.1 Constraint Propagation . 11

3.2 Computing Resource Con
icts . 12

3.2.1 Collecting Peaks . 13

3.2.2 Sampling MCSs . 13

3.3 Con
ict Selection and Removal . 14

4 Iterative Sampling for Better Makespan 16

4.1 The ISES Algorithm . 17

5 Experimental Evaluation 18

5.1 Experimental Design . 19

5.2 Evaluation Criteria . 20

5.3 Problem Set A . 20

5.4 Problem Set B . 24

6 Conclusions 26

2

1 Introduction

In this paper we present a constraint-based procedure for solving the scheduling problem known in

the Operations Research (OR) literature as the Resource Constrained Project Scheduling Problem with

Generalized Precedence Relations (or RCPSP/max). This scheduling problem derives from a project

management environment in which activities represent steps that must be performed to achieve com-

pletion of the project and are subject to partial order constraints that re
ect dependencies on project

progression. Drawing from previous work in resource-constrained scheduling, we develop a basic con-

straint satisfaction problem solving (CSP) search procedure for scheduling with cumulative resources.

Our procedure proceeds by iteratively detecting and leveling \resource contention peaks", i.e., sets of

activities that temporally overlap and whose total resource requirement exceed resource capacity. Ex-

tending previous \pro�le-based" scheduling approaches [7, 9], we de�ne new search control heuristics,

based on the intuition that the most critical con
icts to resolve �rst are those involving activities with

large resource capacity requirements (since these con
icts generally have the few resolution alternatives).

A given con
ict is resolved, as in previous work, by posting a precedence constraint between two of the

competing activities. To solve the RCPSP/max problem, we repeatedly apply this core CSP procedure

within a larger iterative-sampling search process.

1.1 The RCPSP/max Problem

The Resource Constrained Project Scheduling Problem (RCPSP) has been widely studied in Operations

Research (OR) literature (see [4] for a recent survey). RCPSP/max is a speci�c formulation of the basic

problem underlying a number of scheduling applications [23] and is considered particularly diÆcult, due

to the presence of temporal separation constraints (in particular maximum time lags) between project

activities. In fact, �nding a feasible schedule alone is NP-hard [3].

The RCPSP/max can be formalized as follows:

� a set V of n activities must be executed, where each activity j has a �xed duration dj. Each activity

has a start-time Sj and a completion-time Cj that satis�es the constraint Sj + dj = Cj.

� a set E of temporal constraints exists between various activity pairs hi; ji of the formSj � Si 2 [T
min
ij ; Tmax

ij],

called start-to-start constraints (time lags or generalized precedence relations between activities). 1

� a set R of renewable resources are available, where each resource rk has a integer capacity ck � 1.

� execution of an activity j requires capacity from one or more resources. For each resource rk the

integer rcj;k represents the required capacity (or size) of activity j.

1Note that since activity durations are constant values, end-to-end, end-to-start, and start-to-end constraints between

activities can all be represented in start-to-start form.

1

A schedule S is an assignment of values to the start-times of all activities in V (S = (S1; : : : ; Sn)). A

schedule is time-feasible if all temporal constraints are satis�ed (all constraints Sj � Si 2 [T
min
ij ; Tmax

ij]

and Sj + dj = Cj hold). A schedule is resource-feasible if all resource constraints are satis�ed (let

A(S; t) = fi 2 V jSi � t < Si + dig be the set of activities which are in progress at time t and rk(S; t) =

P
j2A(S;t) rcj;k the usage of resource rk at that same time; for each t the constraint rk(S; t) � ck must

hold). A schedule is feasible if both sets of constraints are satis�ed. The RCPSP/max optimization prob-

lem, then, is to �nd a feasible schedule with minimum makespan MK, where MK(S) = maxi2V fCig.

1.2 A CSP Approach to RCPSP/max

Scheduling problems such as RCPSP/max can be seen as a special type of Constraint Satisfaction Problem

(CSP) [22]. An instance of a CSP involves a set of variables X = fX1; X2; : : : ; Xng, a domainDi for each

variable and a set of constraints C = fC1; C2; : : : ; Cqg s.t. Ci � D1�D2�� � ��Dn, which de�ne feasible

combinations of domain values. A solution is an assignment of domain values to all variables which is

consistent with all imposed constraints. A general algorithmic template for solving a CSP is shown in

Figure 1. It can be seen as an iterative search procedure where the current (partial) solution is extended

on each cycle by assigning a value to a new variable.

CSPsolver(Problem)

1. CreateCSPForProblem

2. while not(solved or infeasible) do

3. RemoveInconsistentValues

4. SelectDecisionVariable

5. SelectValueForVariable

6. end

Figure 1: Basic CSP Search Procedure

As each new decision is made during this search, a set of \propagation rules" removes elements from

domains Di which cannot be contained in any feasible extension of the current partial solution (Step

3 of the algorithm). In general though, it is not possible to remove all inconsistent values through

propagation alone. Choices must be made between possible values for some variables, giving rise to

the need for variable and value ordering (or selection) heuristics (Steps 4 and 5 in the �gure). Such

\search control" heuristics generally depend on characteristics of the speci�c problem at hand, but there

are \domain independent" criteria which are commonly used to de�ne heuristics. A standard variable

ordering criterion prefers the most constrained variable |the variable most diÆcult to instantiate, or

equivalently, the variable that is most likely to lead to an infeasible state. For value selection, it is quite

common to choose the least constraining value |the value that leaves open as many values as possible

for any remaining unassigned variables. The algorithm in Figure 1 describes a greedy (and partial) CSP

2

procedure. It is frequently embedded within a backtracking framework to de�ne a complete solution

procedure [28, 10]. But it is also possible to exploit its use within other search frameworks (e.g., limited

discrepancy search [17], random restart [25, 26], etc.).

Formulating RCPSP/max as a CSP. Within the CSP scheduling literature, there are two main

approaches to formulating a scheduling problem as a constraint satisfaction problem. The �rst (and

perhaps most direct) formulation is a start time assignment model [28, 26]. Under this model, decision

variables are time points that designate the start times of various activities and CSP search focuses on

determination of a consistent assignment of start time values. The RCPSP/max problem can be straight-

forwardly formulated in this way. Starting from the de�nition in Section 1.1, a variable is introduced for

each activity; hence V is the set of CSP variables. For each variable i a domainDi = [0;H�di] is assigned

(where H is an upper bound on the scheduling horizon), specifying its possible start times. Two types of

constraint combine to further restrict the values that may be assigned to the set V of variables: (1) binary

constraints (involving pairs of variables) for representing the start-to-start temporal relations between

activities; and (2) n-ary constraints to describe the capacity constraints that each resource imposes on

all feasible schedules.

The second CSP formulation of a scheduling problem is a precedence constraint posting model [31, 10].

In this case, decision variables correspond alternatively to the various ordering decisions that need to be

made between sets of activities that are competing for the same resources, and CSP search focuses on

specifying (or posting) a consistent set of precedence constraints that eliminates any possibility of resource

contention. One principal advantage of this sequencing approach is that it avoids over-commitment, as

activities need not be anchored to speci�c start times during the search or in the �nal solution.

To formulate RCPSP/max under this model, a variable is de�ned for each set of activities that simul-

taneously require resource rk with a total capacity requirement > ck (i.e., each potential resource con
ict).

For each such variable i, the domain Di = fpci;1; : : :g consists of the set of precedence constraints that

can be feasibly posted to eliminate the con
ict. Operationally, the ongoing determination of domain Di

for each ordering decision variable i requires propagation of activity start times in an underlying time

point network. Thus, a precedence constraint posting model can be seen as a meta-CSP formulation,

which utilizes a start-time assignment model as a ground-CSP representation. We take this approach to

developing our procedure for solving RCPSP/max.

Contribution of the paper. In this paper, we develop a constraint posting scheduling procedure for

RCPSP/max. The main contribution of this work lies in the development of e�ective search heuristics for

this class of problem, which use analysis of interactions between time and resource capacity constraints

to productively bias variable and value selection decisions. Central to this analysis and to the heuristics

that are de�ned is the notion of Minimal Critical Sets. A Minimal Critical Set (mcs) is de�ned as a a

3

set of activities that simultaneously require a resource rk with a combined capacity requirement greater

than the resource's total capacity, such that the combined requirement of any subset is less or equal to

the resource capacity. From the de�nition of an mcs, it follows that the posting of a single precedence

between some pair of activities in the mcs is suÆcient to eliminate the con
ict. By isolating mcss as

the decision variables of the meta-CSP, and by de�ning a solution procedure that iteratively selects and

resolves an mcs in the current solution until no such con
icts remain, it is possible to consistently focus

the search on the most critical con
icts and minimize the number of constraints that must be posted to

obtain a feasible solution.

As suggested above, the basic search procedure is best summarized as a two layered algorithm: (a) the

ground layer, or ground-CSP, represents the temporal aspects of the problem, in the form of a quanti-

tative temporal constraint network [14]; (b) the higher layer is a meta-CSP, where resource con
icts are

represented and reasoned about. The search proceeds by iterating performing the following sequence of

steps: propagation of temporal consequences through the ground-CSP; computation of the meta-CSP;

selection of a con
ict in the meta-CSP; resolution of the con
ict by imposing a new precedence constraint

in the ground-CSP.

