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Abstract

We present a multi-PC/camera system that can perform
3D reconstruction and ellipsoids fitting of moving humans
in real time. The system consists of five cameras. Each
camera is connected to a PC which locally extracts the sil-
houettes of the moving person in the image captured by the
camera. The five silhouette images are then sent, via local
network, to a host computer to perform 3D voxel-based re-
construction by an algorithm called SPOT. Ellipsoids are
then used to fit the reconstructed data. By using a simple
and user-friendly interface, the user can display and ob-
serve, in real time and from any view-point, the 3D mod-
els of the moving human body. With a rate of higher than
15 frames per second, the system is able to capture non-
intrusively sequence of human motions.

1. Introduction

Due to the vast applications in the fields of telepresence,
virtual reality, human machine interface, the research of real
time human motion modelling and tracking is gaining much
attention. In the past decade, efforts have been put in devel-
oping methods for reconstructing three dimensional mod-
els of human actions or tracking human/hand movements
from multiple cameras ([9], [7], [11], [6], [5], [2], [3] and
[12]). These methods can be divided into two categories.
The first category focuses on detailed model reconstruction
[9] or segmentation [6] of humans in 3D. Despite the fact
that image acquisition is real time, the reconstruction or
segmentation of the methods in this category is done off-
line. The second category [2], [3], [12), [1] involves real-
time 3D human motion tracking without explicit or detailed
3D human model reconstruction. Almost all of the meth-
ods in this category assume a generic 3D human model and
the tracking/model fitting is done by comparing the camera
projections of the generic model with the silhouettes [3],
edges [5] or the optical flow [1] of camera images. Al-
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though these methods work well in general, none of them
have tried to reconstruct and fit humans in real-time directly
in the 3D domain. In view of this, we have built a sys-
tem that can achieve real-time 3D reconstruction of human
body and movements. Our approach combines the features
of model reconstruction and fitting of the above two cate-
gories in the 3D domain.

A brief overview of our approach is given in Section 2,
followed by detailed descriptions of each step in Section
3 and 4. The system architecture is discussed in Section 5.
The performance of using our system to capture human mo-
tion sequences is presented in Section 6. Finally, conclusion
and future work is given in Section 7.

2. Overall Algorithm

The major aim of our system is to create a robust sys-
tem which can be used to capture 3D human motions in
real time. The system consists of two core processes : 3D
reconstruction and ellipsoids fitting. The 3D reconstruc-
tion method we used is based on the technique known as
shape from silhouettes [8] [10]. This technique is chosen
over other methods such as stereo [9] because it can be im-
plemented real time by using look up table as described in
Section 3. After the camera has captured an image, the sil-
houette of the moving humans and objects in the scene are
extracted. A robust background subtraction approach for
cluttered environment is used and the details are presented
in Section 3.1. Figure 1(a). illustrates how 3D models can
be built from the extracted silhouettes. By the principle of
perspective projection, the object has to lie within the cone
(bounding volume) formed by the silhouette and the cam-
era view-point. Hence given multiple silhouette images of
an object from different viewpoints, its 3-D shape can be
reconstructed by intersecting the corresponding bounding
volumes formed by the silhouette constraints as shown in
Figure 1(b). _

In Section 3.2, we will introduce an algorithm called
Sparse Pixel Occupancy Test (SPOT) which is a digital im-



Figure 1. Shape from silhouettes : (a) bound-
ing volume constraints, (b) intersection of
bounding volumes.

plementation of the above reconstruction technique. As will
be seen shortly, SPOT allows us to perform 3D voxel recon-
struction robustly in real time.

After obtaining the 3D model of the moving human, el-
lipsoids are used to fit the data for subsequent motion analy-
sis. The fitting consists of two procedures : body parts seg-
mentation and parameters estimation. The first procedure
makes use of a proximity criteria while the second uses mo-
ment analysis. The details of these procedures are discussed
in Section 4.

3. Shape From Silhouette

3.1. Silhouette generation

One difficult problem of generating silthouette by back-
ground subtraction is to remove shadows quickly and effec-
tively. In our system, two techniques are used to tackle this
problem. Firstly we incorporate color information to dis-
tinguish shadow and non-shadow pixels. Secondly, we use
different threshold constants based on the type of the pixels.
With these two techniques, we are able to perform robust
background subtraction up to thirty frames per second.

