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Abstract

Registration of medical images enable quantitative study of anatomical differences between
populations, as well as detection of abnormal variations indicative of pathologies. However inher-
ent anatomical variabilities between individuals and possible pathologies make registration diffi-
cult. This paper presents a bootstrap strategy for characterizing non-pathological variations in
human brain anatomy, as well its application to achieve accurate 3-D deformable registration.

Inherent anatomical variations are initially extracted by deformably registering training data
with an expert-segmented 3-D image, a digital brain atlas. Statistical properties of the density and
geometric variations in brain anatomy are extracted and encoded into the atlas to build a statisti-
cal atlas. These statistics are then used as prior knowledge to guide the deformation process. A
bootstrap loop is formed by registering the statistical atlas to larger training sets as more data
becomes available, so as to ensure more robust knowledge extraction, and to achieve more precise
registration. Compared to an algorithm with no knowledge guidance, registration using the statis-
tical atlas reduces the overall error by 34%.

1. Motivation

Registration between 3-D images of human bodies enables cross-subject diagnosis and post-
treatment analysis. However, due to genetic and life-style factors, there are inherent non-patholog-
ical differences in the appearance and location of anatomical structures between individuals. Figure
1 displays cross-sections from T1-weighted magnetic resonance imaging (MRI) volumes of two
non-pathological brains. The example structure, corpus callosum, has different intensity, shape,
size, and location in these two brains. These variations are characteristic for the particular structure
of the individuals. For registration algorithms that assume the same structure should have the same
appearance or location in different individuals, these innate variations make accurate inter-subject
registration difficult.

.]Corpus
Callosum

Figure 1. Innate variations between individuals.

Currently there exist many intensity correspondence based registration algorithms (11, B). 55} [14].
Although they demonstrate encouraging performance, considerable inaccuracies still exist. Certain
inaccuracies are caused by the algorithm’s insufficient knowledge of the anatomy, and cannot be
corrected by exploiting image features solely. Knowledge of anatomical variations will help im-
prove registration performance; furthermore, characterization of such variations can facilitate quan-
titative study of anatomical differences between populations, as well as anomaly detection.

2. Bootstrap strategy

We intend to capture knowledge of anatomical variabilities in human brain structures, so as to
improve inter-subject registration accuracy. The core approach is a closed-loop bootstrap frame-
work for characterizing the appearance of brain structures and their non-pathological variations be-
tween individuals, then applying such knowledge to improve registration accuracy, and further
using the improved registration to refine knowledge characterization, which helps obtaining more
precise registration. This closed-loop bootstrap process can keep going as more image data becomes
available, Figure 2 illustrates the concept. In order to extract anatomical variations between individ-
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uals, image data of a population needs to be compared in a common reference frame. Our reference
is a 3-D digital atlas, which is a T1-weighted MRI of a non-pathological brain, accompanied by ex-
pert classification of its anatornical structures. Note that, this atlas is an example of a normal brain,
not an average brain of a population. The method for comparison is an automatic 3-D deformable
registration algorithm that was previously developed [14),

Image —| 3-D Deformable Registration

[ Characterization of Brain Anatomy and Its Variations

Y

| Study of Differences between Populations | | Anomaly Detection |
Figure 2. Bootstrap Strategy

3. Capturing anatomical variations

A population of 105 T1-weighted normal brain MRI volumes constitute the training set. Differ-
ent image acquisition processes result in variations in the 3-D orientation, position, resolution and
intensity of image volumes in the training set. Differences in head size also add variation in the
scales of the 3-D images. These variations are extrinsic to the anatomical variabilities, and thus need
to be removed before the intrinsic variations can be extracted. This is similar to Martin et al.’s ap-
proach of separating important and unimportant shape variation so as to quantitatively describe
pathological shape variations'®.

3.1. Eliminating extrinsic variations

The registration algorithm employed for atlas-training set comparison [14 consists of a hierarchy
of deformable models, of which the first level is a similarity transformation, which addresses the
extrinsic geometric variations between different subject volumes via 3-D rotation, scaling, and
translation. As a result, each subject volume in the training set has the same orientation, size, and
location as that of the atlas. The transformed subject volume is resampled to match the resolution
of the atlas. A multi-level intensity equalization scheme is interwoven into the deformation hierar-
chy to adjust the differences in intensity distributions. The middle row in Figure 3 shows the result
of having removed the extrinsic differences between the atlas and samples in the training set.

Atlas Subject 1 Subject N

{Similarity Transformation |

y

[Deformable Registration |

Figure 3. Remove extrinsic variations, and extract intrinsic variations.