A similar search schema was �rst used in [10] for scheduling problems with binary (disjunctive)

resources. Under these resource assumptions, the meta-CSP of con
icts is computable in a fairly eÆcient

manner (polynomial cost), since resource con
icts are represented by pairs of temporally overlapping

activities that require the same resource. However, adaptation of the approach to RCPSP/max, and more

generally to scheduling problems with non-binary (cumulative) resources, requires that more attention

be given to the meta-CSP computation. Under these extended assumptions, complete computation of

the meta-CSP (i.e., collection of all mcss) is exponential in the size of total resource capacity and some

form of approximation becomes essential for practical solution.

To address this computational problem, we integrate and extend two key ideas from previous research.

(1) after propagation in the ground-CSP we extract the earliest start times of all temporal variables, and

this so-called ESS (Earliest Start Schedule) is used as a basis for computing mcss (i.e., the meta-CSP).

(2) a polynomialmcs sampling method is introduced, which extracts a subset of mcss and overcomes the

exponential worst case cost of complete enumeration. This sampling method capitalizes on a heuristic

criterion that acts to extract the most critical mcs �rst. The result is an eÆcient greedy procedure for

generating feasible solutions to RCPSP/max problems.

To solve RCPSP/max problems to optimality, we encapsulate this function within an optimization

schema. One possible way in which the e�ectiveness of a greedy (partial) solution procedure can be

enhanced is through the addition of backtracking or restarting mechanisms, which serve to broaden the

search in the event of failure. Exploiting the approach taken in [27], we introduce a randomized variant of

the con
ict selection heuristic and embed the core resolution procedure within a larger, iterative sampling

4

search. Iterative sampling provides a framework for �nding \lower makespan" solutions.

The overall procedure is called ISES (for Iterative Sampling Earliest Solutions). In this paper ISES

is compared with the best existing approaches to RCPSP/max. It outperforms several systematic and

heuristic approaches on di�erent reference problem sets. In particular, ISES is shown to perform quite well

in situations where, due to problem characteristics such as heavy resource contention, the search space

is quite large and becomes a serious obstacle for systematic approaches. In this case, our non-systematic

random approach demonstrates an advantageous trend in comparison to the best known systematic

algorithm (in terms of both the number and the quality of the solutions provided) as problem size is

increased.

Plan of the paper. The remainder of the paper is organized as follows. In Section 2, we �rst review

related research in both Operations Research and Constraint Programming. We next describe, in turn,

the two principal components of our approach: the greedy resolution procedure and the encompassing

optimization cycle. Section 3 introduces the constraint-based con
ict resolution algorithm, justifying its

design, providing basic de�nitions and summarizing the technical details of both ground and meta-CSP

models. Section 4 describes how randomization is introduced and how iterative sampling is used to

search for better solutions. In Section 5, we report comparative performance results on a set of published

benchmark problems. A general discussion of the various results closes the paper.

2 Related Research

In this section we brie
y summarize state-of-the-art OR approaches to RCPSP/max which we will later

use as a basis for comparative evaluation of our approach. We also summarize related CSP scheduling

research, which provides the context and underpinnings of our approach.

2.1 Overview of OR Approaches

The RCPSP/max problem has been the subject of considerable recent investigation within the OR com-

munity. An early analysis appeared in [3] aimed principally at investigating the mathematical properties

of the problem, proposed a solution approach quite similar in many respects to the CSP based procedure

we introduce below. It similarly conceptualized the solution space as a network of temporal constraints,

and introduced notions of forbidden sets and reduced forbidden sets to designate resource con
icts and

resource con
icts with a minimal number of activities respectively. A systematic Branch and Bound

(B&B) procedure was sketched that proceeds by extending the set of precedence relations in the problem

to eliminate all reduced forbidden sets in an initial, time-feasible solution. Unfortunately the computa-

tional analysis is quite limited and few results on small instances are only mentioned.

5

More recent B&B approaches to RCPSP/max have retained the idea of extending a time-feasible

solution by adding precedence relations, but analyze the evolving solution di�erently. In [13] and [30],

con
icts are considered in increasing chronological time order and, for each of them, a set of \minimal

delaying activities" are detected for resolving con
icts.

Other B&B algorithms work di�erently. For example [21] solves resource con
icts by increasing

release dates (minimum time lags relative to beginning of the project) for certain activities instead of

introducing precedence relations. A very recent proposal [15] obtained strong results using a combination

of techniques: it couples a set of temporal and resource constraint propagation rules with a binary

branching schema that exploits particular properties of the current partial solution to successively �x

and/or delay the start-times of various activities.

Though most work has focused on exact solution procedures, approximate RCPSP/max procedures

have also been developed. The heuristic presented in [16] has recently obtained very good results on

RCPSP/max benchmark problems (see below). Despite being classi�ed as a \priority rules" approach,

this work uses a two step method: (a) a sophisticated decomposition analysis is performed to identify

\critical sub-components" which can be scheduled independently (a technique introduced in [24]), and

(b) the scheduled sub-components (partial schedules) are integrated into one using a set of priority rules.

Note that the �rst step uses properties due to the presence of maximum time lags.

2.2 Overview of CSP Approaches

A considerable amount of work has focused on the development of CSP models and solution procedures

for scheduling problems, although the speci�c RCPSP/max problem has not been addressed.

Early work in this area focused on techniques for solving the classical job-shop scheduling problem

[28, 31, 5, 1], yielding a number of di�erent constraint propagation rules and search control heuristics,

and several high performance solution procedures. More recent research has demonstrated the
exibility

of CSP models to accommodate extended classes of scheduling problems. Some work has focused on

solution procedures for scheduling problems with generalized precedence relations (i.e., maximum and

minimum metric separation constraints between activities) [10, 27]. A number of other e�orts have

focused on CSP scheduling algorithms for problems with cumulative (or multi-capacity) resources [2, 25,

6, 12]. Much of this work has focused on constraint propagation techniques that exploit the structure

of cumulative resource constraints, and are hence capable of stronger inference. Less attention has been

paid to development of e�ective heuristics for managing the scheduling search process.

Our previous research with cumulative scheduling problems, alternatively, has focused principally on

the development of heuristics for managing the search process, and several speci�c ideas integrated in the

ISES algorithm have evolved from techniques �rst proposed in di�erent contexts. In [7], we addressed a

machine scheduling problem called the Multi-Capacitated Metric Scheduling Problem (MCM-SP), which

6

simultaneously involves both cumulative resources and generalized temporal relations. MCM-SP exhibits

a problem structure wherein each individual job consists of a linear sequence of activities. Each activity

of a given job requires one unit of capacity on a single resource to be executed. Formally, MCM-SP

is an extension of classical Job-Shop Scheduling Problem (JSSP) and of the Multi-Capacitated JSSP

introduced in [25]. In this context, the notion of computing con
icts through observation of an earliest

start schedule (ESS) was �rst explored, and shown to outperform basic strategies that operate with

respect to a more general, upper-bound computation of resource consumption.

At the same time, the con
ict identi�cation technique used in [7] was simpler than the mcs-based anal-

ysis used in this paper, being based directly on the pairwise analysis previously used to solve disjunctive

scheduling problems [10]. The current mcs-based approach integrates ideas from a previously reported

clique-based approach to resource reasoning [20], which, due to its more global perspective, provides a

basis for more e�ective search control. While introducing the idea of mcss as resource con
icts, the work

of [20] proposes a combinatorial (and e�ectively intractable) systematic approach to mcs computation

(clique detection on a \activity intersection graph"). This computational diÆculty has motivated our

development of e�ective, approximate, \con
ict sampling" methods.

A preliminary version of this work appeared in [9]. With respect to that work, the current paper intro-

duces and emphasizes a di�erent strategy for con
ict sampling, which tends to isolate pairs of activities

that must be sequenced in any feasible solution. We also include a more comprehensive experimen-

tal analysis, using a wider set of parameters and demonstrating the improved performance of the new

sampling procedure.

3 Constructing a Feasible Solution

As sketched in the introduction the ISES algorithm consists of two parts, a basic greedy algorithm

described in this section and a optimization cycle based on random restart described in the next section.

The resolution algorithm presented below follows the precedence constraint posting schema previously

mentioned. The approach is further distinguished by problem solving schema based on a ground-CSP

that considers the temporal aspects of the problem and a meta-CSP that reasons about the resource

con
icts. The general procedure �rst computes an initial, time-feasible solution (ignoring all resource

constraints). Resource constraints are then super-imposed, giving rise to a set of resource con
icts (i.e.,

sets of activities competing for the same resource capacity over some time interval) and hence a set of

sequencing (or con
ict resolution) decisions.

Figure 2 presents the basic greedy procedure used. It accepts a problem instance (Problem) and an

upper bound on the overall makespan (Horizon). In describing the algorithm we �rst clarify its two

layered structure by introducing the ground- and meta-CSP and a number of connected de�nitions.