Given a background image whose (i,j)"‘ pixel color is
denoted by the vector ¢ (%, j)), the algorithm for extract-
ing the silhouette pixels from the run-time image (with the
(¢, §)** pixel color being ¢, (7, 7)) is stated formally as fol-
lows:

1. Calculate the intensity difference
d(i, ) = ller (i, 5) — es(i, )]
Ifd(i,5) > TY,
then the (3, j)” pixel is a silhouette pixel, end
else go to Step 2.

2. Ifd(i,§) < T*,
then the (i, j)* pixel is NOT a silhouette

pixel, end
else go to Step 3.

3. Calculate the color difference

— -1 Cr(3,7) Co(i,7
0 = cos™ i)
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If6 > T1°,
then the (%, j)** pixel is a silhouette pixel, end
else the (4, j)'* pixel is NOT a silhouette pixel,
end.

Here, ||c|| represents the norm of a vector ¢ and - is the dot
product operator. The algorithm basically consists of three
tests. Steps 1 and 2 test the intensity difference between
the run-time and background pixels. If the intensity dif-
ference is very large (as compared to an up threshold con-
stant TV), then the pixel should be a silhouette pixel. If
the intensity difference is very small (as compared to a low
threshold constant T'7'), then the pixel must be a background
pixel. For pixels with intensity differences lie between 7%
and TY, a third test (Step 3) is performed to determine if
it is a shadow pixel. The value @ is the angle between the
vectors ¢, and ¢, in the RGB color domain and hence is a
measure of the color difference between the run-time and
background pixels. For a shadow pixel, the color difference
between run-time and background should be small because
the difference lies mainly in the intensity values. Hence by
comparing ¢ with a color threshold constant 7€, most of
the shadow pixels can be removed.

The second technique we employed in our background
subtraction process is to use different threshold constants
for different regions of the image. Right after the back-
ground image is acquired, it is automatically segmented into
different regions by using color information. For example,
Figure 2(c) shows the segmentation of the background im-
age in Figure 2(b) into two regions: floor and non-floor. The
rationale behind this is that different types of regions have
different color statistics and shadow probabilities. For ex-
ample, the floor region has a higher probability of having
shadows than the non-floor region and therefore different
thresholds must be used. This region-based threshold con-
stant approach is more flexible than the simplest method of
using only one set of thresholds for the whole image. More-
over, as compared to the method of having thresholds for
each pixel, our approach is more practical and accurate. It
is because the number of thresholds in our approach is not
high and hence we can determine each of them manually.
On the other hand, for the pixel-based method, the large
number of thresholds are usually determined by using the
pixel color variances and cannot be fine tuned individually.
In our system, there are only six thresholds for each cam-
era (two regions and each region has three thresholds) and
they are predetermined manually prior to the start of the sys-
tem by studying the color and the shadows of the floor and
non-floor regions. Figure 2(d) is the foreground silhouette
image extracted from the run-time and background images
in Figure 2(a) and 2(b) respectively. It can be seen that the
shadows cast by the legs are removed completely.

To study the performance of our approach, we measure
the error rates of extraction. There are two types of er-



Figure 2. Images from silhouette generation :
(a) run-time image, (b) background image, (c)
segmented background image, (d) extracted
silhouette image

rors. The first one refers to the case that a silhouette pixel
is wrongly marked as a non-silhouette pixel and we de-
note the probability that this case happens as 1. The sec-
ond type of error happens when a non-silhouette pixel is
wrongly marked as a silhouette pixel and we use ¢ to de-
note its probability . As will be obvious in the next sec-
tion, these two probabilities are important quantities in our
3D voxel reconstruction algorithm SPOT. To measure these
two probabilities, 150 run-time images are taken and their
silhouette images are computed by using our approach. The
correct silhouette images are then generated semi-manually
by using a mask editing interface program and the correct
and error pixels are identified. With these experiments, the
error probabilities of our background subtraction approach
are found to be

n = 0.043
¢ =0.021

M
2

It can be seen that the error probabilities are indeed very
low.