3.2. Extracting intrinsic anatomical variations

After the removal of extrinsic variations, intrinsic variations are apparent as the misalignment
between anatomical structures in the subject volumes and the atlas. The employed registration al-
gorithm captures this information by aligning corresponding structures through 3-D deformation,
as shown in the last row of Figure 3. 3-D displacement at each voxel is recorded. Therefore, after
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- aligning each subject’s anatomical structures with those in the atlas, each atlas voxel is associated
with two distributions: one is an intensity distribution of corresponding voxels in the subject vol-
umes; the other is a geometric distribution of the 3-D displacement between the atlas voxel and the
corresponding voxels in the subject volumes. The former contains density variations of anatomical
structures over a population (density is reflected in image intensity), while the latter embodies geo-
metrical variations such as shape, size, and location.

4. Modeling anatomical variations
The purpose of capturing anatomical variations is to achieve accurate registration. We character-
ize these variations as statistics, so as to employ them as prior knowledge in statistical models.
Aligned Deformation ~ Deformed
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Figure 4. Left: model density variations at each atlas voxel as a 1-D distribution.
Right: model geometric variations at each atlas voxel as a 3-D distribution.

4.1. Modeling density variations

Once the training set is deformed to register with the atlas, each atlas voxel corresponds with its
counterpart in each of the subject volumes. The histogram of their intensities captures tissue density
variations in a population (Figure 4, left).

The intensity histogram at each atlas voxel is modeled as a 1-D Gaussian distribution, P(dI|D) :

)
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where dI = 1,-1,, while I, and I, are corresponding voxel intensities in the subject volume and
the atlas. D is the 3-D deformation between them. p is the mean intensity difference between the
training set and the atlas at this voxel; o2 is the variance of the intensity difference distribution. I
has been adjusted for intensity variations caused by image acquisition processes (3.1).

4.2. Modeling geometric variations

After the training set is deformed to register with the atlas, the 3-D displacements between each
atlas voxel and its counterparts in the training set embody the geometric variations between indi-
viduals. The distribution of the variations can be captured in a 3-D histogram. Figure 4, right, shows
a 2-D illustration. The 3-D histogram of displacements at each atlas voxel is modeled as a 3-D
Gaussian distribution, P(D):
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here A® is the 3-D displacement between the atlas voxel and its counterpart in the subject volume,

o is the mean 3-D displacement at this atlas voxel, and @ is the 3x3 covariance matrix of the dis-
tribution. A3 has been adjusted for extrinsic variations (3.1).
4.3. A statistical atlas

The original atlas was one particular subject’s brain MRI data, with each voxel’s anatomical
classification given by an expert; the above modeling associates each atlas voxel with a distribution
of tissue density variations, and a distribution of geometric variations between individuals. These
distributions enrich the atlas into a statistical atlas that embodies the knowledge of anatomical vari-
ations in a population. Figure 5 illustrates the concept.
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Figure 5. A statistical atlas.

5. Registration using the statistical atlas
Using the statistical models as prior knowledge, the registration between a subject and the atlas
can be formulated as finding the deformation D that gives the highest posterior probability P(DidI).
According to Bayes rule, P(D|dI) can be expressed as:
pojan = 2120 ©)
Finding the highest P(D|dI) becomes maximizing the right hand side of equation (3). Here P@D is
a constant for two given image volumes, and the numerator has the same maximum as its logarithm.
Substituting from equations (1) and (2) and taking logarithms, we obtain:
L _@-w? g 1 (B3 - ) o 1(A3 - 1)
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hence maximizing P(D|dl) is equivalent to minimizing the term:
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We use gradient descent to find the deformation that minimizes (4). The 3-D gradient, V, at each
step of the descent is given by the first order derivative of (4):
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where VI is the 3-D image gradient, which is a function of the voxel’s position. In this way, each
voxel is guided to search for a counterpart so their match is most probable according to the statistics
gathered from a population. This algorithm differs from the previously developed hierarchical de-
formable registration algorithm{!4! in the measurement of the goodness of the voxel deformation
flow. In this method, we maximize the posterior probability of the current deformation using statis-
tics gathered from a population, whereas in the previous algorithm we minimize the intensity dif-
ference between spatially corresponding voxels in the atlas and the subject volume. Before
undergoing deformation, both algorithms globally align the two image volumes to eliminate extrin-
sic variations.