7

ESA(Problem, Horizon)

1. ground-CSP CreateCSP(Problem)

2. ground-CSP PostContraint(ground-CSP, Horizon)

3. loop

4. Propagate(ground-CSP)

5. meta-CSP ComputeResourceCon
ict(ground-CSP)

6. if Empty(meta-CSP)

7. then return(ExtractSolution(ground-CSP))

8. else

9. if Unsolvable(meta-CSP)

10. then return(EmptySolution)

11. else

12. Con
ict SelectCon
ict(meta-CSP)

13. PrecedenceConstraint SelectPrecedence(Con
ict)

14. ground-CSP PostCostraint(ground-CSP, PrecedenceConstraint)

15. end-loop

Figure 2: Basic CSP Search Procedure

Ground-CSP: Temporal Analysis. The �rst step of ESA produces a Temporal Constraint Network

[14] to represent the temporal constraints of the problem (Line 1). A temporal constraint network is a

specialized CSP formulation where variables represent time points (or temporal events), their values are

time instants, and constraints are binary inequalities that bound the distance between two time points

(given two time points tpk, tpl a distance constraint is tpk � tpl � dkl with dkl an integer value). Time-

points tpj are used to represent the start-time variables Sj of all activities in the RCPSP/max instance,

as well as the begin and end of the temporal horizon. Temporal constraints in the problem are mapped

immediately to distance constraints between appropriate time-points, and an additional constraint is

posted to bound the maximum temporal horizon (Line 2 of the ESA procedure). The temporal constraint

network described here corresponds to the so-called Simple Temporal Problem (STP) [14]. A STP has

two useful properties: (1) the domains of variables are convex intervals of values (i.e., the set of possible

values of each time point tpj that is consistent with all distance constraints corresponds to an interval

[lbj; ubj]); and (2) the algorithm for computing such intervals (i.e., propagating the e�ects of the various

constraints) is polynomial in the number of temporal variables.

A time feasible solution for the RCPSP/max is extracted from a temporal network by choosing a

consistent value for each time point. One simple approach [14] is to choose for each activity j 2 V the

earliest possible start times (Sj = lbj).

De�nition: Earliest Start Schedule (ESS). An ESS is a consistent temporal assignment to the set

of start time variables Sj such that for each activity j 2 V the value Sj = lbj is chosen. For a given

activity j 2 V , we will indicate with est(j) the earliest start time of the activity j (est(j) = lbj) and with

8

eft(j) = est(j) + dj its earliest �nishing time.

If an ESS, which is temporally feasible by de�nition, is also resource feasible, then we have found a

solution for the RCPSP/max. The theoretical results in [3] show that an optimal makespan solution is an

ESS. This result gives a theoretical grounding to our general heuristic. In fact, one distinguishing aspect

of our approach is the fact that we compute resource con
icts relative to the ESS instead of, for example,

reasoning from the complete temporal constraint network in the ground-CSP. The greedy algorithm is

referred to as ESA (Earliest Start Algorithm) because it iteratively extends the current ESS until one

without resource con
icts is found.

Meta-CSP: Resource Analysis. Over the basic temporal network formulation, we super-impose

resource capacity constraints to identify the set of outstanding con
icts. This con
ict set is resolved

incrementally by repeated posting of precedence constraints between pairs of competing activities.

The basic cycle for transforming an initial ESS into a con
ict-free solution proceeds as follows:

1. propagate the current ground-CSP (temporal network) to compute current bounds for all temporal

variables (line 4 of Figure 2);

2. consider the resource constraints in the RCPSP/max and identify the set of resource capacity

violations implied by the current ground-CSP (i.e., construct the current meta-CSP of resource

con
icts |line 5).

3. select a resource con
ict in the meta-CSP by applying a variable ordering heuristic (line 12).

4. solve the con
ict by applying a value ordering heuristic and choosing best ranked value (lines 13-

14). As indicated above, this step has the correspondent action in the ground-CSP of imposing a

new precedence constraint between some pair of competing activities.

If the meta-CSP has no unassigned variables, there are no remaining resource con
icts and a feasible

solution has been found. If, alternatively, the set of feasible orderings of a con
ict becomes empty (i.e.,

some variable in the meta-CSP has no possible values), then there is no feasible completion to the current

partial solution. To understand how the meta-CSP is computed we need two further de�nitions:

De�nition: Contention Peak. Given an ESS, a contention peak (or simply a peak) on resource rk

is a set of activities P = fj1; j2 : : : jpg that simultaneously require rk (i.e., they temporally overlap:

minj2P feft(j)g > maxj2Pfest(j)g holds) and whose combined capacity requirement is > ck.

De�nition: Minimal Critical Set (mcs). A mcs is a peak on a resource rk such that any subset of

its activities has a combined requirement � ck.

The important advantage of isolating mcss, as mentioned earlier, is that a single precedence relation

9

between any pair of activities in the mcs eliminates the resource con
ict. (Such constraints are posted

between the end-time of one activity and the start-time of the other to avoid overlap.) The meta-CSP is

de�ned by taking the current set of mcss as variables, and the set of precedence constraints that can be

feasibly posted between some pair of activities in a given mcs as the domain of the corresponding variable.

To be feasible, a precedence constraint must necessarily satisfy all temporal and resource constraints of

the original problem.

The meta-CSP is computed using the procedure ComputeResourceConflict (line 5 of Figure 2),

which expands as shown in Figure 3: The ESS is computed from the ground-CSP, the peaks in the ESS

are collected; the mcss are sampled from the current list of peaks.

ComputeResourceCon
ict(ground-CSP)

1. ESS ComputeESS(ground-CSP)

2. Peak-List ComputePeaks(ESS)

3. MCS-List SampleMCSs(Peak-List)

4. end

Figure 3: Three steps for computing the meta-CSP of resource con
icts

A further distinction between the approach taken in this paper and that of the work previously reported

in [7] is worth noting at this point. Both approaches use what we called in [7] pro�le-based scheduling

procedures. In [7] we pursued the broad idea that a solution is obtained when all the contention peaks

have been eliminated by the current solution. In general a peak is eliminated by \leveling" it, that is

by posting one or more precedence constraints between pairs of activities contributing to the peak. In

the present paper we similarly attempt to create solutions without peaks, but the crucial choice of which

pair of activities to order is made after a further mcs analysis. This additional analysis is performed to

avoid the problem of adding precedence relations that do not have a strong peak leveling e�ect. The

di�erence can be illustrated with a simple example. Suppose we have a simple problem consisting of a

single resource with capacity c = 8, and a set of four activities V = fj1[5]; j2[5]; j3[1]; j4[1]g (capacity

requirements shown in brackets). All activities have the same duration equal to 10, start time 0 and

have to be scheduled in the time window [0; 100]. If any pair of activities can be chosen, then the

following pairs are all possible choices: fhj1; j2i; hj1; j3i; hj1; j4i; hj2; j3i; hj2; j4i; hj3; j4ig. However, it can

be immediately seen that the only pair that must be ordered in any solution is the pair hj1; j2i because

by itself it exceeds the capacity c. One observed shortcoming of previous pro�le-based approaches to

cumulative scheduling has been their tendency to post unnecessary ordering constraints, following from

the use of con
ict selection and resolution heuristics that rely strictly on pairwise analysis of competing

activities [7]. Alternatively, the use of mcs-based analysis in the previous short examples leads directly to

detection of the single set hj1; j2i which, once ordered, resolves the resource con
ict. The importance of

mcs analysis has been pointed out in [20]; a speci�c contribution of this paper is the use of such analysis

10

to characterize detected peaks in the ESS. In this way we obtain an e�ective trade-o� between the quality

of the con
ict analysis and the time needed to perform it.

Implementation of ESA. The rest of this section gives a more detailed description of three crucial

aspects of the ESA procedure. Subsection 3.1 deals with constraint propagation; Subsection 3.2 illustrates

the computation of the meta-CSP; and Subsection 3.3 discusses variable and value ordering heuristics

that direct the search for a con
ict free solution.

3.1 Constraint Propagation

ESA, like any CSP search procedure, interleaves processes of solution re�nement, which acts to assign

values to variables, and constraint propagation, which, after each new assignment, computes implications

with respect to other CSP variables and eliminates inconsistent values. In a scheduling problem like

RCPSP/max both temporal and resource constraints can be sources of propagation and performed in the

propagation step performed at Line 4 of Figure 2.

Time constraints. A basic aspect of ESA consists of maintaining a temporally consistent network of

time points. The network is constrained initially by the set of temporal constraints in the RCPSP/max

de�nition and further constrained as additional precedence constraints are posted during the search. Path

consistency in this network is dynamically maintained via all pairs shortest path computation, making

distance information between any pair of time variables available for use in focusing the search. Path

consistency enforced at ground-CSP level allows us to detect (at meta-CSP level) in constant time the

set of feasible ordering associate to a decision variable.

