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Abstract

This paper describes a robot, possessing limited sensory and effectory
capabilities but no initial model of the cffects of its actions on the
world, that acquires such a model through exploration, practice, and
observation. By acquiring an increasingly correct model of its actions,
it generates increasingly successful plans to achieve its goals. In an
apparently non-deterministic world, achieving reliability requires the
identification of reliable actions and a preference for using such actions.
Furthermore, by selecting its training actions carefully, the robot can
significantly improve its learning rate.

1. Introduction

We describe a simple robot system that acquires a model of the effects
of its actions by constructing plans to solve specific tasks and then
observing the results of these plans. The particular task is to manipulate
rigid planar objects by tilting a tray containing the objects. Beginning
with no prior knowledge of the effects of various tilting actions, the
system exhibits very poor initial performance in achieving its goals.
With experience it is able to acquire a discrete model of its actions
that leads in some cases to 95% success in moving an object to a
randomly selected goal configuration. We view this work as a first
step in exploring the potential role of robot leaming in extending the
flexibility and scope of robot manipulation systems.

The motivation behind this research is straightforward. Current
robotic systems are most successful in carefully engineered environ-
ments for which the physical characteristics of the world and the effects
of robot actions on this world are well-behaved and well-understood.
In such cases, these characteristics can be taken into account by a
programmer who manually develops manipulation strategies for the
robot. We seek to extend the ability of robotic systems to deal with
worlds that are poorly characterized and poorly behaved, by allowing
the robot to automatically acquire and utilize models describing the
effects of its actions.

The system described here is the most recent and the most successful
in a sequence of systems we have developed while studying this manip-
ulation learning task. (See [Mason et al., 1989] for an earlier version of
the system.) The improved learning competence of the present system
appears to be due primarily to two design characteristics:

e Representing and reasoning about non-deterministic effects of
actions. Certain actions in the tray environment have non-
deterministic results; that is, the same action executed twice from
the same starting state (as perceived by the robot) may give dif-
ferent results. Allowing the robot to explicitly represent non-
deterministic outcomes of its actions, using a learning algorithm
that models actions as non-deterministic, and using a planning
algorithm that reasons about the reliabilities of plans involving
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non-deterministic actions, have an important effect on learning
competence and on asymptotic robot performance.

Use of information-seeking experimentation strategies for auto-
matically collecting training data. The strategy for collecting
training data has a significant effect on the robot’s learning rate.
An experimentation strategy of randomly generating and observ-
ing actions is insufficiently focused. Alternatively, the strategy of
attempting to achieve the current object-positioning goal by exe-
cuting the most reliable known action sequence, is overly focused
and fails to provide a sufficiently varied set of data to achieve
rapid convergence. A hybrid experimentation strategy that com-
bines components of these two extremes has produced the best
results.

There have been other efforts to build robots that learn, and some
have adopted methods that are quite different from ours. The adaptive
control community uses a servo-loop model of manipulation tasks,
with error values being determined and fed back at each loop itera-
tion [Aboaf et al., 1988; Aboaf et al., 1989; Slotine and Craig, 1989].
Connectionist approaches also have been used to learn manipulator
dynamics [Miller, 1987; Goldberg and Pearlmutter, 1988]. Mobile
robot map-making shares some similarities with our idea of equating
theories of the world with maps of the state-action space for a task.
Examples of the mobile robot map-making work include [Laumond,
1983], [Crowley, 1984], and [Kuipers and Byun, 1987]. And, learning
approaches for manipulation problems different from ours were pre-
sented in [Dunn and Segen, 1988] and [Zrimic and Mowforth, 1988].

The tray-tilting problem has been addressed before from an analyti-
cal perspective, in which knowledge of physical properties of objects
and the tray is used to plan action sequences. Erdmann and Mason
[1988] described a system for computing a sequence of tilts that would
bring an object of known physical properties into a goal configuration
from any initial configuration. No sensing was used, and the predic-
tions of object motions were based on Newton’s and Coulomb’s Laws.
Tray-tilting was further addressed in [Taylor et al., 1987], where sens-
ing was added. Sensing operations as well as physical actions were
used to reduce uncertainty and achieve desired object configurations.
Our paper formulates this problem in yet another way. Our system
has no initial knowledge of physical laws or of physical properties of
the objects, but does have sensory capabilities that it can use to ob-
serve the results of its actions. We demonstrate that these capabilities,
along with a simple learning method, are sufficient to attain good task
performance.