3.2, 3D Voxel Reconstruction by SPOT

In Section 2, shape from silhouette is explained by using
bounding ray cones. In practice, however, it is not imple-
mented as shown in Figure 1(b) because intersecting rays in
3D is very numerically unstable. Instead we use a voxel-
based implementatiqn [10]. The whole volume of interest
is divided into N x N x N equal sized 3D voxels. Each
voxel v is tested if it belongs to the foreground objects by
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projecting itself onto all the /{ silhouette images. More for-
mally, denote Proj*(v) as the projected region of voxel v
on the kt” silthouette image. Also let Is_Overlap®( A) be the
function which will return TRUE if region A overlaps the
kt" silhouette and FALSE otherwise. Moreover, the set of
all voxels which belong to the foreground objects is denoted
by INSIDE while OUTSIDE represents the set of vox-
els which are not occupied by the foreground objects. With
these definitions, voxel v is classified by using the following
algorithm.

1. Set k, the index of silhouette image as 1.

2. If Is_Overlap”® (Proj* (v)) is FALSE,
then set v € OUTSIDE, end
else if & is equal to K
then set v € INSIDE, end
else set k = k + 1, goto Step 2.

Note that if the projection of voxel v is found to be not
overlapping with one silhouette image, it is classified as out-
side voxel and the rest of the images are not tested. On the
other hand, for a voxel v to be classified as inside; its pro-
jection has to be overlapped with all the silhouette images.

The implementations of Proj* () and Is_Overlap*() are
critical for real-time and robust performance. The projected
region of v can be found by first projecting (perspectively)
the eight vertices of v onto the k' image plane and then
computing the convex hull of the eight projected points on
the image. Theoretically by testing all the pixels inside the
convex hull against the k*" silhouette image, the voxel can
be classified accordingly. Suppose on the average, the num-
ber of pixels inside the convex hull is S, then if we test all
the points inside the convex hull, N3 tests are required for
the whole volume. Although this version of Is_Overlapk
is the most accurate one, it is also computationally very
expensive for our real-time purpose. Here instead of test-
ing all the S pixels, Q uniformly distributed pixels (de-
noted by ¢¥(1),1 =1, , @) within the convex hull are
chosen and if at least €@ (¢ < 1) of these chosen pixels
are silhouette pixels, the voxel is classified as belonging to
the foreground objects. We named this implementation of
Is_Overlap” () as Sparse Pixel Occupancy Test (SPOT) and
stated it formally as follows:

Sparse Pixel Occupancy Test (SPOT)

1. Set incount, the number of silhouette pixels be 0.

Forl=1,.-----
if g* (1) is a silhouette pixel

then incount = incout + 1.

If incout > €@,
then return TRUE,
else return FALSE.



One big advantage of SPOT is that it is % times faster
as only N3Q pixels are tested. Moreover, the positions of
the chosen pixels for each voxel for each image are pre-
calculated and stored in a lookup table to enhance the speed
of testing. The whole voxel-based 3D model reconstruction
process is revealed in Figure 3.

Uniformly distributed points q1)

Volume of interest \

Silhouettes

4

Image plane of
| the k"camera

. YT
Voxel v -

e

e
NxNxN voxels Proj(v)

Figure 3. The voxel-based 3D model recon-
struction.

The key question of using SPOT is how do we choose
the value of (@ such that the total number of testings is small
(real-timeness) while maintaining a low probability of mis-
classification (robustness). To answer the question, we set
€ = % (ie. €@ = 1) and consider the effect of Q on
the probabilities of misclassification. There are two types
of misclassification. The first one is False Acceptance (de-
noted by FA) which means that an outside voxel is falsely
classified as an inside voxel. The second one is False Re-
jection (denoted by FR) which means that an inside voxel
is falsely classified as an outside voxel. Now let us state
the relationship of the probabilities of these two types of
misclassification with Q.

I. FA : Recall € is the probability that, during silhouette
extraction, a non-silhouette pixel is wrongly marked as
a silhouette pixel. It can be shown that the probability
of False Acceptance is given as

P(FA) = [1- (1-¢)91¥. ?3)

The exponential of K is due to the fact that an outside
voxel has to be misclassified as inside in all of the K
images for FA to happen.
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II. FR : Similarly, the probability of False Rejection is
given as

K-1 )
P(FR) =12 ) (1-99)".
=0

1=

C))

The summation comes from the fact that an inside
voxel will be misclassified as outside once it is mis-
classified in one image and the rest of the images are
not tested.