Resource constraints. We do not make use of resource constraint propagation rules as is done in

some other recent approaches to disjunctive and cumulative scheduling problems (e.g., [2, 25, 26]). Such

resource propagation rules are aimed at synthesizing further domain reductions by a specialized reasoning

on the temporal information and the resource constraints. We have chosen not to incorporate these

more sophisticated forms of propagation, since they play a role complementary to that of the search

control heuristics and procedures of principal interest in this paper. It is worth remarking that such

propagation could be added in a transparent way: at formal level rede�ning the ground-CSP to be not

a purely temporal problem but a mixed time and resource problem; at algorithmic level by modifying

the Propagate function at Line 4 adding further deduction rules corresponding to resource constraint

propagation. The e�ect is to further prune the search space (and potentially improve reported results).

11

3.2 Computing Resource Con
icts

The approach taken to identi�cation of resource con
icts attempts to reconcile two, typically con
icting

desiderata: (1) on one hand to always take the decision centers on the most critical precedence constraint

to post and (2) on the other to minimize the amount of time spent in the analysis that leads to this

decision.

The need for this tradeo� arises due to the computational complexity inherent in complete compu-

tation of the meta-CSP (speci�cally the set of all outstanding mcss). mcs analysis has been used in

[20], where mcss are seen as particular cliques that are collected via systematic search of an activity \in-

tersection graph" (which is constructed starting from the temporal information in the equivalent of our

ground-CSP). The unfortunate drawback of this approach is the exponential nature of the intersection

graph search, which prohibits use of this basic approach on scheduling problems of any interesting size.

In [8], it is shown that much of the advantage of this type of global con
ict analysis can be retained by

using an approximate procedure for computing mcss. But the pragmatic cost of recomputing mcss across

all resources at each iteration of the CSP resolution procedure nonetheless remains high and signi�cantly

limits scalability.

In ESA, we improve on this approach to exploiting mcs analysis in two ways. First, we achieve an

even better computational tradeo� by instead integrating the use of mcs analysis into a pro�le-based

scheduling framework on the current ESS. As sketched in Figure 3, on each iteration of the search, we

�rst compute contention peaks (which is quadratic in the number of activities) to isolate those areas of

the solution where con
icts (i.e., mcss) should be computed. Next we generate a set of mcss for each

peak collecting them in the meta-CSP that is ready for being solved.

The number of mcss contained in a given peak can still be quite large (in the worst case
�
jV j
ck+1

�
),

and, accordingly, ESA also utilizes an approximate (heuristic) scheme for computing mcss. In fact, the

second way in which ESA improves on previous use of mcs analysis is in its use of a more rational \mcs

sampling strategy". In [8], as well as in an earlier version of ESA reported in [9], mcss were generated in a

fairly ad hoc manner, motivated primarily by the desire to limit the overall number of generated mcs. In

this paper we introduce a di�erent approximate procedure for generating mcss, which is designed to bias

generation toward those mcss closest to an unresolvable state, and hence those which are most \critical"

to resolve next. In general, an mcs's distance from an unresolvable state depends on two (not necessarily

independent) factors: (1) the number of di�erent precedence constraints that could be posted to resolve

it, and (2) the temporal
exibility that is retained in the solution after it is resolved. The mcs generation

process employed in ESA considers the �rst factor. It favors those mcss that contain activities with the

largest resource capacity requirements, and these mcss tend to be resolvable in the fewest number of

ways.

12

3.2.1 Collecting Peaks

To collect mcss, ISES uses a two step algorithm which �rst detects peaks in resource usage and then

samples mcss within these detected peaks.

Given a partial solution S and a resource r let �r = fP1; P2; : : : ; Ppg be the set of all elements

which satisfy the de�nition of peak. Note that this set is generally quite large. For example, given a

peak Pi 2 �r , all subsets of Pi whose total capacity requirement exceeds ck are also contained in �r.

To promote diversity in the set of mcss that are ultimately generated and raise the level of heuristic

information, we de�ne a peak detection approach that avoids sampling peaks which are either subsets

of other peaks or have a large percentage of activities in common. Speci�cally, we follow a strategy of

collecting sets of maximal peaks that is, sets of activities such that none of the sets is a subset of the

others.

The algorithm takes as input set Ark for each resource rk (k = 1 : : :nr), representing the set of activi-

ties requiring rk, and produces the set of elements PSk (k = 1 : : :nr), where each PSk = fP1; P2; : : : ; Ppkg

represents a set of peaks on rk. The algorithm CollectPeaks proceeds in two main steps:

1. the set of activities j 2 Ark are sorted according to est(j).

2. Activities are sequentially removed from Ark and collected in the current peak P = fj1; j2; : : : ; jpg

until the activities in P overlap each other |that is, until the condition mini2P feft(i)g > maxi2P fest(i)g

holds. When the previous test fails, that is, when an activity i is removed from Ark and it does

not overlaps with all the activities in P, then three further steps are executed: (a) if the total

capacity requirement of all activities in P exceeds the resource capacity (
P

j2P rcj;k > ck), then

P is collected in PSk; (b) P is updated to remove all activities which do not overlap with the last

selected i; (c) i is inserted in P . The collecting process continues until Ark becomes empty.

3.2.2 Sampling MCSs

The con
ict sampling procedure accepts as input a set of peaks and two parameters, Æ and sf , and returns

a set of minimal critical sets. Æ controls the cardinality (number of activities) in any sampled mcs and

sf bounds the overall number of mcss that are sampled and returned.

Given a peak P on a resource rk, we are interested in samplingmcss of the smallest possible cardinality.

In fact this is one of the heuristic criteria that is used to bias the sampling process toward critical

mcss. Let MP be the set of all mcss in P and mP the minimal cardinality of any mcs in MP . MP

can be at most partitioned in (ck + 1) � mP + 1 subsets of mcss with equivalent cardinality. MP =

M0 [M1 [� � � [M(ck+1)�mP
, where M0 is the set of mcss with the minimum cardinality, and in general

MÆ, with (0 � Æ � (ck + 1) � mP), is the set of mcss with cardinality minimal plus Æ. Some of the

previous subsets may be empty, but in general their cardinality has a lower bound of 2 and an upper

13

bound of ck + 1 (in the case all activities of the mcs have a unit capacity requirement). The parameter

Æ is used to tune the search of critical mcss; in fact, we can choose to detect only those mcss in the set

M0 (mcss of minimal cardinality) or to augment this set with the elements in the sets M1;M2 : : :MÆ .

To sample elements in M0 [M1 [� � � [MÆ , we use the following algorithm. For each peak P we

impose a total order on its activities such that for each pair of activities ji; jl 2 P the relation ji � jl

holds if rcji;k � rcjl;k (i.e., the activities contributing to the peak are sorted in decreasing order of

their resource capacity requirements rcj;k). For example, let rk be a resource with capacity ck = 7, and

P= fj1[5], j2[3], j3[3], j4[2], j5[1], j6[1], j7[1]g be a sorted peak on resource rk (values in square brackets

represent resource requirements). The total order imposed on P by � also induces a lexicographical

order on the set MP (the set of all the mcss in P). This order is generated in a manner equivalent

to sorting a set of English words into alphabetical order by the alphabetical order of their constituent

letters. Speci�cally, assume that two generic mcss mcsi = fji1; ji2; : : : ; jing and mcsl = fjl1; jl2; : : : ; jlmg

are each represented as a string of elements ji which are totally sorted according to �. Then the relation

mcsi � mcsl holds if an index k exists such that jip = jlp for p = 1::(k � 1) and jik � jlk. Considering

the previous example, if we choose a value Æ = 1 (implying that we want to sample mcss with maximal

cardinality mP + 1; in this case since mP = 2, maximal cardinality 2 + 1 = 3), the order imposed

on the activities in P induces the following lexicographical order within the set of mcss contained in

M0 [M1: fj1[5]; j2[3]g � fj1[5]; j3[3]g � fj1[5]; j4[2]; j5[1]g � fj1[5]; j4[2]; j6[1]g � fj1[5]; j4[2]; j7[1]g �

fj2[3]; j3[3]; j4[2]g. Observe that the �rst elements in the sorted order are those mcss which contain the

fewest activities, and hence are likely to be good candidates as critical con
icts.

To lexicographically sample mcss within a given peak P , a Depth-First Search procedure is iteratively

applied until either all elements in the set M0[M1 [� � �[MÆ have been sampled or a maximumnumber

of sf jP j elements have been collected. The linear (with respect to the peak's cardinality) upper bound

sf jP j on the number of elements sampled is enforced as a further hedge against combinatorial explosion

of the search.

3.3 Con
ict Selection and Removal

Having generated a mcs choice set (or a meta-CSP in our abstract schema) the next step of ESA is to

identify one particular mcs for resolution. If at least one resolvable mcs remains outstanding, then the

selected mcs is removed by selecting and posting an additional precedence constraint between two of the

competing activities in the mcs (Lines 12-14 in Figure 2).

The heuristics that govern both con
ict selection and con
ict resolution in ESA implement the widely-

used principle of selecting �rst the variable which is most constrained, and setting it to the value that is

least constraining. The constrainedness is measured by observing the so-called temporal
exibility in the

current solution.

