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Beyond Prototypic Expressions: Discriminating Subtle Changes in the Face

Abstract

Current approaches to automated analysis have focused
on a small set of prototypic expressions (e.g., joy or anger).
Prototypic expressions occur infrequently in everyday life,
however, and emotion expression is far more varied. To cap-
ture the full range of emotion expression, automated dis-
crimination of fine-grained changes in facial expression is
needed. We developed and implemented a computer vision
system, Automated Face Analysis, that is sensitive to subtle
changes in the face. Three convergent modules extract fea-
ture information and discriminate FACS action units using
Hidden Markov Models. The modules include feature-point
and dense-flow tracking and high-gradient component de-
tection. In image sequences from 100 young adults, action
units and action unit combinations in the brow, eye, and
mouth regions were selected for analysis if they occurred a
minimum of 25 times in the image database.  Selected facial
features were automatically tracked using hierarchical al-
gorithms to estimate optical flow and high-gradient compo-
nents.  Image sequences were randomly divided into train-
ing and test sets.  Automated Face Analysis demonstrated
high concurrent validity with manual FACS coding.

1. Introduction

The face is a rich source of information about human be-
havior. Facial displays indicate emotion and pain [7], regulate

interpersonal behavior [5], reveal brain function and pathol-
ogy [17], and signal changes with development in children
(e.g., [9]).  To make use of the information afforded by facial
expression, reliable, valid, and efficient methods of measure-
ment are critical.

Computer-vision-based approaches to facial expression
analysis (e.g., Black and Yacoob [2]; Mase [15]) discriminate
between a small set of prototypic expressions of emotion.
This focus follows from the work of Darwin [6] and more re-
cently Ekman [7], who proposed that �basic emotions� (i.e.,
joy, surprise, anger, sadness, fear, and disgust) each have a
prototypic facial expression, involving changes in facial fea-
tures in multiple regions of the face, which facilitates analysis.
In everyday life, prototypic expressions may occur relatively
infrequently, and emotion more often is communicated by
changes in one or two discrete features, such as tightening
the lips, which may communicate anger [4]. To capture the
subtlety of human emotion and non-verbal communication,
automated discrimination of fine-grained changes in facial
expression is needed.

The Facial Action Coding System (FACS) [8] is a human-
observer-based system designed to detect subtle changes in
facial features. FACS consists of 44 anatomically based �ac-
tion units� which individually or in combination can repre-
sent all visibly discriminable expressions. Seminal work by
Mase [15] and Essa and Pentland [10] suggested that FACS
action units could be detected from differential patterns of
optical flow. Essa and Pentland [10] found increased flow in
muscle regions associated with action units in the brow and
in the mouth region. The specificity of optical flow to action
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Figure 1.  Automated Face Analysis

unit discrimination, however, was not tested. Discrimination of
facial expression remained at the level of emotion prototypes
rather than the finer and more objective level of FACS action
units.  An exception, Bartlett et al. [1], discriminated action
units in the brow and eye regions in a small number of sub-
jects.

Current methods of estimating optical flow may lack sen-
sitivity to subtle motion, which is needed to discriminate ex-
pressions at this more fine-grained and objective level.  Work
to date has used aggregate measures of optical flow within
relatively large feature regions (e.g., mouth or cheeks), includ-
ing modal flow and mean flow within the region [2, 18, 14,15,
22].  Black and colleagues [2, 3] also disregard subtle changes
in flow that are below an assigned threshold.  Information
about small deviations is lost when the flow pattern is aggre-
gated or thresholds are imposed.  As a result, the accuracy of
discriminating FACS action units may be reduced.

The objective of the present study was to implement the
first version of our automated method of facial analysis and to
assess its concurrent validity with manual FACS coding.  Un-
like previous systems that use aggregate measures of flow
within large feature windows, our system tracks the movement
of closely spaced feature points and imposes no arbitrary thresh-
olds.  In addition, to optimize system performance, three sepa-
rate modules are used to extract convergent information about
facial features.  The descriptive power of feature tracking is
evaluated by comparing the results of Hidden Markov Model-
ing or discriminant analysis with those of manual FACS cod-
ing.