The remainder of this paper describes the robot system, the learning
and planning strategies, experimental results, and limitations of the
current system. Section 2 discusses characteristics of our task domain.
Section 3 describes the design of our learning robot. Section 4 presents
experimental results obtained from this system. Finally, Section 5
concludes the paper and lists possible future directions.



- 2. The Task Domain

The tray-tilting task was chosen as the testbed for this work for a
number of reasons: its analysis is well understood, it is representative
of robot manipulation problems, and it allows a range of task difficulty.
Task difficulty depends on issues such as the number of objects in the
tray (which may collide as the tray is tilted), object shapes (e.g., highly
angular objects tend to bounce unpredictably against tray walls), and
physical properties such as coefficients of friction and elasticity of the
tray and the objects. The results presented here cover a variety of tray
environments in which the number, shape, and elasticity of objects
are varied. With no change to its initial knowledge or parameters,
the learning system is able to acquire effective manipulation strategies
across a variety of such tray environments.

In the experiments reported here, an 11 inch square tray is held by
a programmable manipulator, which can tilt the tray in any desired
direction. A camera mounted above the tray senses the configuration
(position and orientation) of any objects in the tray. A typical task uses
a 1 by 3 inch rectangle, which slides freely in the tray. The task is to
move the object from its initial configuration to a goal configuration,
by choosing an appropriate sequence of tilting motions.

From the tray’s point of view, and assuming gentle motions, tilting
the tray is equivalent to changing the direction of gravity, so that some
component of gravity acts in the plane of the tray. Depending on the
object’s shape, the object’s location, and the direction of the gravity
vector, the object might remain at rest, might slide or tumble along a
wall into a corner, or might slide across the tray and into another wall
or into a corner of the tray. Some typical tray-tilt operations are shown
in Figure 1.

We have further simplified the task domain as follows:

o Tilting motions start with the tray horizontal, tilt the tray in a
particular direction, then return the tray to horizontal. Hence the
gravity vector in the plane of the tray has a constant direction
during a single tilt motion. This constant direction is called the
tilt azimuth, and is a direction measured in the plane of the tray
floor as indicated in Figure 2. In addition to the tilt azimuth,
tilts are characterized by the maximum deviation of the tray floor
from horizontal during the tilting operation. For our experiments,
this steepness parameter was 30 degrees for all tilts. This value
was sufficient in all cases to overcome the static friction between
the tray floor and the manipulated object. Lastly, all tilts were
performed at a slow constant speed, and the tray tilt was held for
one second before the tray was returned to horizontal.

States and actions are represented discretely. The tray is divided
into nine sectors when describing the location of the object cen-
troid, as shown in Figure 2. Object orientation is described as ei-
ther of two values: horizontal or vertical. The control parameter—
the tilt azimuth—is also discretized, but at a resolution of one
degree.

The methods explored in this paper appear well-suited to the tray-
tilting domain, and the generality of these methods may be judged in
terms of the the essential characteristics of this domain:

o The physics governing the task is time-invariant.
o The cost of actions and sensing is negligible.

o The dynamics of the task are finite. The task can be modeled bya
finite number of actions, with each action described as a mapping
on a finite partition on the state space.
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Figure 1: Two examples of tray-tilting operations. Gravity vector g4
causes the object to slide along a wall and into a comer. Gravity vector
g causes the object to slide across the tray and bounce into a corner.

azimuth

Figure 2: Tray Regions and Azimuths

¢ Sensing and effecting are imperfect.

If a robot has imperfect sensors and effectors, its task environ-
ment may appear (to the robot) to respond non-deterministically to the
robot’s actions. As such, the robot may observe differing outcomes
for an action when applied to (what the robot views as) equivalent
situations. This apparent non-determinism is a potential problem for
any agent operating in the real world, and our robot is not immune to
it. Apparent non-determinism may be caused by any of a number of
factors:

e Misclassified State. 1t is impossible for a robot to represent the
true world state using its limited resources. Therefore, “states”
sensed by the robot correspond to sets of world states that are
equivalent with respect to its sensors. However, there is in general
no guarantee that a robot action will map world states within a
single sensory equivalence class into world states that are withina
common outcome sensory equivalence class. Furthermore, sensor
errors will make the tracking of task features difficult.