14

Temporal Flexibility. The intuition behind the concept of temporal
exibility is that the greater

the number of \temporal positions" that the time variables in a solution may assume with respect to

each other (i.e., how many consistent assignments remain in the ground-CSP), the greater the ability to

accommodate new ordering constraints. Given two di�erent con�gurations A and B of the ground-CSP,

we assume that the probability of obtaining a complete solution from A is greater than it is from B

if A contains a greater amount of \free temporal space". This relatively simple heuristic strategy has

proved to be quite e�ective in solving several planning and scheduling problems (e.g., [10, 20, 27, 7]).

Alternative strategies might be considered for prioritizing the resolution of outstanding mcss (e.g., solving

mcss chronologically). We have chosen to use a criticality estimator based on temporal
exibility because

it is naturally suited with the constraint-satisfaction problem solving style.

Variable and value ordering. As indicated above, candidate mcss are ordered according to the tem-

poral
exibility they contain (a function of the degree to which constituent activities can be reciprocally

shifted in time). The less
exibility a mcs has, the more critical it is to resolve �rst. The greater the

exibility that is retained after posting a precedence constraint that resolves a mcs, the more desirable it

is to post that constraint. Note that the use of temporal
exibility as a measure of criticality and choice

criteria complements the heuristic bias used to drive the mcs sampling process (i.e., toward generating

mcss with few resolution alternatives).

To quantify the notion of temporal
exibility, the heuristic estimatorK suggested in [20] is used. Given

a candidate mcs and a set fpc1 : : : pckg of precedence constraints that could be posted between pairs of

activities in the mcs, K(mcs) is de�ned as K(mcs)�1 =
Pk

i=1(1 + commit(pci) � commit(pcmin))
�1

where commit(pci) ranges from 0 to 1 and estimates the loss in temporal
exibility as a result of posting

constraint pci, and pcmin is the precedence constraint with the minimum value of commit(pc). Note

that K(mcs) takes on its highest value of 1 in those cases where only one speci�c precedence constraint

can be feasibly posted to resolve the con
ict. In general, the closer an mcs is to being unresolvable, the

higher the value of K(mcs). It is worth noting that an mcs that is \close to a unresolvable state" is

one for which very few consistent activity start-time assignments remain (relative to other mcss), so it

represents a critical case to solve �rst. When choosing which mcs to solve next, we focus on the area

closest to failure (i.e., the con
ict selection heuristic SelectConflict chooses the mcs with the highest

K value). The rationale here is that if the solution becomes further constrained by resolving a more

temporally
exible mcs, the probability increases that less temporally
exible mcss will eventually reach

an unresolvable state. Opposite reasoning applies in the case of value selection (which pair of activities

to order and how within selected mcs). In this case we attempt to retain as much temporal
exibility as

possible. The con
ict resolution heuristic (SelectPrecedence) simply chooses the pair with pcmin and

orders it in a way similar to min-slack heuristics proposed in [31].

15

4 Iterative Sampling for Better Makespan

The ESA resolution procedure, as de�ned above, is a deterministic (partial) solution procedure with no

recourse in the event that an unresolved con
ict is encountered. To provide a capability for expanding

the search in such cases without incurring the combinatorial overhead of a conventional backtracking

search, we de�ne a random counterpart of our con
ict selection heuristic (in the style of [27]) and embed

the resulting \restartESA" procedure within an iterative sampling search framework. This choice is

motivated by the observation that in many cases systematic backtracking search can explore large subtrees

without �nding any solution. On the other hand, if we compare the whole search tree created by a

systematic search algorithm with the non systematic tree explored by repeatedly restarting a randomized

search algorithm, we see that the randomized procedure is able to reach \di�erent and distant" leaves

in the search tree. This latter property could be an advantage when problem solutions are uniformly

distributed within the set of search tree leaves interleaved with large subtrees which do not contain any

problem solution.

To make ESA suitable to random restart its function SelectConflict is modi�ed according to the

following rationale. Recall that an mcs is selected after two steps: (1) a subset of mcss is sampled from

the resource peaks in the current ESS; (2) the mcss are ranked according to the K estimator and the one

with the highest value of K, called Kmax, is chosen. The estimator K gives a measure of the criticality

of a mcs according to the principle of temporal
exibility. However, considering the overall set of mcss

sampled at each solution step, it could well be the case that several mcss have heuristic evaluations \quite

close" to each other and in particular to Kmax. In such cases, the heuristic information used to compute

K is not very selective, and we may consider this subset of elements to be heuristically equivalent. This

last observation is the basis of our approach to randomization.

The core ESA procedure is transformed into a random procedure by rede�ning SelectConflict to

proceed in two-steps: (1) at each solution step, a set of \equivalent" mcss are �rst identi�ed, and then

(2) one of these mcss is randomly selected. As in the deterministic variant, the selected mcs is then

resolved by posting a precedence constraint. The set of equivalent Ks is created by introducing the

parameter � 2 [0; 1], called acceptance factor, and considering as equivalent to Kmax, all mcss whose K

is within the interval Kmax(1� �) � K(mcs) � Kmax. The con
ict to be resolved is randomly selected

from this set, resulting in a non-deterministic yet heuristically-biased choice. Successive calls to ESA are

intended to explore heuristically equivalent paths through the search space.

Figure 4 depicts the complete iterative sampling algorithm for generating a feasible solution. It is

designed simply to invoke the restartESA resolution procedure a �xed number (MaxRestart) of times,

rather than predicating any restarts on a failure to produce a feasible solution. Given that the broader

objective in this paper is makespan minimization, each restart provides a new opportunity to produce a

di�erent feasible solution with lower makespan.

16

restartESA(Problem, MaxRestart, Horizon)

1. Sbest EmptySolution

2. Sol EmptySolution

/* MK(EmptySolution)=+1 */

3. Counter 1

4. While Counter � MaxRestart and MK(Sol) > mk0 do

5. Sol ESA(Problem, Horizon)

6. if MK(Sol) < MK(Sbest)

7. then Sbest Sol

8. Counter Counter + 1

9. end-while

10. return(Sbest)

11. end

Figure 4: The Restarting ESA Procedure

4.1 The ISES Algorithm

Though the restarting procedure just described does in fact retain the smallest makespan solution gen-

erated across calls to restartESA, its principal role is to produce a feasible solution relative to a given

upper-bound horizon. In this section, we de�ne an RCPSP/max optimization procedure based on use of

this feasible solution generator.

Similar to other CSP procedures for makespan minimization (e.g., [11]), we adopt a multi-pass ap-

proach; the makespan of the feasible solution generator is repeatedly applied to solve problems with

increasingly smaller temporal horizons, until it is no longer possible to �nd a feasible solution or until

the solution makespan is equal to a known lower-bound of the optimal value mkopt. For example, in the

case the algorithm �nds a solution with a makespan equal to mk0 (the makespan of the \in�nite capacity"

solution to Problem which ignores all resource constraints) the search process can immediately stop and

return the optimal solution found.

Figure 5 shows the speci�c multi-pass version of the base ESA procedure we have de�ned, called ISES

(Iterative Sampling Earliest Solutions). ISES is composed of two basic steps. First, a feasible solution is

found by invoking restartESA with a horizon value (MaxH) much greater than the lower bound mk0. In

other words we use the restart algorithm (Step 2 of Figure 5) to �nd a quite tight upper-bound of the

optimal makespan. We preferred this choice instead of a procedure to estimate an upper bound of the

optimal makespan mainly for two motivations: �rst we have lower upper bound values and second the

computational time to �nd this �rst horizon is generally negligible with respect to the overall computation

time.

Successive calls are then made to restartESA, each time substituting the new best makespan found on

the previous call as the new problem horizon. The iteration stops when either (1) a call to restartESA

17

ISES(Problem, MaxRestart, MaxH)

1. Sbest EmptySolution

/* �nd a �rst feasible solution */

2. Sol restartESA(Problem, MaxRestart, MaxH)

3. if Sol 6= EmptySolution then

/* improve the current makespan */

4. repeat

5. Sbest Sol

6. Sol restartESA(Problem, MaxRestart, MK(Sbest))

7. until mk0 < MK(Sol) < MK(Sbest)

8. return(Sbest)

9. end

Figure 5: The ISES Optimization Algorithm

returns an empty solution, (2) a lower-bound solution makespan is obtained, or (3) a solution is re-

turned which does not improve the previous best. During an initial tuning phase of the ISES algorithm

this \dynamic backward", multi-pass approach was found to outperform alternative schemes where the

horizon parameter for successive calls was uniformly varied between established lower and upper bound

values. These latter approaches were found to be more expensive computationally without signi�cant

improvement in makespan minimization performance.

5 Experimental Evaluation

To evaluate the e�ectiveness of the ISES algorithm, we consider its performance on two sets of reference

problems taken from the RCPSP/max problem repository 2:

Problem set A. This is the benchmark problem set described in [19]. It consists of three sets of 270

problems each, named J10, J20 and J30, with problems of 10, 20 and 30 activities respectively and

5 resources. The numbers of solvable instance are 187, 184, and 185 respectively. The rest of the

problems are provably infeasible.

Problem set B. This is the benchmark problem set introduced in [30] and used by the recent B&B

approaches. It consists of 1080 problems with 100 activities and 5 resources, of which 1059 are

feasible and the rest provably infeasible.