2. Automated Face Analysis

Automated Face Analysis includes three convergent
modules for feature extraction (Figure 1).  One module,
feature-point tracking, tracks the movement of pre-selected
feature points within very small feature windows (currently
13 by 13 pixels).  The feature points to be tracked are in
regions of high texture and represent underlying muscle
activation of closely related action units.  In an earlier study
[23], we found that motion in a small number of pre-selected
feature points was sufficient to discriminate between closely
related action units.  The second module, dense-flow
tracking, quantifies flow across the entire face.  Dense flow
tracking has reduced sensitivity for the localized, small
motion in which feature-point tracking excels, but extracts
information within larger regions. The third module tracks
changes in facial lines and furrows (i.e., high gradient
component detection).  Facial motion produces transient
lines and wrinkles which are indicative of the underlying
action units.  Hidden Markov Modeling (HMM) or discrimi-
nant analysis is performed on the feature point, dense flow,
and high-gradient component data for action unit discrimina-

tion and intensity estimation.

2.1 Facial Action Coding System (FACS)

Our approach to facial expression analysis is based on
the Facial Action Coding System (FACS) [8], which is a
comprehensive, anatomically based coding system.  FACS
divides the face into upper and lower regions and subdi-
vides motion into action units (AUs).  AUs are the smallest
visibly discriminable muscle actions that combine to perform
expressions. In the present study, fifteen FACS action units
and action unit combinations are discriminated and their
intensities estimated (Figure 2).

AU5

AU4
Upper Face

AU1+2AU1+4

Brows lowered
and drawn
together

Medial portion of
the brows is
raised and pulled
together

Inner and outer
portions of the
brows are raised

AU7AU6

Upper eyelids
are raised

Cheeks are raised
and eye opening
is narrowed

Lower eyelids
are raised

Figure 2. FACS Action Units (AUs)



Figure 2 continued. FACS Action Units (AUs)

AU20+25

AU27
Lower Face

AU25 AU26

AU12 AU12+25

AU9+17

Lip corners are
pulled obliquely

AU12 with mouth
opening

Lips are parted
and pulled back
laterally

Lips are relaxed
and parted

Lips are relaxed
and parted;
mandible is
lowered

Mouth is
stretched open
and the mandible
pulled down

AU15+17AU17+23+24

Lip corners are
pulled down and
chin is raised

The infraorbital
triangle and
center of the
upper lip are
pulled upwards
and the chin boss
is raised (AU17)

AU17 and lips are
tightened, nar-
rowed, and
pressed together

2.2 Image Alignment

To remove the effects of spatial variation in face
position, slight head rotation, and facial proportions,
images are warped automatically to a standard face model
using either an affine or perspective transformation [21].
By automatically controlling for face position, orientation,
and magnification in this initial processing step, feature-
point displacement, dense flow, and high-gradient compo-
nent vectors in each frame have close geometric correspon-
dence.  Face position and size are kept constant across
subjects so that these variables do not interfere with action
unit discrimination.

 An example of image alignment by perspective
transformation can be seen in Figure 3.  In the original
image sequence (Row A), the subject turns his head to the
right while beginning to smile (AU 12), pitches the head up,
increases mouth opening (AU 25/26), and narrows the eyes
and raises the cheeks (AU 6) and brows (AU 1+2).  The
intensity difference images in Row B illustrate the con-
founding of rigid and non-rigid motion in the original image
sequence (Row A).  Row C shows the perspective transfor-
mation of the original image sequence in Row A, and row D
the intensity differences between Row C and the initial
frame in Row A.  In comparison with the intensity images of
the original series (Row B), facial features no longer appear
doubled, and white areas have specificity for non-rigid
motion.

2.3 Feature Extraction

Three modules extract information about transient and
permanent facial features and their change over time:
feature-point tracking, dense-flow tracking with PCA, and
high-gradient component detection.