Misclassified Actions. A robot’s internal description of an ac-
tion may incompletely specify the action that the robot actually
performs. For example, if the robot’s effectors are incapable of
perfect repeatability of motions, then the same commanded action
may result in two different true actions.

Violated Assumptions about the World. A robot might assume that
its actions are time-invariant, but if its actions do indeed depend
on the time at which they are executed, then the world will appear
to be non-deterministic. If the robot assumes that it is the only
agent that can change the world and this turns out to be false, then
a second agent’s actions may confuse the robot. And if a robot
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Figure 3: Reliability graph. For a given prior state (a square tile in
the northwest comer of the tray) we recorded the result of ten tilts at
each azimuth. This figure shows a portion of the tilt azimuths, and the
frequency with which each of five different outcome states (northeast
cormner, east side, etc.) was attained.

assumes that the world behaves deterministically and it turns out
that the real world is in actuality non-deterministic (an interesting
philosophical question), then the robot will again be confused.

In the tray-tilting domain, apparent non-determinism can be partly
attributed to underlying mechanical processes that are unmodelled.
The motion of the object is determined primarily by the effects of
friction and impact, which are difficult to model. When an object
accelerates across the tray and bounces against the wall, the rebound
of the object may appear to be random, even to a human observer. The
existence of hidden state is also significant. For example, the coarse
sampling of object position and orientation make it impossible for the
robot to learn actions that depend on an initial contact between the
object and the wall.

Figure 3 provides a of the app non-determinism of
tray-tilt actions, obtained by recording the result of ten tilts at each
of the tilt azimuths, for a square tile starting in the northwest comer
of the tray. The data suggests that for some actions the outcome is
quite repeatable, while for others it is not. For example, the graph
indicates that tilt azimuth 135 is very reliable when used to move the
square from nw to se, because all of the outcomes observed when that
tilt was applied produced a result of se. (A vertical line at 135 would
intersect only the se region.) Alternatively, tilt azimuth 109 is not
highly reliable in producing an outcome of se because the plot shows
that executing such a tilt produced se only six times out of ten, and
produced e four times out of ten. Some tilts, such as 162, produced
three different outcomes in the test. Other such studies have shown that
some state transitions are inherently unreliable, and should be avoided
completely. Because of the lack of repeatability for many actions, we
should not expect a learning robot to converge to perfect performance.

3. Design of a Learning Agent

Our robot learns a theory of how to do tray-tilting. An explicit model
is constructed that predicts the result state given a current object state
and a proposed tilting action. This model, or theory, is not specifically
tied to a single goal location for an object, but is rather a model that
allows many potential goals to be achieved.

Before discussing the learning mechanism, we will discuss the
problem-solving behavior of our robot. The control flow of our robot
in performance mode is outlined in Figure 4. Note that there are two
loops, one inside the other. The outermost loop is executed once for
each goal in the robot’s set of goals. Given a particular current goal, the
robot constructs a plan to transform the environment to its goal state,
based on its current theory of its environment. Each plan is a sequence
of actions, and each action corresponds to one tilting operation. The
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percept «— sense_world();
while not null?(goals) do
goal «— first(goals);
plan « planner(goal, percept, theory);
while not nuli?(plan) do
action — first(plan);
perform(action);
plan — rest(plan);
end while;
percept — sense_world();
record_success_or_failure(goal, percept);
goals «— rest(goals);
end while.

Figure 4: Performance-Mode Behavior of the Robot.

percept — sense_world();
loop

action — choose_random_action();

perform(action);

prev_percepl «— perceptl;

percept — sense_world();

theory «—

update_theory(theory, prev_percept, action, percept);

end loop.

Figure 5: Leamning from Random Training.

actions comprising the plan are executed in sequence without error
monitoring or recovery.

