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Abstract

This paper presents an application of tool insertion using
model based vision. The requisite technologies, including
model representation, sensor calibration and error
quantification are discussed. These techniques are applied
to a nuclear servicing task in a physical mock-up of a
steam generator.

1. INTRODUCTION

Tool insertion is a class of problems that mate two non-
compliant parts in the presence of geometric uncertainty.
For a subclass of tool insertion, an accurate model of the
tool, its mating receptacle, and its surrounding
environment contains sufficient information to drive the
task. For these tool insertion problems a model does exist,
but is not always accurate znough to enable reliable
manipulation.

Model based vision offers one solution to the problem of
reducing model uncertainty and providing precise scene
data. Using sensors, an approximate model is corrected
until it is sufficiently accurate for manipulation. Achieving
model accuracy requires the application of a number of
techniques such as sensor calibration, sensor error
estimation and the identification of spurious sensor data.

In this paper, model based vision is shown to be a viable
solution to a tool insertion problem for the nuclear
servicing industry. The development of a complete model
based tool insertion system including sensor calibration,
image processing, error estimation and methods for
motion planning in the presence of sensor dropout is
discussed.

2, PRIOR WORK

The development of manipulation for model based tool
insertion requires that vision systems for model correction
be developed, and that the manipulator be driven based on
model information. Much work has been done in robotics
toward the development of automated manipulation
systems, the references cited here are certainly not all
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inclusive, but offer an overview of the technologies that
influenced our work.

Mitchell [4] studied planning/learning systems for
manipulation tasks such as moving a block along a wall. A
vision system detected the location and orientation of the
block in the scene and planning algorithms commanded
manipulator motion to achieve some goal. The robot
refined its understanding of the manipulation task through
its failures.

Allen [1] performed both contact and non-contact sensing
of three dimensional objects and illustrated the necessity
of multisensor integration to achieve reliable
reconstruction information. Tactile feedback augmented a
stereo vision system to determine object shape. The work
demonstrated the advantages of combining multisensor
feedback to achieve better reconstruction of the
manipulator workspace.

Our work uses sensor feedback to establish the state of the
manipulation environment and uses this information to
guide a manipulator in performing some task. Multi-
sensor integration provides an estimate of the state of the
manipulation environment that was unachievable with a
single sensor. The current work specializes and integrates
these component technologies into a functional system.

3.  APPLICATION OF THE SYSTEM

Perception driven manipulation has not yet progressed to
the point of generalization, therefore discussion of the tool
insertion system would be unclear without some
discussion of the intended application.

This work was motivated by the desire to automate
servicing operations in nuclear steam generators. A steam
generator exchanges heat between the superheated
radioactive primary loop water and the secondary loop
water. In Figure 1, the primary loop water enters the left
hand side of the channelhead. The water is forced up
through U-shaped tubes that are pressed into the tubesheet,
an 18 - 24 inch thick metal slab which caps the
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channelhead. The secondary water which surrounds these
tubes is boiled over into steam to drive the turbine.

It is critical to radiation containment to keep the
boilertubes in good repair; the nuclear servicing industry
targets the tubesheet as a critical failure area. Much
inspection and repair is performed from the channelhead,
where high radiation levels force the use of remote
manipulators.
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Figure 1: A Steam Generator

Steam generator servicing (See Figure 2) with a typical
robotic arm requires that the base be inserted through a
manway door and docked to the tubesheet. After the base
has been secured, the remaining arm links are drawn
completely into the channelhead. The arm is then in a
position to allow its end effector to reach tubesheet holes
for inspection and/or repair tasks.

The docking problem is formulated as follows. The arm
operates in a world that contains a single plane of holes
equally spaced in a 2-D grid (the tubesheet). Tubesheet
manufacturing tolerances cause significant deviation of the
holes’ spacing within the grid. The operator specifies four
holes, the robot finds the holes and inserts its base, a four
pronged clamping device, into the holes. The system niust
therefore be able to correctly determine the position and
orientation of the holes relative to the manipulator and
automatically perform the insertion.
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Figure 2: The Channelbhead

4. VISION BASED TOOL INSERTION

Model based vision is a method by which an uncertain
model is corrected until it is sufficiently accurate to drive
the given task. Calibration of the sensors is necessary to
eliminate systematic error, and uncertainty models are
needed for the remaining random effects.

A complete tool insertion system requires:
* Representation of the model
» Extraction of model parameters from sensor data
* Quantification of sensor error
¢ Transformation of sensor error to model error
¢ Sensor calibration techniques
¢ Motion planning for sensor drop out recovery

The body of this paper visits each of these topics as a
component technology, then relates them as an aggregate
system in a technical insertion scenario. While each of
these technologies is required in a complete system, the
specific technique is application dependant. The requisite
technologies are discussed in the context of the general
problem, the insertion of a four pronged tool into four
specific holes in a plane, using a vision corrected CAD
model.

4.1. Representation of the Model

The channelhead environment is represented by a CAD
model, which stores the three dimensional scene
information, and displays it in pseudo 3-D. A “correct”
model renders the current state of the manipulation
environment with sufficient information to allow safe
manipulator interaction. In our case sufficient information
includes:

* Resolution of the mating ambiguity.