2.3.1 Feature-point tracking

Because facial features have high texture and represent
underlying muscle activation, optical flow may be used to
track movement of feature points. Facial expressions are dis-
criminated on the motion of these points. Feature points lo-
cated around the contours of the brows, eyes, nose, mouth,
and below the lower eyelids are manually marked in the first
frame of each image sequence using a computer mouse (Fig-
ure 4).

The movement of feature points is automatically
tracked in the image sequence using the Lucas-Kanade
algorithm [13]. Given an n by n feature region R and a gray-
scale image I, the algorithm solves for the displacement
vector d = (d

x
, d

y
) of the original n by n feature region by

minimizing the residual E(d), which is defined as
Figure 3. Perspective Alignment



            E(d) =∑ [ I
t+1

(x+d) - I
t
(x) ]2

                             x∈R

where x = (x, y) is a vector of image coordinates.  The Lucas-
Kanade algorithm performs the minimization efficiently by us-
ing spatio-temporal gradients, and the displacements d

x
 and

d
y
 are solved with sub-pixel accuracy.  The region size used in

the algorithm currently is 13-by-13.  The algorithm is imple-
mented by using an iterative hierarchical 5-level image-pyra-
mid [25], with which rapid and large displacements of up to
100 pixels (e.g., as found in sudden mouth opening) can be
robustly tracked while maintaining sensitivity to subtle (sub-
pixel) facial motion.

Action units are discriminated from the displacements of

Figure 4. Feature-Point Tracking

six feature points in the brows, eight around the eyes, and ten
around the mouth. The displacement of each feature point is
calculated by subtracting its normalized position in the first
frame from its current normalized position. The 6-, 8- and 10-
dimensional horizontal and vertical displacement vectors are
concatenated to form 12-, 16-, and 20-dimensional displace-
ment vectors that represent the facial motion of each frame.

2.3.2 Dense Flow Tracking with Principal
Component Analysis (PCA)

Feature-point tracking is sensitive to subtle feature mo-
tion and tracks large displacement well but omits information
from the forehead, cheek and chin regions, which also contain
important expression information.  To include information from
these regions, the entire face image is tracked using dense
flow [21] (Figure 5).

Because our goal is to discriminate expression rather than
identify individuals or objects [11, 16, 20], facial motion is
analyzed using dense flow rather than gray value. Compared
with Bartlett et al. [1], estimates of facial motion by this ap-
proach are unaffected by differences between subjects.  To
ensure that the pixel-wise flows of each frame have close geo-
metric correspondence, flows are automatically warped to the
2-D face model.  The high-dimensional pixel-wise flows of
each frame are compressed by PCA to low-dimensional repre-
sentations without losing significant characteristics or inter-
frame correlation.

Using PCA and focusing on the upper face region, ten

horizontal and ten vertical �eigenflows� are computed [12].
These eigenflows are defined as the eigenvectors correspond-
ing to the ten largest eigenvalues of the 832 x 832 covariance
matrix constructed by 832 flow-based training frames from 44
training image sequences.

Each flow-based frame of an expression sequence is pro-

Figure 5. Dense-Flow Tracking
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Figure 6.  Computation of Vertical Flow Vector

jected onto the flow-based eigenspace by taking the inner
product of each element of the eigenflow set, producing a
10-dimensional weighted vector (Figure 6). The ten-dimen-
sional horizontal-flow weighted vector and the ten-dimensional
vertical-flow weighted vector are concatenated to form a
twenty-dimensional weighted vector for each flow-based
frame.

2.3.3. High Gradient Component Analysis

Facial motion produces transient wrinkles and furrows
perpendicular to the motion direction of the activated muscle.
The facial motion associated with these furrows produces
gray-value changes in the face image.  High gradient compo-
nents (i.e., furrows) of the face image are extracted with a
variety of line or edge detectors.  After normalization of each
image, a 5 x 5 Gaussian filter is used to smooth the image.  3 x
5 (row x column) horizontal line and 5 x 3 vertical line detectors
are used to detect horizontal lines (i.e., high gradient compo-
nents in the vertical directions) and vertical lines in the fore-
head region, respectively; 5 x 5 diagonal line detectors are
used to detect diagonal lines along the nasolabial furrow; and



3 x 3 edge detectors are used to detect high gradient compo-
nents around the lips and on the chin region.