To specify this control flow fully for the tray-tilting task, several
variable names and procedures must be explained. The names goals,
goal, plan, action, percept, prev_percept, and theory in Figure 4 cor-
respond to state variables within the robotic agent. In particular, the
value of the variable theory initially has the value nil, corresponding o
the robot having no initial predictive theory for its environment. Over
time, through updating the theory state variable, the robot attains some
measure of predictive ability. For our tray-tilting problem, percepts
correspond to object configurations (position, and in some cases, ori-
entation), which are returned by the sense_world procedure. Actions
correspond to tilts of the tray, which are defined by tilt azimuths. Goals
are desired object configurations, and therefore of the same “type” as
percepts. Plans are sequences of tilts that are computed by consulting
the robot’s current theory of the task.

There are many ways that a robot might gather training examples to
update its theory. One of the simplest such ways, which we call the
random training method, consists of generating random tilt azimuths
and performing the corresponding tilts. The results of the tilts are
used to update the robot’s theory, as indicated in Figure 5. (The robot
behaviors of Figures 4 and 5 are instances of a larger class of behaviors
defined in [Christiansen, 1989].)

The learning method for our robot involves simple memorization
of observed tilting operation outcomes. After each action is executed,
the robot makes an update to its theory, reflecting the outcome of



" that action. Over time, these updates allow the robot to model the
consequences of its actions more accurately, and this in turn allows the
robot to construct better plans, and to achieve its goals more frequently.

The robot has available to it a set of possible actions. In the ma-
nipulation problem of this paper, the actions correspond to tilting op-
erations that the robot performs on the tray. The robot’s theory, then,
is a relation on percepts, actions, and percepts. That is, a relation
predict(from,act,to) is maintained by the robot, where from and to are
percepts corresponding to perceived environment states, and act is one
of the robot’s actions. The robot interprets the relation as: “If my
sensors tell me the world is from, and I do act, then I may achieve
to.” Note the lack of certainty about the outcome of the operation. A
difficulty that the robot must face is to determine which of the many
actions available to it are, in the current context, both appropriate and
reliable.

It is useful to view the robot’s theory, the predict relation, as a graph
structure. The graph has percepts (states) as vertices and actions as
edges. The theory updating operation may then be viewed as making
changes to the graph, such as adding new edges between vertices and
possibly adding new vertices. Once the robot’s theory is described as a
graph, it is easy to envision what the planner must do when presented
with a goal, a current percept, and the current theory of the environment
(the graph itself). The planner must find a path in the graph, linking
the current percept to a goal percept. This path corresponds to a
sequence of actions, or plan. In general, there will be many such paths.
But the planner should return a path which is “better than” all other
possibilities.

Our planner selects among alternative plans based on their relia-
bility. The robot’s theory maintains an estimated probability for each
predicted outcome, based on the observed frequency of the outcome.
The reliability of a plan is defined as the product of the reliabilities
of the actions that comprise the plan. The pl uses a dard

weighting factor, and k is the number of possible outcomes. It should
be noted that this formula, except for the w and kw terms, is just the
fraction of times that o; occurred when executing this action from this
state. However, the simpler frequency formula would assign the same
reliability to a tilt that has been performed once, as it would to a tilt
that has achieved the same state in each of 500 trials. The w and kw
terms address this shortcoming, assigning a higher reliability to clearly
repeatable state transitions. The weighting factor w is a measure of
the robot’s degree of disbelief in its experiments. If w is zero, then
the robot always places complete faith in its experimental results, and
the formula reduces to the frequency formula mentioned above. If w
is large, then the robot is quite suspicious of its experiments, and it
requires many experiments to produce a reliability near unity. For all
of the work reported in this paper, w had the value 0.01, which meant
that the robot tended to believe its experiments without requiring many
repetitions.