» Sufficient model accuracy to allow precision mating

of the two components.
Mating ambiguity arises in that there are four possible end
effector orientations that will allow a mate, only one of
which is deemed correct. There is insufficient initial model
accuracy for docking because the exact locations of the
four prescribed holes is not known. Although the holes lie
in a known pattern, they exhibit some random deviation
from their expected positions which, if ignored, is
sufficient to prevent insertion.
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4.2. _Extraction of Model Parameters

Two types of sensor are employed to measure the hole
locations, as shown in Figure 3. A triad of range sensors
describe the attitude and height of the tubesheet and a
single-camera vision system determines hole locations
within that plane.
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Figure 3: Sensor Configuration

Computer vision techniques are used to find the locations
of the centers of each of the holes. For each point in an
image, a Canny(2] edge detector assigns a confidence
value which corresponds to the likelihood that that point
comprises part of an edge. A threshold is empirically set to
account for lighting conditions, noise, and to filter out
weak edges. After thresholding, the remaining points are
run through a calibration formula which transforms them
from image coordinates to robot world coordinates. (See
Sensor Calibration, section 4.4) A Hough [3] transform,
tailored for circle finding, locates the centers of the holes.
The Hough transform was chosen over other algorithms
because it is robust to missing or spurious data.

After the centers of the image holes have been calculated,
the CAD model is updated. A nearest neighbor algorithm
matches the holes found in the image to the hole locations
predicted by the model. The new locations are returned for
model update.

4.3.

Each of the range sensors has an associated inaccuracy
which imparts error to the range measurements and
consequently to the tubesheet parameters. Euclidean
geometry can be used to transform the range readings to
parameters; the transformation of error is less
straightforward. Smith and Cheeseman [7] described a
method for transforming Gaussian uncertainty through a
chain of geometric frames.

Quantification and Transformation of Error

Treating each reading as a random variable with some
uncertainty, the problem is to transform the uncertainties

from one frame of reference to another, and to transform
the sensor uncertainties to model parameter uncertainties.
Smith and Cheeseman’s method uses a covariance matrix
to represent the sensor uncertainty, and transforms the
sensor uncertainty through the geometry of the
manipulator chain.

This method transforms the individual sensor reading and
uncertainty. However, sensors typically measure scene
attributes from many locations and at many different
orientations during manipulation, requiring a robust
method for determining the best possible parameter
estimate, while reducing the total parameter uncertainty.
The Kalman filter is a well known technique for merging
multiple measurements with unbiased random error. The
Kalman filter is appropriately suited to error estimation in
this application because a number of discrete readings are
taken, a consensus estimate is desired, and a statistical
method for dealing with sensor drop-out is needed. The
Kalman filter updates the estimate by performing a
weighted average of the current estimate and the new
sensor readings; the readings with the lower associated
uncertainty receive a greater weight.

4.4. Sensor Callbration

The camera and its associated electronics introduce lens
distortion and electronic timing offsets to the image; high
accuracy measurements require the calculation of the
characteristic camera parameters. The use of a camera as a
metric device also requires that its location and orientation
in free space be determined. Tsai [8] describes a camera
calibration technique which addresses both problems.
There are six “extrinsic” parameters, three translational
and three rotational. Six “intrinsic” parameters serve to
characterize the camera model: focal length, two distortion
coefficients, the computer image coordinates for the
origin, and the timing uncertainty factor. The focal length
is calculated because the nominal focal length is not
precise enough for accurate measurements. The two
distortion coefficients are the coefficients from the first
two terms in the Taylor’s series expansion which describes
radial distortion. The uncertainty scale factor describes the
hardware timing bias between the sensing equipment and
the image acquisition hardware.

The strength of this calibration technique lies in the
camera model characterization. The elimination of
nonlinear distortion is especially critical to the accurate
measurement of object characteristics.
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4.5. Motion Planning for Sensor Drop Out

Sensor drop out occurs when a sensor fails to return
reasonable data. The causes of sensor drop out vary with
the sensor, but can include range limitations, occlusion,
noise, etc. A statistical method for ignoring uncertain data
exists with the Kalman filter, but the manipulator must be

moved into a position where the sensors can collect valid
data.

In our application, range sensor drop out occurs when a
sensor is aligned with a hole such that it misses the nearby
tubesheet surface and its signal fails to reflect from the
void. Individual sensor failures can be used to derive
motion trajectories that will move the sensor to the nearest
configuration that enables all three range sensors to collect
accurate data

The problem is formulated as a search for the nearest end
effector configuration parallel to the tubesheet that causes
all three range sensors’ footprints to fall on planar areas of
the tubesheet. Hole positions are assumed to be known
accurately enough for a topological search. The model is
then searched until a configuration is found. This process
repeats until a configuration without sensor dropout is
found.

The search space is the set of all possible configurations of
the end effector. A grid structure is imposed on the
configuration space to tessellate the space into a set of
nodes to be searched using a hierarchical data structure (an
octree [6]) to represent the configuration space. The A*
search algorithm [5] is employed to find a sequence of
nodes in the search space that connects start node to goal
node while minimizing distance.

5. SYSTEM PERFORMANCE

A research analog to the servicing task was used to
characterize the system’s performance. The analog
consisted of an industrial arm fitted with a camlock end
effector, a tubesheet replica, piezo electric range sensors
and a remote head CCD camera. The CAD system ran on
an SGI personal IRIS while the remaining processing was
performed by a Sun SPARCstation.

The range system determined the attitude of the tubesheet
to within 0.1 degrees. The vision system located each hole
within an image to an accuracy of at least 0.1 inches. Over
a series of 20 trials, the robot consistently docked four 0.7
inch diameter pegs into 0.8125 inch diameter holes. A
typical dock took about 10 minutes which includes the

significant settling time of the industrial arm. This time
could be reduced to 4 minutes through software
optimization and use of a modern nuclear servicing arm.

6. CONCLUSIONS

Model based vision is a viable solution to many tool
insertion tasks. This work goes beyond formulation of
component technology to implementation of a complete
system. Although there were insufficient docks to provide
meaningful statistical data, the performance indicates that
an industrial implementation of this technology would
provide a practical solution to the tool insertion problems
encountered in nuclear servicing tasks.
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