To verify that the high-gradient components are pro-
duced by transient skin or feature deformations and not by

Mean κ was 0.86.
Action units in the brow and mouth regions were se-

lected for analysis if they occurred a minimum of twenty-five
times. When an action unit occurred in combination with other
action units that may modify its appearance, the combination
rather than the single action unit was the unit of analysis. The
action units we analyzed represent key components of emo-
tion and related paralinguistic displays.  In each region, the
actions chosen included similar appearance changes (e.g.,
brow narrowing due to AU 1+4 versus AU 4 and mouth wid-
ening due to AU 12 versus AU 20).  For feature-point tracking,
results are for 15 action units from 504 image sequences; for
dense-flow tracking, three action units from 115 image se-
quences; and for high-gradient component detection, five
action units from 260 image sequences.  All data were divided
into a training and a test set.

Tables 1 through 3 present test results of the feature-
point tracking module of Automated Face Analysis.  For all
three modules, the average discrimination rate in the test
image sequences was 80% or higher, which represents
excellent agreement with manual FACS coding.

5. Discussion

Previous studies have used optical flow to discriminate
facial expression [11, 17].  Sample sizes in these studies have
been small, and with the exception of Bartlett  et al. [1], this
work has focused on the recognition of molar expressions,
such as positive or negative emotion or emotion prototypes
(e.g., joy, surprise, fear). We developed and implemented two
optical-flow based approaches and one for high-gradient com-
ponent detection.  All three were sensitive to subtle motion in
facial displays. Feature-point tracking was tested in 504 im-
ages sequences from 100 subjects and achieved a level of
precision that was as high as or higher than that of previous
studies and comparable to that of human coders.  The other
two modules were tested in a smaller number of image se-
quences and showed comparable precision.

Accuracy in the test sets was 80% or higher in each re-
gion. The one previous study to demonstrate accuracy for
discrete facial actions [1] used extensive pre-processing of
image sequences and was limited to upper face action units in
ten subjects.  In the present study, pre-processing was limited
to manual marking with a pointing device in the initial digi-
tized image, facial behavior included action units in both the
upper and lower face, and the large number of subjects, which
included African-Americans and Asians in addition to Cauca-
sians, provided a sufficient test of how well the initial training
analyses generalized to new image sequences.  Feature-point
tracking demonstrated moderate to high concurrent validity
with human FACS coding.

The level of inter-method agreement for action units was

permanent characteristics of the individual�s face, the gradi-
ent intensity of each detected high-gradient component in
the current frame is compared with corresponding points
within a 3 x 3 region of the first frame.  If the absolute value of
the difference in gradient intensity between these points is
higher than the threshold value, it is considered a valid high-
gradient component produced by facial expression.  All other
high-gradient components are ignored (see Figure 7).  In the
former case, the high gradient component (pixel) is assigned a
value of one.  In the latter case, the pixels are assigned a value
of zero.

The forehead (upper face) and lower face regions of the
normalized face image are divided into thirteen and sixteen
blocks, respectively.  The mean value of each block is calcu-
lated by dividing the number of pixels having a value of 1 by
the total number of pixels in the block.  The variance of each
block is also calculated.   For upper- and lower-face expres-
sion recognition, mean and variance values are concatenated
to form 26- and 32-dimensional mean and variance vectors,
respectively, for each frame.