The above formula for the reliability of achieving a particular out-
come state, given an initial state and action, was developed as a heuris-
tic. However, the formula can be related to a Bayes Estimate of the
probability of occurrence of the outcome state. Finding an action of
maximum reliability corresponds to finding an action that maximizes
the probability of producing the desired outcome. If we assume that
the distribution of the outcomes of a particular state and action is
multinomial, and we further assume a uniform a priori distribution
for the probabilities of the outcome states, then the Bayes Estimate
of the probability of outcome o; is (z + 1)/(n + k), where z is the
number of outcomes o; observed in n trials, and k is the number of
possible outcome states. The proper framework for the estimation of
this probability involves the use of a conjugate family of distributions
for multinomial observations. If instead of using a uniform a priori
distribution, we use a Dirichlet distribution [DeGroot, 1970] with pa-
r s all equal to 0.01, then the Bayes estimate of the probability

best-first search algorithm to find a plan of maximal reliability.

As the robot observes outcomes of tilts, it notes the percept corre-
sponding to the state before the tilt, the percept corresponding to the
outcome state, and the commanded tilt (that is, the azimuth angle that
defines the tilt direction). The robot uses this triple of values to update
its theory. Observations are organized by from state and tilt azimuth.
For each from state and tilt azimuth, all the outcome states ever ob-
served are recorded. If the tilt is perfectly reliable when performed
from this particular from state, then the theory will record several oc-
currences of some unique outcome state. When a new observation is
used to update the theory, a check is made to see whether the theory
has any observations for the current from state and tilt. If so, then the
current outcome state is added to the list of outcomes already stored. If
there is not yet any observation for this from state and tilt, then a new
observation record is begun. In sum, the learning mechanism is rote
memorization of outcomes of tilts. It is the combination of this simple
learning mechanism, the experimentation method, and the planning
mechanism outlined above that leads to sophisticated behavior of the
robot.

The reliability of a proposed tilting action, at some instant in time, is
based on the observation record associated with the current state and the
proposed tilt azimuth. The predicted reliability of a particular outcome
state is a number between 0 and 1. Zero reliability corresponds to an
outcome being impossible, and a reliability of one corresponds to an
outcome being absolutely certain. The reliability of obtaining outcome
o; is computed according to the following formula:

T+ w
n+ kw
where z is the number of occurrences of o; in n trials, w is a probability
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becomes exactly the same as the heuristic formula given above. In
this case, the prior distribution suggests that the true probability of any
particular outcome is either very near 0 or very near 1, but is unlikely
to have any other intermediate value [Goldberg, 1989]. Note that in
this Bayesian interpretation, the heuristic regarding the willingness to
accept the results of experiments without many repetitions is encoded
within the prior distribution.

The structure of our learning robot bears some similarity to a stochas-
tic learning automaton [Narendra and Thathachar, 1974]. It is possible
to view the leaming procedure described above as an ensemble of k2
learning automata, where k is the number of possible percepts (or state
categories). This learning mechanism, along with multi-step planning
and an experimentation strategy that attends to multiple goals during
training, comprise the essence of our robot’s architecture. (See [Si-
mons et al., 1982] for an example of a robotic manipulation task to
which the learning automata approach has been applied.)

4. Empirical Studies

We performed several performance tests on our learning robot. Each
of these tests used the learning and planning mechanisms described
above, The plans that were formed were both linear and complete, and
no error monitoring or error recovery was done.

The first test used a 1 by 3 inch rectangular object. Figure 6 shows
the result of this test. The robot trained itself by executing randomly
chosen tilts. The robot observed the results of these tilts, and made
appropriate updates to its theory, which was initially empty. The
problem-solving performance of the robot was sampled at points during
the training by giving it a set of 100 goals to solve. For each such goal,
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Figure 6: A typical learning curve. The object used was rectangular,
and goals specified both a position and orientation of the object within
the tray. The training was performed on randomly-generated tilts.

the robot created a plan, if it could, and then executed it. If the
robot’s sensors perceived that the resulting object configuration was
the desired configuration, then the goal was considered to be achieved.
In cases where the theory was not sufficiently developed to allow a
plan to be computed, the robot performed a random tilt. The graph
plots the percentage of goals successfully achieved by the robot, as 2
function of training experience. In this experiment, the goals specified a
discretized position and orientation. For position, the tray was divided
into nine regions, as shown in Figure 2. Orientations were divided
into two categories, corresponding to the rectangle’s major axis being
“horizontal” or “vertical”. Goals specified both a position region and
an orientation category. (There are 9 times 2, or 18 different possible
goals. Only twelve of these were actually given to the robot as goals.
The other six correspond to “hard” goals. Two of these six are in
the middle of the tray, which is an unachievable position. The other
four are positions along a wall of the tray where the major axis of
the object is perpendicular to the wall. This configuration is nearly
unachievable.)