For both of these problem sets, lower bounds on makespan are known for each problem [18], providing

a common reference point for measuring deviation from optimal solutions. In the repository, the current

best makespan result for each problem is also available. These results are also used for comparison

2Available at ftp://ftp.wior.uni-karlsruhe.de/pub/ProGen-max/pspmaxlib/

18

below, together with performance results obtained with a number of di�erent algorithms reported in the

literature.

Both problem sets were generated by PROGEN/max, a
exible random networks generator [29]

capable of creating project scheduling problems of varying structure, constrainedness and diÆculty. Due

to di�erences in the generation parameters used in each case, there are important di�erences in the

characteristics of the problems in each set. The parameter settings used to generate Problem Set A

are closer than Problem Set B's to the settings which produce the \hardest possible" problems [16].

In particular, the problems in Set A exhibit higher levels of resource contention (i.e., higher contention

peaks) than those in Set B, along with increased parallelism in project activities (i.e., increased sequencing

exibility). Given these properties, we can expect deeper search trees (i.e., a larger search space) in

solving problems from Set A than for problems in Set B, since a greater number of ordering decisions are

needed to build up a feasible solution. As we will see, application of the B&B algorithm of [30] provides

indirect con�rmation of this fact; this algorithm performs comparably on both Problem Set B and the J30

problems of Problem Set A, even though Set B contains larger problem instances. Hence, the problems

in Problem Set A are actually very challenging.

5.1 Experimental Design

The algorithms compared to ISES below have been implemented in C/C++ and run on a Pentium 200

with an imposed time limit of 100 seconds per problem. Our current implementation of ISES is in Allegro

Common Lisp and the reported results are obtained on a SUN UltraSparc 30 (266MHz). The C++

and Lisp implementations are not directly comparable, but we have nonetheless imposed the same 100

seconds time limit originally used to evaluate the other algorithms in all the experiments.

Results are presented separately for problem Sets A and B. For each set, a two-step experimental

analysis has been performed, consisting of a preliminary phase to �rst examine the performance e�ects

of di�erent ISES parameter settings, and an intensive phase where the performance of ISES is evaluated

more comprehensively using the best ISES parameter settings found. Four parameters were varied during

the runs conducted in the preliminary phase: the Æ and sf parameters of the mcs sampling strategy, the �

parameter used to randomize the con
ict selection heuristic, and Nrst, the maximum number of restarts

attempted to produce a feasible solution. The maximumhorizon MaxH was not varied; in all experiments

reported in the paper this parameter is set to 5� mk0. In this way we obtain a suÆciently large horizon

to quickly �nd a �rst solution. During the subsequent intensive phase, each problem is solved multiple

times using di�erent random seeds, to minimize stochastic e�ects and better calibrate ISES performance.

(This is similar to the approach taken in [26] which also evaluates a random restart algorithm.) Two

types of results are reported in these experiments: (1) the average, obtained using the average result on

each problem over di�erent n runs; (2) the best, obtained using the best result on any single problem

19

over the n runs.

5.2 Evaluation Criteria

Using the data available from the repository, we compute the following performance measures for purposes

of comparative analysis:

� �LB% { the average relative deviation from the known lower bound. This is the standard baseline

performance metric used in the OR literature.

� Nopt { the number of optimal solutions found (i.e., solutions that either equal the lower bound or

are proved optimal by a B&B);

� Nfeas { the number of problems solved to feasibility.

We also include two additional metrics that are speci�c of ISES:

� Nimpr { the number of solution makespan that improves the current best. This is a value that

underscores problems where it performs as the best algorithm.

� CPU { it gives a measure of average computational requirements in seconds on classes of problems.

In the case of the intensive phase experiments, we report average performance as the main result and

indicate the best performance between round brackets.

5.3 Problem Set A

For purposes of conducting our preliminary parameter study, we restrict attention to the most diÆcult

subset of problems in Problem Set A, the J30 problems. For these problems, the current best reported

results fall on average (8.9%) above lower bound values. Following some initial tuning, we performed a

single run of ISES on each of the 270 instances of J30 for each combination of the following parameter

values: Nrst 2 f10; 30g; � 2 f0:05; 0:1;0:2; 0:5;1:0g; Æ 2 f0; 1; 2g; sf 2 f1; 10g. Results are given in

Table 1.

Examining these results, we can make several preliminary observations:

� the heuristic ESA strategy coupled with iterative sampling strategy ISES feasibly solves between

184 and 185 problems in all runs, independently of the di�erent settings. This is interesting because

185 coincides with the feasible problems and the B&B approach of [30] solved only 183 problems

within 100 seconds.

� Although 10 restarts of ESA obtains good results, it is constantly outperformed by the 30 restart

con�guration at extra computational expense. We also conducted selected experiments with Nrst =

20

Table 1: Set A - preliminary experiments (J30 problem set)

� Æ sf
Nrst = 10 Nrst = 30

�LB% Nopt Nfeas Cpusec �LB% Nopt Nfeas Cpusec

0 1 12.46 83 184 10.21 12.10 84 184 23.88

0 10 12.46 83 184 11.57 12.05 85 184 24.68

0.05
1 1 12.41 84 184 12.88 12.15 84 184 26.74

1 10 12.37 83 184 15.30 12.67 80 184 28.54

2 1 12.46 84 184 12.69 12.25 82 184 26.85

2 10 12.33 83 184 15.86 12.41 79 184 28.46

0 1 11.95 81 185 10.47 11.45 82 185 23.69

0 10 11.89 82 185 11.51 11.61 85 185 23.51

0.1
1 1 11.90 82 185 12.30 11.64 83 185 26.25

1 10 12.10 83 185 14.10 11.81 82 185 27.50

2 1 11.95 82 185 12.15 11.57 83 185 26.78

2 10 11.92 83 185 15.37 11.96 81 185 28.12

0 1 11.69 86 185 9.53 11.14 86 184 22.96

0 10 11.56 81 184 10.52 11.16 90 185 23.87

0.2
1 1 11.70 84 184 11.60 11.21 87 185 25.50

1 10 11.71 81 184 13.34 11.49 87 185 26.28

2 1 11.69 82 184 11.61 11.31 87 184 25.14

2 10 11.67 84 184 13.97 11.44 86 185 27.26

0 1 11.60 89 185 9.83 11.03 91 185 22.11

0 10 11.63 88 185 9.34 10.78 90 185 22.73

0.5
1 1 11.61 87 185 10.87 11.01 91 185 23.95

1 10 11.76 85 185 11.99 11.21 89 185 25.40

2 1 11.55 86 185 11.14 11.01 89 185 24.22

2 10 11.60 86 185 12.92 11.26 89 185 25.58

0 1 11.84 87 185 9.12 11.06 96 185 22.01

0 10 11.85 83 185 9.27 11.32 93 185 21.83

1.0
1 1 11.90 85 185 11.11 11.26 90 185 24.01

1 10 12.02 84 185 12.06 11.36 90 185 26.03

2 1 12.06 86 185 10.99 11.21 94 185 25.14

2 10 12.03 90 185 12.16 11.50 92 185 26.10

21

50. However, in these cases, signi�cant further improvement was not obtained, suggesting the

existence of a search \saturation point".

� As expected, Æ = 0 is the best choice for solution of the RCPSP/max. This con�rms the intuition

that smallermcss containing the activities with highest resource demand are most critical to resolve

�rst, and the utility of focusing variable ordering (i.e., mcs selection) heuristics as narrowly as

possible on this set of mcss.

� The role of the temporal
exibility does not play as big a role in de�ning mcs criticality as has

been observed and described in other domains (e.g., [10, 7]). In fact, the value of � appears to only

slightly in
uence performance. Nevertheless, we observe that too small a value of � signi�cantly

degrades performance and the best performance is obtained for � values of 0.5 and 1. Looking for

con�rmation of this trend suggests the �rst extensive experiment (below).

� The in
uence of the sampling factor is inde�nite. It seems generally that sf = 1 is suÆcient but

the absolute best result is obtained for � = 0:5 and sf = 10. This is another aspect that suggests

further analysis.

Given these results and observations, we settle on values of Æ = 0 and Nrst = 30, and undertake a more

intensive evaluation of combinations of parameter values for � and sf across multiple runs of the non-

deterministic ISES procedure. Speci�cally, we apply ISES to each problem in J30 �ve times (starting

from �ve di�erent random seeds) for each combination of the following parameter values: sf 2 f1; 10g,

and � 2 f0:1; 0:5; 1:0g. As indicated above, our goals are twofold:

1. to examine more closely the impact of varying the sampling factor (which in this case will varying

the total number of minimum cardinality mcss that are collected to form the con
ict choice set),

and

2. to more extensively evaluate the performance impact (or lack thereof) of the \K" estimator, which

measures the temporal
exibility associated with an mcs and is used to de�ne the heuristic for

choosing which con
ict to resolve next. Recall that when � = 0, strong bias is given to the

ordering of candidate mcss provided by the K estimator, whereas with � = 1 this heuristic bias is

completely disregarded and the choice is random. With � = 0:5, the heuristic bias is modulated by

a fair amount of non-determinism.