Graphs of P(FA) and P(FR) against @ with K = 5 and
different values of £ and 7 are plotted in Figure 4. Notice
that the lower the value of Q, the faster the system but the
higher the value of P(FR). Based on the values of 5 and &,
we can choose @) to obtain a desired rate of false rejection
and false acceptance for SPOT.

Probability of False Rejection P(FR) against aumber of testing point G
T T T T T T r

.1 0.08
.1 008
1 004
1002

- s L L s . L
1 2 3 4 5 6 7 [] 9 10

Figure 4. P(FA) and GP(FR) against Q.

3.3. Internal Voxels Removal

With the above voxel-based 3D reconstruction algo-
rithm, the reconstructed 3D model will be a list of inside
voxels v € INSIDE which composed the whole volume
of the objects being reconstructed. However, in many ap-
plications, we may not be interested in the whole volume of
the reconstructed data. For example, in displaying the 3D
model, since the internal voxels are not visible, much CPU
time can be saved by displaying only the surface voxels. To
define the notion of surface voxels, we used the concept of
six-connectedness. A voxel v € INSIDE is said to be a
surface voxel if one or more of its 6-connected neighbors
are vacant voxels. We denote the set of all surface voxels as
. A post-processing step is added after all the voxels are
tested for occupancy to extract the surface voxels.



4. Ellipsoids Fitting

After obtaining the 3D surface voxel data (the set ¥ de-
scribed above) of the humans, ellipsoid models are used to
fit the data in real-time. As a preliminary effort, six ellip-
soidal shells Ef, f = 1, 6 (as analog to the head,
the body, two arms and two legs of a human body) are used.
Each ellipsoidal shell is represented by nine parameters: the
center, the orientation and the sizes (lengths of the axes) de-
noted by (zg, yE, 2g), Rg and (ag, Bg,YE) respectively.
The whole fitting process must be fast for our real-time sys-
tem. To achieve this goal, we use the following two-step
Expectation-Maximization (EM) like approach [4].

4.1. Data segmentation

The first step of the fitting process is to segment the
voxel data by using a proximity criterion. Let us define
Distg, (v) as the closest distance from the voxel v to the
ellipsoidal shell £¢. Then we assign the surface voxel v
to the shell Ef (ie. v € Epand F € {1,2,---,6)})
if Distg, (v) has the smallest value among the six shells.
In order to calculate Distg, (v), the shell parameters esti-
mated from the previous frame are used. Notice that this
proximity criterion is fast and easy to compute.

4.2. Parameters estimation

After the segmentation process, moment analysis is used
to estimate the ellipsoidal shell parameters from the centers
(4, Yy, 2y ) Of the surface voxels v € E. The zeroth, first
and second moments are defined as

Mo=31 )
veEE
1

Mu = 3i Z Uy, (6)

Mo veE

1

Myy = — Uy Wy 7
i, Ze,:s @

where (u, w) € {z,y, z}. From these equations, the ellip-
soidal shell parameters are given by

(IE YE ZE) = (Mz' My MZ)) (3
Ma:r M:l:y Ma:z
M = 4| My, My, M, )
le‘ sz Mzz
a% 0 0
= Rg| 0 B 0 {RL, (10
0 0 3

718

with M being the moment matrix. Rg and (ag, B, vE)
can be obtained easily by performing an -eigen-
decomposition on the (3 by 3) matrix M.

4.3. Ellipsoids initialization

As described in Section 4.1, to perform segmentation for
the current frame, we need the estimated ellipsoidal shell
parameters from the previous frame. To initialize the shells
when the system is first started, we used an ellipsoidal shell
activation procedure. When the system is first started, only
ellipsoid F; is activated for the fitting. All the voxel data
is used to estimate the parameters of F; and the error of
fitting is calculated. If this error is larger than a threshold
this means that one ellipsoid shell is not enough to model
the voxel data. Under this case, F is activated so that two
shells are used to fit the data. As the human moves his arms
and legs around, the shells are activated sequentially to fit
different parts of the body until all six of them are activated.
The fitting can then be proceeded in the way discussed in
Section 4.1 and 4.2.

