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Given at least four reference poinis or lines on a planar
surface and their correspondences in an image, the rel-
ative positions of other siructures on the plane can be
derived without solving for camera posilion or intrin-
sic calibration parameters. A new framework for data
fusion in the projective plane is presented to merge the
position estimates of coplanar points and lines derived
in this way.

1 Introduction

Acquiring 3D models of the environment is an im-
portant current research problem in computer vision.
Since modeling the world in all its complexity is a
daunting task, many researchers have focused on man-
made domains where planar surfaces and linear surface
markings predominate. The relevant geometric enti-
ties — points, lines and planes — are easily represented
as linear subspaces. Furthermore, a rich set of results
from the field of projective geometry become available.

The relevance of projective geometry to the visual
aquisition of planar surface models cannot be over-
stressed: Projective geometry provides a mathemati-
cal foundation for characterizing and representing the
relationships between linear subspaces that remain in-
variant under the imaging process.

This paper describes an approach to model exten-
sion using properties of projective mappings between
planes. In particular, a priori knowledge of the rela-
tive positions of four or more coplanar points or lines
is used to derive the positions of other points and lines
on the same plane in a manner invariant to camera
location and intrinsic camera parameters. Model ex-
tension is just one application of a general framework
being developed for geometric inference in projective
space. One of the main contributions of this work is
the development of an appropriate methodology for
fusing geometric information in the projective plane.
An expanded version of this paper appears in [3].
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2 Projective Transformations

This section briefly summarizes properties of projec-
tive mappings between planes. For a more compre-
hensive discussion the reader is invited to consult a
projective geometry text such as [8].

Using homogeneous coordinates, a general projec-
tive transformation between planes can be written as

k[z,y,d] = [=z,y,s] H!

where k is a nonzero scalar, s and s’ are 1 for finite
points in the plane and 0 for infinite points (see below),
and H is a nonsingular 3 X 3 matrix of transformation
parameters. Since homogeneous coordinates are equiv-
alent up to scalar multiples, the transformation matrix
can be multiplied by any nonzero constant and still
represent the same mapping, and therefore has only
8 independent parameters. A nonsingular projective
mapping that is linear in homogeneous coordinates is
called a homography.

Because they are linear, invertible and closed un-
der composition, homographies greatly simplify the
analysis of projective mappings. However, in order
to make a homography bijective a line of points at
infinity must be explicitly added to each plane to cor-
respond to the cases where s and s’ go to zero. A
plane that has been augmented in this way is a new
geometric entity called the projective plane. The pro-
Jective plane has a different global topology than the
Euclidean plane, and this has implications for the rep-
resentation of observed points and their uncertainty.
This topic is explored in Section 4.

The fundamental theorem of projective geome-
try states that a plane to plane homography is com-
pletely determined by the correspondences of 4 copla-
nar points or lines in general position. In practice it
is better to use as many point and line correspon-
dences as possible to reduce errors in the estimated
transformation caused by noise in the observed image
data. Faugeras and Lustman present a least squares
approach to estimating a homography by solving an
overconstrained linear system of equations[6].



3 Planar Surface Model Extension

This section outlines an approach to planar model ex-
tension that assumes the positions of four or more
points or lines on the object plane are already known.
The transformation mapping known object features to
their corresponding images is a homography contain-
ing information about the camera location and imag-
ing parameters. The parameters of this homography
are estimated from the correspondences of at least four
known object features and their image projections. By
inverting the homography other image features can be
backprojected onto the object plane, allowing the po-
sitions of new points and lines on the plane to be de-
termined without having to solve for camera location
or intrinsic calibration parameters. Good experimen-
tal results have been achieved using this method, as
reported in [3].

This approach is similar to one used by Mohr [7],
who locates object points using pairs of cross ratios
between the point and four known object locations.
When exactly four point correspondences are used,
the homography estimated using the least squares ap-
proach reduces to the mapping affected by Mohr’s
cross ratio pair; when more correspondences are known
the least squares method should be more accurate.
Furthermore, a new approach is now presented that
allows positions estimated from several images to be
merged to derive more accurate point and line posi-
tions from noisy observations.

4 Merging Geometric Information

A method for merging geometric information derived
from multiple views is proposed in this section, based
on fusing data points in the projective plane. From
each viewpoint a homography is estimated that back-
projects image points onto the object plane, thereby
providing an estimate for the location of each object
point. Over multiple images, multiple location esti-
mates are obtained. Each point location estimate in
homogeneous coordinates represents a point in the pro-
jective plane; multiple location estimates for each ob-
ject point form a sample of points in the projective
plane, clustered around the point in the projective
plane representing the homogeneous coordinates of the
true object point location. This section describes a
method for estimating the true point position from its
sample cluster.

In Section 2 the projective plane is described as
the Euclidean plane augmented with a line of points
at infinity. This is not the best way to visualize the
projective plane, however, since the Euclidean plane is
topologically open, while the projective plane is topo-
logically closed. To see why, consider a hypothetical
traveler following a ray starting at the origin and con-
tinuing out infinitely far. After “arriving” at infinity,
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the traveler is located at some point (z,y, 0) in homo-
geneous coordinates. But in homogenous coordinates
this is the same point as (—z, —y,0), so the explorer
can keep traveling “past infinity” and eventually re-
turn to the origin still facing in the same direction.