The results of these experiments are given in Table 2. Both average and best values obtained are reported

(the latter appear in brackets). We also include the number of new \best solutions" obtained (Nimpr).

We can make the following observations from these extended tests:

� Under all parameter con�gurations some number of new best solutions are obtained with ISES

(Nimpr), indicating its e�ectiveness as a RCPSP/max solution procedure.

22

Table 2: Set A - Intensive Experiments (Æ = 0, Nrst = 30)

� sf �LB% Nopt Nfeas Nimpr Cpusec

0.1
1 11.58 (11.06) 83.60 (85) 185.0 (185) 1.40 (3) 23.74

10 11.52 (11.10) 84.4 (88) 185.0 (185) 1.80 (2) 23.64

0.5
1 10.99 (10.37) 91.4 (96) 185.0 (185) 2.4 (6) 22.68

10 11.00 (10.24) 91.0 (97) 185.0 (185) 2.20 (5) 25.57

1
1 11.12 (10.27) 93.0 (101) 185.0 (185) 2.60 (5) 21.24

10 11.15 (10.34) 92.60 (101) 185.0 (185) 2.20 (3) 21.06

� The role of � and in turn the utility of temporal
exibility as a basis for estimating mcs criticality

is con�rmed. Strong reliance on K (� = 0:1) results in too narrow of a search and restricts the

algorithms ability to �nd good (i.e., lower makespan) solutions.

� Nevertheless, the K ordering does appear to provide some positive e�ect when coupled with a

suÆcient amount of non-determinism. For � = 0:5, the lowest average results and the largest

number of new best solutions are obtained.

� The lowest best results are obtained alternatively with � = 1. Thus it seems that more broad-based

exploration of the mcs con
ict set produced by the heuristic sampling strategy ultimately provides

better opportunities for lower makespan solutions but with higher variance in expected results.

Some reliance on the K estimator increases the consistency of search results while potentially

decreasing the reachability of some lower makespan solutions.

� There is an interesting observation (even if not so strong e�ect): the value � in
uences in di�erent

ways the average and best values. With higher value of � we observe a larger \scattering" of the

makespan values around the average value, this fact can be deduced from the small values of the

best �LB% in the case of � 2 f0:5; 1g.

� The sampling factor sf appears in fact to have no strong e�ect. The strong, single-run results

obtained earlier for � = 0:5 and sf = 10 do not persist when several runs are considered and appear

to be simply a stochastic e�ect.

On the basis of these results, we determine the best con�guration of parameter values for ISES to be:

Æ = 0, Nrst = 30, � = 0:5, sf = 1, and we use this con�guration to evaluate ISES performance on the

entire Problem Set A. Table 3 gives the results obtained by ISES with this con�guration, along with

(1) results previously obtained using the B&B approach of [30] (labeled B&BS98)
3, and (2) the current

3It is worth reminding that the B&B approaches here and in all the results in the paper are truncated at 100 seconds

and as a consequence are not working as complete methods. This is common practice in the reported OR literature.

23

best solutions (labeled C-BEST), which, besides results of [30], also includes some results obtained with

other, extended-computation, meta-heuristic solution approaches. It can be noted that:

� ISES shows a regular ability to solve the problems in the whole set (with the single exception of a

single instance of J10). This again con�rms the power of the heuristic con
ict analysis performed

by the basic strategy.

� As expected, the exact B&BS98 procedure �nds better results than ISES on the smaller J10 and

J20 instances. However on the larger J30 set, ISES begins to produce competitive results within

speci�ed time bounds, and �nds some new best known solutions. On average, ISES solutions to

the J30 problems are seen to be within 1.5% of those generated by B&BS98 from the standpoint of

deviation from the lower bound.

Table 3: Set A (5 runs, 100 secs, Æ = 0, � = 0:5, sf = 1)

Set Algorithm �LB% Nopt Nfeas Nimpr Cpusec

ISES 1.26 (0.99) 159.0 (164) 186.0 (186) 0 0.71

J10 B&BS98 0.0 187 187 { {

C-BEST 0.0 187 187 { {

ISES 5.37 (4.99) 117.8 (122) 184.0 (184) 0 4.48

J20 B&BS98 4.29 157 184 { {

C-BEST 3.97 158 184 { {

ISES 10.99 (10.37) 91.4 (96) 185.0 (185) 2.40 (6) 22.68

J30 B&BS98 9.56 115 183 { {

C-BEST 8.91 120 185 { {

On balance, these results suggest that for RCPSP/max problems characterized by high contention (and

hence exhibiting a large search space), ISES o�ers a scalable alternative to exact B&B approaches. As

additional con�rmation of this fact, it was found that the number of problems for which ISES generates

lower makespan solutions than B&BS98 to steadily increase with the dimension of the problem (from 0

on J10 problems, to 7 on J20 problems, to 28 on J30 problems).

5.4 Problem Set B

The test set B consists of 1080 problems with 100 activities and 5 resources, of which 1059 are feasible

and the rest are provably infeasible. We draw on the experience gained on set A and �x Æ = 0 for all

experiments. As before, we �rst conduct a preliminary analysis of parameter settings, where all results

are obtained with a single run of ISES. The results of this preliminary analysis are given in Table 4.

One clear di�erence in the results obtained for Problem Set B is the e�ect of the number of restarts on

solution quality. In fact, results for Nrst = 10 are consistently better than Nrst = 30. This behavior

24

Table 4: Set B - Preliminary experiments (Æ = 0)

� sf
Nrst = 10 Nrst = 30

�LB% Nopt Nfeas Cpusec �LB% Nopt Nfeas Cpusec

0.1
1 7.99 667 1056 40.31 8.35 659 1058 49.52

10 8.03 662 1057 41.21 8.34 657 1057 49.40

0.5
1 7.98 671 1057 40.89 8.34 661 1059 49.04

10 8.00 670 1057 40.25 8.31 662 1058 48.88

1.0
1 8.16 668 1057 41.48 8.53 655 1058 49.18

10 8.31 661 1058 41.56 8.47 660 1057 49.30

is a direct consequence of the 100 second bound on solution time, which is quite severe for the current

ISES implementation (due primarily to the cost of temporal propagation in the 100 activities problem).

We notice again a limited in
uence of the sampling factor, and decide to perform intensive, multi-run

experimental analysis with the following settings: Nrst = 10, � = 0:5, Æ = 0 and sf = 1.

Table 5 reports the intensive experimental analysis of performance results for ISES on Problem set

B using the same metrics originally used in the B&B study of [30]. We compare the performance of

ISES with all recently reported branch and bound approaches for RCPSP/max, including those of [13]

(labeled B&BdRH), [21] (labeled B&BM98), [30] (labeled B&BS98), and [15] (labeled B&BD98). We also

include the previously summarized heuristic procedure of [16] (labeled PRbest
FN98), until now the best non

systematic solution to RCPSP/max. In the case of PRbest
FN98, no decomposition strategy/priority rule

pair was found to outperform all others on all problems, so we include in Table 5 the results obtained by

using the best performing decomposition scheme and, for each problem, taking the best solution found

by 10 priority rules.

Table 5: Set B - Comparison with �ve independent runs

1080 Problems �LB% Nopt Nfeas

ISES 7.95 (7.34) 669.8 (683) 1057.64 (1059)

B&BdRH { 606 1009

B&BM98 10.30 701 1023

PRbest
FN98 8.00 613 1053

B&BS98 7.04 675 1059

B&BD98 4.40 769 1059

C-Best 4.09 781 1059

Same observations follow from Table 5:

� ISES is one of three approaches that is able to �nd all feasible solutions (98.06%) within the 100 sec-

25

ond time bound. In this regard, ISES outperforms PRFN98, previously the best heuristic procedure

known for RCPSP/max. In fact, ISES also appears to be more robust than PRFN98; considering

the 5 runs performed with ISES individually, no more than 3 feasible solutions were ever missed on

a single run.

� all B&B approaches except B&BdRH �nd higher percentages of optimal solutions than ISES. How-

ever, with regard to deviation from lower bound solutions �LB% ISES ranks third behind B&BD98

and B&BS98, and is in fact fairly comparable to B&BS98 with a 100 second time limit. (Note that

�LB% is in
uenced by the number of feasible solutions found; solving the more diÆcult problems

typically increases the deviation [15]).

The clearly dominating procedure on Problem Set B is B&BD98 of [15]. It is interesting to note that this

approach exploits resource constraint propagation rules that could be straightforwardly added to ISES. We

are currently investigating this possibility. In fact we do not necessarily consider our complete procedure

as the best total solution; but instead view our work as contributing a \heuristic search module" which

might be used in conjunction with a B&B framework such as [15] or [30] or even within an alternative

search framework such as Limited Discrepancy Search (LDS) [17].

Considering again the di�erences between Problem Sets A and B, we observe the di�erent average

deviation results obtained by the B&B approach of [30]: 9.56% on Set A, 7.04% on Set B. These results

reinforce the suggestion that Set A is of higher diÆculty than Set B, and hence that, despite the larger

problem size in terms of number of activities, the search spaces of Set B instances may not be of suÆcient

size to stress the B&B approaches. In any event, ISES can be seen to provide a strong heuristic solution.