4.4. Advantages and disadvantages

One problem of our two-step fitting approach is that the
joints and sizes constraints of the human body are not incor-
porated. Hence the fitting fails when the body parts are too
close together which causes problems in segmentation by
proximity. This means the current algorithm could not han-
dle appearing and disappearing body parts well. A better 3D
fitting/tracking algorithm which makes use of the knowl-
edge of the body constraints is under development by the
authors. However, the current simple approach can be used
to obtain important modeling and tracking information such
as joints parameters, sizes and dimension of body parts of
an unknown person. Hence we viewed the current approach
as an automatic initializing procedure to start the system so
that a more sophisticated method can kick in for better mo-
tion tracking after enough information is collected by this
initialization. '

5. System Architecture

Figure 5 shows the architecture of the whole system.
There are totally five cameras which are positioned spatially
so that their field of views covered the volume of interest.
The cameras are calibrated by planar calibration patterns
and the method described in [13]. Each camera is connected
to an individual PC installed with capture card. The individ-
ual computer captures run-time images at 30 frames/s and
generates the silhouette images as bit masks which are then
sent to a host computer through the high speed hub. The
host computer, which is equipped with dual Pentium II 400



MHz processors, collects all the five bit masks from the in-
dividual computers and perform voxel reconstruction, inter-
nal voxels removal, model fitting and display at the same
time by multi-threading the operations. The timing diagram
for the pipeline processing can be found in Figure 6.

Network
transfer

Humans/ - -
Objects

Main computer A
for 3D reconstruction | y
£ »
and display

Cameras

Individual computer
for each camera
Figure 5. The system architecture.

Sending silhcuette  Image Acquisition for Frame n+1
images for Framen  »...

bt : Silhouette gengration for Frame n+1
Camera /PC |
Camera /PC2
Camera /PC 3
Camera /PC 4
Camera /PC §

L : 3D Voxel Reconstruction ;
Receiving sithouette | with surface extraction of Frame n ;

images for Frame n . Ellipsoids Fitting of Fniame n
el :
Main PC CPU } - : :

Displaying_model of Frame n-1

Main PC CPU 2

0o 15 25 50 60
Time Line for one Frame

Figure 6. The pipeline architecture and timing
diagram.

6. Performance

The system is used to capture human motions with the
following settings :

1. The volume of interest is a cube of size 2m x 2m x 2m.

2. The volume is divided into 64 x 64 x 64 (i.e. N = 64)
voxels with a resolution of about 3cm for each voxel.

3. The images are at a resolution of 320x240 pixels.

4. With the above settings, the average number of pixels
for a projected voxel is 10 (i.e. S = 10). Two points
(i.e. @ = 2) are chosen for each voxel for SPOT.
This corresponds to a False Rejection probability of
0.0092 for n = 0.043 (Eq.1) and a False Acceptance
probability of 1.239e-7 for £ = 0.021 (Eq.2).

Figure 7 is a screen shot of the user-interface program at
the host computer which shows the reconstructed voxels
and fitted ellipsoids of a person holding one arm horizontal.
Table 1 summaries the approximate time required for each

Figure 7. Screen shot of the user-interface
host program which shows the reconstructed
voxels and fitted ellipsoids of a person hold-
ing one arm horizontal.

step. The bottleneck for our system right now is the display
part as the host computer is not equipped with a fast display
card. Without displaying the reconstructed 3D voxels, the
system can run about 16 frames per second.

Step Approximate
Time Required

Sending/Receiving
Silhouette Images 15 ms
Image Acquisition 10 ms

Voxel Reconstruction without
Surface extraction 35 ms
Voxel Reconstruction with

Surface extraction 40 ms
Silhouette Generation 15 ms
Ellipsoids Fitting 10 ms
Model Display 100 ms

Table 1. The approximate time for each step
in our system.