The graph shows a very high leaming rate for the robot early in its
training, and a lesser rate for the remainder of its history. During the
early learning, the robot is finding ways to get to states that it couldn’t
get to before. After a theory is identified that includes all the goal
siates in the test set, the robot refines its notion of what actions are
most reliable in achieving the goals. Ultimately, the robot appears to
achieve a performance level better than 80% after seeing 1000 tilts.
The plans that the robot created were typically less than four steps in
length.

A second test used a 2.5 inch diameter circular disk instead of
the rectangle. Since this object is symmetric, it has no observable
orientation. The goals that were given to the robot were therefore
positions only, drawn from all but the middle tray position. Thus,
there were eight distinct goals, instead of the twelve of the previous
test.

Figure 7 shows the performance of two runs of the robot, each
starting with an empty theory. Note that the performance after 1000
tilts is about 90% in one case, and about 98% in the other. Why did
the robot do better leaming to manipulate the circle than learning to
manipulate the rectangle? First, the problem is easier. Positioning
is easier than positioning and orienting. Second, the state space of
this problem is two-thirds the size of that in the previous experiment.
Fewer tilts need be observed in order to identify appropriate actions for
moving among the state in this smaller space. Third, the circular disk
naturally behaves in a predictable manner. There are no corners, and
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Figure 7: A test of positioning only. Goals specified only positions,
and the object used was circular. The graph shows two distinct runs of
the robot.

percept — sense_world();
loop
goal — first(goals);
plan — choose_ezperiment(goal, percept, theory);
while not null?(plan) do
action « first(plan);
perform(action);
prev_percept «— percept
percept «— sense_ world();
theory «—
update_theory(theory, prev_percept,action, percept);
plan « rest(plan);
end while;
goals — rest(goals);
end loop.

Figure 8: Learning from Strategic Self-Training.

thus no aberrant behavior due to impact of the corners of the object with
walls of the tray. It is easier to identify reliable manipulation strategies
for a task domain that contains inherently more reliable actions.

Note that the effectiveness of the random training method can vary
between runs. In one case, the robot found a near perfect theory after
600 tilts, but in the other, its imperfect theory causes a 10% failure rate
to remain after seeing 1000 tilts. The difference is due to the particular
tilts that are randomly generated during the training. Eventually, the
“missing” actions that the robot requires will be generated, but it could
take a very large number of tilts before this occurs. Differences like
these between runs led us to consider increasing learning rate by giving
the robot a non-random experimentation strategy.

Although the random training method is useful for sampling over the
entire state-action space of the task, in order to successfully achieve its
goals the robot needs only to learn some portion of the task dynamics:
it requires only a practical sub-theory that allows it to achieve its
goals. If the robot concentrates on identifying such a sub-theory, then
its training effort should lead more quickly to good problem-solving
performance. Figure 8 defines the control flow of this new training
method.

The strategic self-training method, instead of generating a random
tilt, computes an appropriate tilt for the purpose of acquiring useful
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Figure 11: Another difficult problem. A rubber band is placed around
the perimeter of the rectangle used in the earlier experiment. The in-
creased friction between the rectangle and the walls of the tray leads to
increased apparent non-determinism. However, the robot still achieves
about 90% performance on this problem using strategic self-training.
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information. This training strategy works as follows:

Given the current goal, compute the plan of maximal
reliability to achieve the goal. If the reliability of this plan is
above some threshold (the promising threshold) and below
another threshold (the acceptable threshold), then execute it.
If no plan can be found, or if the plan reliability is above
the acceptable threshold, then execute a randomly generated
tilt instead. If the plan reliability is below the promising
threshold, then modify the plan by replacing its least reliable
step with a “nearby” tilt, then execute the plan.

i

For our experiments, a plan was cc d to be of acceptable reliabil-
ity if the plan reliability was greater than 0.95 . A plan was considered
to be promising if its reliability was greater than 0.8 . And, choosing
a tilt “nearby” a tilt of azimuth @ consisted of selecting a direction at
random from the interval [6 — 10,6 + 10]. The motivation for using a
random tilt when the plan is above the acceptable threshold is that in
such cases it is unlikely that executing the plan will lead to unexpected
consequences, and hence to significant improvements in the robot’s
theory. The motivation for modifying plans that are below the promis-
ing threshold is that by testing plausible changes to the weakest step
of the plan, the robot gains the opportunity to explore alternatives that
may lead to more reliable operations.