Voxel-based statistics models are efficient at modeling anatomical variations. In reality, howev-
er, the deformation of neighboring voxels are not independent. A more comprehensive model
should consider dependencies between 3-D deformations of neighboring voxels. Theoretically we
can address this neighborhood context using a direct higher dimensional extension of the voxel-
based statistics models; however, the dimensionality of our image volumes makes this approach im-
practical for our facility. To simplify the problem, we approximate the voxel-neighbor interaction
using the goodness of its neighbors’ current match according to their respective prior distributions.
Using a weighted-window matching approach, the goodness is weighted by the distance between
the voxel and the particular neighbor. Therefore, for a voxel neighborhood %, the 3-D gradient de-
termined by neighborhood statistics models is a direct extension of equation (5):
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6. Performance of registration using the statistical atlas

We start from a small subset of our image data, and bootstrap knowledge characterization till full
usage of the training set. The effectiveness of our model of anatomical variations is evaluated by
comparing registration using the statistical atlas, and registration using the original atlas.
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Since each voxel in the atlas is labelled with the anatomical structure that contains it, when we
register the atlas with a subject, we can then assign the label to the corresponding voxel in the sub-
ject. This creates a customized atlas which contains classifications of the subject’s anatomical fea-
tures. Figure 6, left, illustrates this process. Given the ground-truth classification of the subject’s
anatomical structures, we can evaluate the quality of the registration by assessing the voxel classi-
fication accuracy. Currently we have 40 subjects’ brain MRIs that have expert classification of one
structure, the corpus callosum, in one plane, the mid-sagittal plane. They are not part of the training
set, and are used as the test set. Using expert classification as ground-truth, we define our error met-
ric as the ratio between the number of mislabelled voxels and the number of expert labelled voxels.
Mislabelled voxels include those labelled as corpus callosum in the customized atlas but not by the
expert, or vice versa. Note that this ration can be larger than 100%.

Atlas Image  Atlas Labels Subject
: Use Original Atlas Use Statistical Atlas
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Figure 6. Classifying a subject’s anatomical structures through registration with the
atlas (left). Registration resuits using the statistical atlas and the original atlas (right).

When applied to the test set, registration guided by the statistical atlas with a 3x3x3 voxel neigh-
borhood gives an overall mislabelled voxel ratio of 2.9%. This is a 34% error reduction over the
algorithm with no knowledge guidance!!4. We expect a complete implementation of the neighbor-
hood statistics guided registration to yield an even greater improvement in performance. Figure 6,
right shows an example of improved registration using the statistical atlas.

7. Applications of registration

Accurate and efficient registration algorithms make it possible for quantitative study of the anat-
omy over large populations. To investigate the feasibility of such approach and its acceptability by
medical professionals, several collaborative study have been conducted with research groups in
medical institutions.

7.1. Quantitative study of populational differences.

To explore the application of automatic quantitative analysis, segmentation of the right lateral
ventricle in 9 schizophrenic patients and 12 normal controls were conducted both by human oper-
ators and the registration algorithm (in collaboration with researchers at Western Psychiatric Insti-
tute and Clinic of the University of Pittsburgh Medical Center). Histograms of respective
volumetric measurements given by both methods are compared in Figure 7, left. The top row shows
results given by human operators, with the left histogram for normal controls, and the right one for
schizophrenics; the bottom row gives corresponding results from the automatic analysis. Despite a
systematic tendency of larger volumes estimated by the automatic algorithm, results from these two
methods are highly correlated (Pearson’s correlation coefficient = 0.95).

7.2. Detect abnormal variations

Despite drastic individual variability in the anatomy, there still exists a distinction between the
normal range of variability and pathology-afflicted alteration. A statistical study of the skull volume
over a population of 48 normal subjects gives a histogram distribution shown in Figure 7, right. The
horizontal axis is the volume of the skull in cm?, the vertical axis is the percentage of subjects stud-
ied. Note the wide range of variations among normal subjects. However, the estimated skull volume
in a pathological brain, 106.57 cm?, still falls beyond the normal range of variations.
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Figure 7. Left: Histograms of right lateral ventricle volumes of normal controls and
schizophrenics, from manual estimation (top) and automatic analysis (bottom). High
correlation is observed. Right: Histogram of 48 normal subjects’ skull volumes. A
pathological brain’s skull volume falls beyond the normal range of variations

8. Conclusion

Inter-subject registration is made difficult due to inherent differences between individuals. Char-
acterization of such anatomical variations can help improve registration performance. Using a boot-
strap strategy, we extract the patterns of variations in the appearances of brain structures from a
training set of 105 T1-weighted MRIs. Compared to registration with no prior knowledge, registra-
tion using knowledge guidance achieves 34% error reduction on a test set of 40 MRI volumes.

Besides guiding deformable registration, knowledge of anatomical variations can also facilitate
quantitative investigation of anatomical differences between populations, and help detect abnormal
variations due to pathology.

In the future, one important issue is to refine the statistical atlas by building population-specific
atlases. To achieve this, data from large populations need to be stratified into subpopulations. At-
lases constructed from subpopulations encode information on population variability, and therefore
can facilitate study of identifying group-specific patterns of anatomic or functional alterations.
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