Two movie clips for the system can be found at the
site http://cs.cmu.edu/~ german/research/CVPR2000/. The
first movie clip realtime.mpg shows an user moving inside



the volume of interest and the system successfully recon-
structed and fitted ellipsoid models to the body parts in real-
time. The actual setup of the system with the cameras’ po-
sitions can also be seen in the clip. The second movie clip
motionsequence.mpg shows a sequence which was captured
real-time from the system. Within each frame, the upper
left picture is the run-time image captured by one of the five
cameras and the lower left picture depicts its silhouette gen-
erated by the method described in Section 3.1. The upper
right picture shows the reconstructed voxels of the person
by using SPOT while the lower right picture represents the
fitted ellipsoidal shells. Notice that there are two frames
delay between the the run-time image/silhouette and the re-
constructed voxels/ellipsoids due to the pipeline processing
of the system. Four representative frames are extracted from
the movie clip and are shown in Figure 8.

Figure 8. Four representative frames from the
movie clip motionsequence.mpg. (a). frame
59, (b). frame 109, (c). frame 139, (d). frame
299.

7. Conclusion and Future Work

In this project, we have shown that by using multiple
cameras and voxel-based algorithm, full 3D reconstruction
and ellipsoids fitting of human actions can be done in real
time. Our approach eliminates the problem of occlusion
and hence simplifies subsequent analysis of the motion. As
different from most of the other approaches, our system out-
puts 3D (either volume or surface) voxel data. Furthermore,
fitting/tracking in our system is done directly in the 3D do-
main, instead of projecting the assumed human model back
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onto the 2D images. Without displaying the voxel data, the
system is running at arate of over 15 frames/s. With this ca-
pability, it is useful for applications such as real time elec-
tronic puppet, athletic performance analysis, non-intrusive
motion captures, human computer interface and entertain-
ment.

As mentioned in Section 4, a more precise 3D body
tracking/motion capture algorithm s being developed to im-
prove the fitting process of the system. Moreover, by adding
more information, such as color, to the voxels, the system
can be considered as a 3D color camera system. This will
also improve body part segmentation results. Non model-
based methods such as eigen-shape is also being considered
for extracting the human movement and posture.

References

[1] C. Bregler and J. Malik. Tracking people with twists and
exponential map. In Proceedings ACCV'98, volume 2, pages
416-23, Hong Kong, January 1998.

[2] Q. Cai and J. Aggarwal. Tracking human motion using mul-

tiple cameras. In Proceedings of ICPR’96, volume 3, pages

68-72, Vienna, Austria, August 1996.

Q. Delamarre and O. Faugeras. 3d articulated models and

multi-view tracking with silhouettes. In Proceedings of

1CCV’99, Corfu, Greece, September 1999.

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood

from incomplete data via the em algorithm. J.R. Statist. Soc.,

B 39:1-38, 1977.

G. Gavrila and L. Davis. 3-d model-based tracking of hu-

mans in action : a multi-view approach. In Proceedings of

CVPR’96, pages 73-80, San Francisco, CA, June 1996.

I. A. Kakadiaris and D. Metaxas. 3d human body model ac-

quisition from multiple views. In Proceedings of ICCV’95,

pages 618-623, Boston, MA, June 1995.

S. Moezzi, L.-C. Tai, and P. Gerard. Virtual view generation

for 3d digital video. IEEE Computer Society Multimedia,

4(1), January-March 1997.

M. Potmesil. Generating octree models of 3d objects from

their silhouettes in a sequence of images. Computer Vision,

Graphics and Image Processing,40:1-20, 1987.

P. Rander, P. Narayanan, and T. Kanade. Virtualized reality

: Constructing time-varying virtual worlds from real world

events. In Proceedings of IEEE Visualization '97, pages

277-283, Phoenix, AZ, October 1997.

R. Szeliski. Rapid octree construction from image se-

quences. CVGIP : Image Understanding, 58(1):23-32, July

1993.

C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland.

Pfinder: Real-time tracking of the human body. IEEE Trans.

PAMI, 19(7):780-785, July 1997.

Y. Wu and T. S. Huang. Capturing articulated human hand

motion : A divide-and-conquer approach. In Proceedings of

ICCV’99, Corfu, Greece, September 1999.

Z. Zhang. Flexible camera calibration by viewing a plane

from unknown orientations. In Proceedings of ICCV’99,

pages 666—673, Corfu, Greece, September 1999.

31

(4]

(5]

(6]

[7

—

(8

—_—

9]

[10]

{11]

[12]

[13]