Figure 9 shows a comparison of the random training method with the
strategic self-training method. The object used was the same rectangle
as in the first experiment. This strategic experimentation method leads
to acquiring a better theory, with the robot achieving about 98% average
performance after seeing 2000tilts. The random training method yields
only about 83% average performance after seeing the same number of
tilts. Note that although there is significant variation in performance
from run to run, the strategic training method consistently outperforms
random training. The main reason the strategic training method works
better is that it does a better job of determining the reliabilities of tilts,
which allows the planner to produce more reliable plans.

In order to test the robustness of this strategic training method,
we devised two variations of the task that were “harder” than those
so far described. In the first of these, we placed two circular disks
in the tray. One of these disks was white, and thus visible to the
robot, while the other was black and thus invisible. This task variation
has a large amount of state information hidden from the robot, and
was therefore expected to produce a large amount of apparent non-
determinism. Figure 10 shows that this task was indeed more difficult
to leam. However, the strategic training method is still superior to
random training.

The second variation of the task used a single rectangular object as in
the first experiment. However, the rectangle was altered by wrapping
a rubber band around its perimeter, thus increasing the contact friction
between the rectangle and the walls of the tray. In this task variation, the
increased apparent non-determinism is not due to an invisible object,
but rather due to a physical interaction that is seemingly more complex
than before. The object now has a tendency to roll along the walls,
where in previous tests it would slide along the walls without rolling.
Of course, since the robot sees only initial and final states of the object,
it bases its theory solely on the repeatability of transitions between
states. If there are reliable rolling operations on the object, then it
finds them and uses them. In fact, comparing Figures 9 and 11 shows
that the increased friction does indeed make the problem more difficult
for the learning robot. Without the rubber band, 98% performance
is achieved, but with the rubber band only about 90% performance
is achieved, even after 3000 training tilts. However, this task is still
easier for the robot than the two-disk test, for which the robot achieves




only about 80% performance using strategic training. (See Figure 10.)

5. Conclusions and Future Directions

‘We have shown that a robot, lacking an initial theory of its task domain,
can develop a useful theory based on practice and observation. In order
that the theory model the environment accurately enough for the robot
to achieve its goals, reliable actions must be identified and the robot
must prefer to use those reliable actions in its plans. We presented a
design for a learning robot applied to a physical manipulation task, and
demonstrated the effectiveness of its learning procedure. We further
explored robot self-training strategies, and presented a self-training
strategy for the tray-tilting task that allowed the robot to learn more
quickly than with random training.

The research reported makes several assumptions about the world,
the task space, and the agent working on the task. There are several
changes to these assumptions that would be more realistic, or might
increase task performance:

o Continuous state and action description. In all the experiments
reported here, a discretized model of world state was used. A
nearly continuous description of the world state is available from
the camera image, and should be used. However, the simple
graph-based model described here will have to be extended to
handle such a modification. There are simply too many states and
too many actions to explore in a continuous world.

Sensor resolution and effector accuracy. It would be interesting to
study the impact of sensor noise on the ability of a learning robot to
identify an accurate model of its actions. Clearly, increased sensor
noise or decreased sensor resolution will increase apparent non-
determinism and therefore make the learner’s job more difficult.
Decreased effector accuracy will have a similar effect.

Dimensionality of States and Actions. The dimensionality of the
state-action space has a major effect on the “learnability” of a task.
If a robot has many parameter values to choose for its actions, it
may search a very long time before finding a correct association
between its actions and states. An appropriate generalization
mechanism may provide a solution to this problem.

A Priori Knowledge. This paper explored the case where almost
no initial knowledge of the task was made available to the robot.
It would be very interesting to determine what knowledge is most
useful for guiding learning.
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