4. Experimental Results

Facial behavior was recorded in 100 adults (65% male and
15% African American or Asian, ages 18 to 35 years). Subjects
sat directly in front of the camera and performed a series of
facial expressions that included single action units (e.g., AU
12, or smile) and combinations of action units (e.g., AU 1+2, or
brow raise).  Each expression sequence began from a neutral
face. Six of the expressions were based on descriptions of
prototypic emotions. Action units were coded by certified
FACS coders.  Inter-observer reliability was quantified with
coefficient kappa [19], which corrects for chance agreement.

Figure 7. High-Gradient Component Detection



comparable to that achieved in tests of inter-observer agree-
ment in FACS.  Moreover, the inter-method disagreements
that did occur were generally ones that are common in human
coders, such as the distinctions between AU 1+4 and AU 4 or
AU 6 and AU 7. These findings suggest that Automated Face
Analysis and manual FACS coding are at least equivalent for
the type of image sequences and action units analyzed here.

One reason for the lack of 100% agreement at the level of
action units is the inherent subjectivity of human FACS cod-
ing, which attenuates the reliability of human FACS codes.
Two other possible reasons were the restricted number of
optical flow feature windows in feature-point tracking and the
lack of aggregation across modules.  From a psychometric
perspective, aggregating the results of each module can be
expected to optimize discrimination accuracy.

In human communication, the timing of a display is an
important aspect of its meaning. For example, the duration of
a smile is an important factor in distinguishing between felt
and false positive emotion. Until now, hypotheses about the
temporal organization of emotion displays have been difficult
to test.  Human observers have difficulty in locating precise
changes in behavior as well as in estimating changes in ex-
pression intensity.  Automated Face Analysis by contrast can
track quantitative changes on a frame-by-frame basis [24].
Small pixel-wise changes may be measured, and the temporal
dynamics of facial expression can be determined.

Two challenges in analyzing facial displays are the prob-
lems of controlling for rigid motion and segmenting displays
within the stream of behavior.  Perspective alignment performs
well for mild out-of-plane rotation, but more complex models
may be needed for larger out-of-plane motion.  Segmenting
displays is a focus of current research.  Central to the devel-
opment of Automated Face Analysis is what we learn from
substantive applications.  These include a cross-cultural study
of emotion regulation in European-American, Japanese, and
Chinese infants, two separate studies of adult emotion regu-
lation, and a quantitative analysis of facial motion in patients
with facial nerve dysfunction.  Pending applications include
video-conferencing, human-computer interaction, and foren-
sic use.
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Table 1. Agreement Between Feature Point Tracking and
Manual Coding in the Brow Region

Automated Face Analysis

Manual
Coding AU 1+2 AU 1+4 AU 4N

AU 1+2 43         .95              .02 .02

AU 1+4 22         .05              .86 .09

AU 4 65         .02              .08 .91

AU 5
N

AU 5 33      .97           .00               .03

AU 6 36      .06           .81              .14

AU 7 20      .00           .15               .85

Automated Face Analysis

Manual
Coding

AU 6 AU 7

AU 27 29 .83 .10  .03 .00 .00 .03 .00 .00 .00

AU 26 24 .25 .54 .21 .00 .00 .00 .00 .00 .00

AU 25 22 .00 .05 .86 .00 .00 .00 .09 .00 .00

AU 12 18 .00 .00 .00 .78 .22 .00 .00 .00 .00

AU 12+25 35 .00 .00 .03 .00 .86 .11 .00 .00 .00

AU 20+25 31 .00 .00 .00 .00 .16 .81 .03 .00 .00

AU 15+17 36 .00 .00 .00 .00 .00 .00 .94 .06 .00

AU 17+23+24 12 .00 .00 .00 .00 .00 .00 .08 .92 .00

AU 9+17 17 .00 .00 .00 .00 .00 .00 .00 .00 1.00

Automated Face Analysis

  N           AU 27         AU 26        AU 25        AU 12          AU              AU               AU              AU              AU

Manual
Coding

12+25         20+25           15+17      17+23+24        9+17

Table 2. Agreement Between Feature Point Tracking and
Manual Coding in the Eye Region

Table 3. Agreement Between Feature Point Tracking and Manual Coding in the Mouth Region