6 Conclusions

In this paper, we have investigated the use of an iterative sampling procedure to solve RCPSP/max, a

complex optimization problem. The ISES procedure uses a combination of constraint-guided and ran-

domized search. At its core, a greedy feasible solution generator is formulated according to a constraint-

posting CSP model, which acts to iteratively transform an initial time-feasible solution into one that is

also resource-feasible. Within this procedure, analysis of \minimal critical sets" (mcss) is used to identify

where additional ordering constraints are required to avoid resource contention, and mcs analysis is inte-

grated with principles related to preservation of temporal
exibility to provide heuristics for focusing the

search. One key to the e�ectiveness of this resolution procedure is its use of an approximate procedure

for computing outstanding mcss, which avoids the exponential computation of systematic enumeration

and identi�es \critical" mcss at a low polynomial cost.

Randomization is introduced into the core procedure in a way that incorporates the bias of these greedy

search heuristics. This provides a basis for smoothing the decisions of the deterministic algorithm and

26

for broadening the search to include heuristically equivalent search paths in the space. An encompassing,

iterative restarting search framework is de�ned to capitalize on these opportunities and enhance the

probability of �nding better quality solutions.

ISES was compared with the best existing approaches to RCPSP/max. In this comparison, ISES

was found to outperform several systematic and heuristic approaches on di�erent reference problem sets.

ISES was shown to exhibit the best comparative performance in problems exhibiting heavy resource con-

tention, where the search space is quite large and becomes a serious obstacle for even the best systematic

approaches. As problem size was increased in these types of problems, a clearly favorable performance

trend was observed in terms of both the number and the quality of solutions produced by ISES, indicating

its potential as a scalable, heuristic solution procedure. It is interesting to note that the e�ectiveness

of ISES derives principally from its composite search strategy and heuristics, rather than on a set of

propagation rules for early pruning of the search space. The addition of the latter could be an interesting

direction for future research.

Acknowledgments

Authors would like to thank Dr.Christoph Schwindt for creating the repository that made possible the

experimental comparison described in this work and for giving prompt clari�cations on its use. We

also thank the various authors who have made available their updated unpublished works on this topic.

A special thank to the JoH special issue reviewers for their constructive comments. Amedeo Cesta

and Angelo Oddi's work is supported by Italian Space Agency, by CNR Committee 12 on Information

Technology (Project SCI*SIA), and CNR Committee 4 on Biology and Medicine. Stephen F. Smith's

work has been sponsored in part by the US Department of Defense Advanced Research Projects Agency

under contract F30602-97-20227, and by the CMU Robotics Institute.

References

[1] P. Baptiste and C. Le Pape. A Theoretical and Experimental Comparison of Constraint Propagation

Trchniques for Disjunctive Scheduling. In Proceedings of the 14th International Joint Conference on

Arti�cial Intelligence, 1995.

[2] P. Baptiste, C. Le Pape, and W. Nuijten. Sati�ability Tests and Time-Bound Adjustments for

Cumulative Scheduling Problems. Technical report, Univerity of Compi�egnie, 1997. to appear in

Annals of Operations Research.

[3] M. Bartusch, R. H. Mohring, and F. J. Radermacher. Scheduling Project Networks with Resource

Constraints and Time Windows. Annals of Operations Research, 16:201{240, 1988.

[4] P. Brucker, A. Drexl, R. Mohring, K. Neumann, and E. Pesch. Resource-Constrained Project

Scheduling: Notation, Classi�cation, Models, and Methods. European Journal of Operations Re-

search, 1998. to appear.

27

[5] Y. Caseau and F. Laburthe. Improved CLP Scheduling with Task Intervals. In P. V. Hentenryck,

editor, Logic Programming, Proceedings of the Eleventh International Conference on Logic Program-

ming, pages 369{383, Santa Margherita Ligure, Italy, 1994. MIT Press.

[6] Y. Caseau and F. Laburthe. Cumulative scheduling with task intervals. In M. Maher, editor,

Logic Programming, Proceedings of the Joint International Conference and Symposium on Logic

Programming, Bonn, Germany, 1996. MIT Press.

[7] A. Cesta, A. Oddi, and S. Smith. Pro�le Based Algorithms to Solve Multiple Capacitated Metric

Scheduling Problems. In Proceedings of the Fourth Int. Conf. on Arti�cial Intelligence Planning

Systems (AIPS-98), 1998.

[8] A. Cesta, A. Oddi, and S. Smith. Scheduling Multi-Capacitated Resources under Complex Temporal

Constraints. Technical Report CMU-RI-TR-98-17, Robotics Institute, Carnegie Mellon University,

1998.

[9] A. Cesta, A. Oddi, and S. Smith. An Iterative Sampling Procedure for Resource Constrained Project

Scheduling with Time Windows. In Proceedings of the 16th Int. Joint Conference on Arti�cial

Intelligence (IJCAI-99), 1999.

[10] C. Cheng and S. Smith. Generating Feasible Schedules under Complex Metric Constraints. In

Proceedings 12th National Conference on AI (AAAI-94), 1994.

[11] C. Cheng and S. Smith. Applying Constraint Satisfaction Techniques to Job Shop Scheduling. Annals

of Operations Research, 70:327{357, 1997.

[12] J. Crawford. An Approach to Resource Constrained Project Scheduling. In Proceedings of the 1996

Arti�cial Intelligence and Manufacturing Research Planning Workshop, 1996.

[13] B. De Reyck and W. Herroelen. A Branch-and-Bound Procedure for the Resource-Constrained

Project Scheduling Problem with Generalized Precedence Relations. European Journal of Operations

Research, 111(1):152{174, 1998.

[14] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Arti�cial Intelligence, 49:61{95,

1991.

[15] U. Dorndorf, E. Pesch, and T. Phan Huy. A Time-Oriented Branch-and-Bound Algorithm for

Resource-Constrained Project Scheduling with Generalized Precedence Relations. Technical report,

University of Bonn, Faculty of Economics, 1998.

[16] B. Franck and K. Neumann. Resource Constrained Project Scheduling Problems with Time Win-

dows { Structural Questions and Priority-Rule Methods. Technical Report WIOR-492, Universit�at

Karlsruhe, 1998. (Revised November 1998).

[17] W. Harvey and M. Ginsberg. Limited Discrepancy Search. In Proceedings of the 14th Int. Joint

Conference on Arti�cial Intelligence (IJCAI-95), 1995.

[18] R. Heilmann and C. Schwindt. Lower Bounds for RCPSP/max. Technical Report WIOR-511,

Universit�at Karlsruhe, 1997.

[19] R. Kolisch, C. Schwindt, and A. Sprecher. Benchmark Instances for Project Scheduling Problems.

In J. Weglarz, editor, Handbook on Recent Advances in Project Scheduling. Kluwer, 1998.

[20] P. Laborie and M. Ghallab. Planning with Sharable Resource Constraints. In Proceedings of the

International Joint Conference on Arti�cial Intelligence (IJCAI-95), 1995.

28

[21] R. M�ohring, F. Stork, and M. Uetz. Resource Constrained Project Scheduling with Time Windows:

A Branching Scheme Based on Dynamic Release Dates. Technical Report 596/1998, Fachbereich

Mathematick, Technische Universit�at Berlin, 1998.

[22] U. Montanari. Networks of Constraints: Fundamental Properties and Applications to Picture Pro-

cessing. Information Sciences, 7:95{132, 1974.

[23] K. Neumann and C. Schwindt. Activity-on-Node Networks with Minimal and Maximal Time Lags

and Their Application to Make-to-Order Production. Operation Research Spektrum, 19:205{217,

1997.

[24] K. Neumann and J. Zhan. Heuristics for the minimum project-duration problem with minimal and

maximal time lags under �xed resource constraints. Journal of Intelligent Manufacturing, 6:145{154,

1995.

[25] W. Nuijten and E. Aarts. A Computational Study of Constraint Satisfaction for Multiple Capacitated

Job Shop Scheduling. European Journal of Operational Research, 90(2):269{284, 1996.

[26] W. Nuijten and C. Le Pape. Constraint-Based Job Shop Scheduling with Ilog-Scheduler. Journal

of Heuristics, 3:271{286, 1998.

[27] A. Oddi and S. Smith. Stochastic Procedures for Generating Feasible Schedules. In Proceedings 14th

National Conference on AI (AAAI-97), 1997.

[28] N. Sadeh. Look-ahead Techniques for Micro-opportunistic Job-Shop Scheduling. PhD thesis, School

of Computer Science, Carnegie Mellon University, 1991.

[29] C. Schwindt. Generation of Resource Constrained Project Scheduling Problems with Minimal and

Maximal Time Lags. Technical Report WIOR-489, Universit�at Karlsruhe, 1996.

[30] C. Schwindt. A Branch and Bound Algorithm for the Resource-Constrained Project Duration Prob-

lem Subject to Temporal Constraints. Technical Report WIOR-544, Universit�at Karlsruhe, 1998.

[31] S. Smith and C. Cheng. Slack-Based Heuristics for Constraint Satisfaction Scheduling. In Proceedings

11th National Conference on AI (AAAI-93), 1993.

29