As a result of this wraparound effect, if the topol-
ogy of the projective plane is ignored and it is treated
as a Buclidean plane a single cluster of points centered
around a point at infinity will appear as two clusters
infinitely far apart. Any estimation technique based
on “averaging” these points using a Gaussian distri-
bution in the plane will produce bad results, because
the unimodal Gaussian distribution is a terrible ap-
proximation to the underlying bimodal distribution.
Proper handling of points at infinity is not just of the-
oretical interest. Such points do arise in practice [4].

Since the projective plane is topologically closed,
it is better to think of it as a closed 2D space like the
surface of a sphere. More formally, consider R® ~ 0
(three space with the origin removed), and define an
equivalence relation (z1,z2,23) ~ (2ky1,kyz,ky3) for
nongero k. The projective plane is then defined
as the quotient space (R® — 0)/ ~. Viewing R? geo-
metrically as Euclidean 3-space, each member of the
quotient space is an equivalence class of points along
an infinite line through the origin (excluding the ori-
gin itself). Consider now the surface of the unit sphere
§? = {(z1, z2, z3) |22 +23+23 = 1}, and form the quo-
tient space 5% / ~ . Each equivalence class now con-
tains one pair of diametrically opposite points. Equat-
ing these equivalence classes with those of the projec-
tive plane in the obvious way shows that the surface
of the unit sphere with antipodal points equated is
isomorphic to the projective plane.

The most important benefit to come from this iso-
morphism is that it allows probability distributions on
the sphere to be reinterpreted as distributions in the
projective plane. Since diametrically opposite points
on the sphere must be treated as equivalent in order
to represent the projective plane, an appropriate dis-
tribution must possess the property of antipodal sym-
metry, i.e. the probability value at any point on the
sphere must be the same as the probability at the di-
ametrically opposite point.

A useful characterization of distributions on the
sphere is presented in Beran [1]. Beran considers ex-
ponential distributions on the sphere, that is, distribu-
tions of the form ezp{P} where P is a polynomial eval-
uated over the surface of the sphere. This is not as re-
strictive as it seems, since any strictly positive function
F on the sphere can be represented as ezp{In{F}}.
Exponential forms are considered due to their ease of
use in maximum likelihood estimation.

Assuming a distribution of the form exp{P}, the
polynomial P can be decomposed using spherical har-
monics, analogous to the way polynomials in Euclidean
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Figure 1: Bingham’s Distribution Contours.

space are decomposed using Fourier analysis. If the
distribution is required to have antipodal symmetry,
all odd order harmonics are identically zero. This
leaves an expression ezp{Yo + Y2 + Y4 +...}. The sze-
roth harmonic is a constant, so the ezp{Yy} term can
be factored out and absorbed into the distribution’s
normalization constant. Therefore, the low order ap-
proximation to any antipodally symmetric exponential
distribution on the sphere is of the form ezp{¥3}. A
distribution having this form has already been studied
in the statistical literature, where it is called Bing-
ham’s distribution [2].

Bingham’s distribution can be described as a
trivariate Gaussian vector with zero mean and arbi-
trary covariance matrix, conditioned on the length of
the vector being unity. Bingham’s distribution thus
represents the portion of a trivariate Gaussian distri-
bution that intersects the surface of the unit sphere,
with varying ellipsoidal shapes of the underlying Gaus-
sian contours producing a variety of distributional
forms on the sphere (see Figure 1). Bingham’s distri-
bution has been used previously in a computer vision
setting to represent uncertainties in line and plane ori-
entations estimated from vanishing point analysis and
stereo line correspondences [4, 5].

A point or line location estimate in homogeneous
coordinates represents a point in the projective plane;
multiple estimates form a sample of data points in the
plane. To fuse data points in the projective plane each
point is assumed to be a noisy observation of the true
point location. The previous analysis shows that Bing-
ham’s distribution is an approximation to any noise
process in the projective plane, therefore it is assumed
that observed points are corrupted by a Bingham noise
process centered about the true point location.

Normalizing the homogeneous coordinates of each
sample point yields an antipodal pair of points on the
unit sphere. Assuming a manageable level of noise,
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the normalized sample points form a cluster on the
sphere distributed according to a bipolar Bingham dis-
tribution (Figures 1b and 1c). An estimate of the ho-
mogeneous coordinates of the true point position can
therefore be obtained as an estimate of the polar axis
of the Bingham distribution that best fits the normal-
ized sample points. The most common method for
estimating a distribution’s parameters from a sample
of observations is maximum likelihood estimation.

Relevant statistics for Bingham’s distribution can
be summarized as follows; a more detailed presentation
can be found in [2, 5]. Given a set of n unit vectors
&; = (zi, i, ) assumed to be distributed according
to Bingham’s distribution, a sufficient statistic for the
orientation and shape parameters of the distribution is
the sample second moment or scatter matrix ¢;¢;". It
can be shown that the maximum likelihood estimate
of the pole of a bipolar Bingham distribution is the
eigenvector associated with the largest eigenvalue of
this sample scatter matrix. Equations for computing
confidence regions on the sphere can be found in [2,
5]. Once again, for a look at experimental results the
reader is directed to [3].

It must be noted that this maximum likelihood
approach for data fusion implicitly assumes that all
points in the sample are independent and identically
distributed. While the independence assumption may
be a necessary evil, points in the sample will proba-
bly not be identically distributed, since some extracted
image features are more accurate than others. Future
work will address ways of combining point estimates
of different, but estimable, accuracy.
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