Coordinating Declarative Queries with a Direct Manipulation Data Exploration
Environment

Mark Derthick, Steven F. Roth, John Kolojejchick
Carnegie Mellon University Robotics Institute
{mad+, jake+, roth+} @cs.cmu.edu

Abstract

Interactive visualization techniques allow data exploration
to be a continuous process, rather than a discrete sequence
of queries and results as in traditional database systems.
However limitations in expressive power of current
visualization systems force users to go outside the system
and form a new dataset in order to perform certain
operations, such as those involving the relationship among
multiple objects. Further, there is no support for integrating
data from the new dataset into previous visualizations, so
users must recreate them. Visage’s information centric
paradigm provides an architectural hook for linking data
across multiple queries, removing this overhead. This
paper describes the addition to Visage of a visual query
language, called VQE, which allows users to express more
complicated queries than in previous interactive
visualization systems. Visualizations can be created from
queries and vice versa. When either is updated, the other
changes to maintain consistency.

1. Introduction

Exploratory data analysis is an iterative process where high
level questions lead to specific queries whose answers are
examined for interesting patterns. These in turn suggest
new questions. To facilitate this kind of exploration, we
would like to provide the analyst rapid, incremental, and
reversible operations giving continuous visual feedback.
However we also need the expressive power to reorganize
the data on the fly, to juxtapose objects according to diverse
criteria, and visualizations to show rclationships among
properties of these different objects. In short, we want both
the ease of use of direct manipulation systems and the
power of database query systems. This need is recognized,
yet in current systems the architecture for connecting them
is a feedforward batch stream from query to visualization
system, each having a separate interface.

2. Current Systems

2.1. Database Management Systems

Current widely used database user interfaces fall primarily

0-8186-8189-6/97 $10.00 © 1997 IEEE

65

into two classes: SQL for programmers, and forms-based
interfaces for others. The former is hard to use, and the
latter is not very powerful. Using forms, an application
builder must anticipate all useful classes of queries,
parameterize them, and design a form to provide the
parameters. For exploratory data analysis, queries cannot be
anticipated, yet we would like non-programmers to express
requests for data. Although not yet widely deployed,
database research is advancing ease of use in several
directions. First, visual query languages aim to be simpler
to use than textual languages like SQL. Some are based on
the Entity-Relationship or other object-oriented models,
which are closer to the user’s conception of the problem
domain than the implicit relationships in SQL’s relational
model. Second, database management systems (DBMS) are
also being integrated with visualization systems and report
generators for output that is easier to assimilate. However,
the mode of user interaction is still batch. Based on the
visualized output, a user formulates a new query to get a
new output, rather than manipulating the visualization itself
to retrieve different data.

2.2. Interactive Visualization Systems

Visualization systems have the opposite problem: they are
easy to use but their interfaces are insufficient for
expressing queries. They can not be used to pose queries
reflecting multiple objects, aggregation, quantification,
disjunction, negation, or arithmetic and logical functions of
attributes. This is largely because it is viewed as the job of
the DBMS to create a table, and the visualization system’s
job to show all and only the data in the table. In currently
deployed systems, visualizations do not provide query
functions themselves. Although some drill-down capability
may be available, changing a query requires a distinct
interface.

Further, each time a query is changed and processed, a
new table is sent to the visualization system, which can not
coordinate visualizations from the different tables even if
the underlying data is identical. For instance, if interface
objects in one visualization are painted or filtered, the
corresponding objects in visualizations derived from other
tables will be unaffected.

Recent research has increased the amount of querying
that is possible within a visualization to support exploration.
Direct manipulation systems like IVEE [1] and Visage [11]
provide rapid incremental construction of “queries” using
Dynamic Query sliders, Alpha Sliders, painting, and
visualization selection. Ahlberg et al [2] lists the following
advantages of direct manipulation:

1. Continuous visual representation of objects and
actions of interest.

2. Physical actions instead of complex syntax.

3. Rapid, incremental, reversible operations whose
impact on the object of interest is immediately
visible.

4. Layered or spiral approach to learning that permits
usage with minimal knowledge.

Their experiments showed that students answered
questions faster and more accurately with a direct
manipulation interface than a text-only one, or one with
graphic display and fill-in-the-blank queries.

But what you see is all you can manipulate. Querying
about aggregate properties of sets of objects is difficult, as
is expressing queries based on relationships among multiple
objects or properties of groups of objects. Direct
manipulation interfaces are generally hard to use to refer to
data that is not currently visible.

2.3. Visage

Visage is an information centric [9, 11] user interface
environment for data exploration and for creating interfaces
to data-intensive applications. Data objects are represented
as first class interface objects that can be manipulated using
a common set of basic operations, such as drill-down and
roll-up, drag-and-drop moves, copy, and dynamic scaling.
These operations are universally applicable across the
environment, whether graphical objects appear in a
hierarchical table, a map, a slide show, in a query or other
application user interface. Furthermore graphical objects
can be dragged across application Ul boundaries. In
addition to capabilities of previous interactive visualization
systems, Visage also includes the SAGE system [10, 11} for
automated design of visualizations that integrate many
attributes. SAGE is a visualization server to Visage, which
renders SAGE graphic designs so that they are subject to all
direct manipulation operations. Integrating the visualization
system directly with an underlying database, rather than just
deriving visualizations from otherwise isolated tables, is
key to coordinating visualization applications with the other
components of an exploratory data analysis environment.
Visage includes several ubiquitous exploration
operations that are related to querying. A user can navigate
from the visual representation of any database object to
other related objects. For instance, from a graphical object
representing a real estate sales agent, one can navigate to all
the houses listed by that agent. It is also possible to
aggregate database objects into a new object, which will

66

have properties derived from its elements. For instance, we
could aggregate the houses listed by John and look up their
average size or “recompose” this set into sub-aggregates
based on neighborhood or number of rooms (i.e. all
Shadyside houses listed by John with 8 rooms).

However these operations are only specified
procedurally, that is, by a sequence of direct manipulation
operations. There is no explicit query. Once a user has
navigated from John to his houses and aggregated them, he
must repeat the operations to do the same for Jill’s houses,
or to repeat for John’s houses next month when the data
may have changed. Just as sliders visually indicate the
current filtration range for parameterized queries, we would

like a declarative and manipulable visual query
representation that also applies to these structural
operations. We would like to dynamically and

incrementally change or reuse some or all portions of a
sequence of data exploration operations.

2.4. VQE: Visual Query Environment

VQE is a visual query environment within Visage for
representing operations explicitly. It enables an analyst to
construct complex queries during data exploration and reuse
them later. VQE queries can express relationships among
object sets, support navigation among objects, and denote
aggregation. They combine this level of expressiveness with
dynamic query interfaces for range selection. Furthermore,
queries are fully integrated with the rest of Visage: not only
can query results be dragged to other visualizations, but
objects from visualizations can be dragged into queries (i.e.
be the input to query expressions). User directed changes to
queries and visualizations are immediately reflected in each
other.

3. Example

3.1. Schema Browser

To illustrate the system, we use a fictitious database of
house sales used by a group of Pittsburgh real-estate agents
describing clients and sales information for three
neighborhoods in 1989. Figure 1 (top) shows an entity-
relationship (ER) diagram of the database. It serves as an
interface for browsing database structure and initiating
queries. Data types are shown as rectangular nodes, and
attributes of objects are listed inside the node. For example,
the attributes of houses include lot size, number of rooms,
address, and neighborhood. Binary relationships between
objects are shown as links. The appearance of the links
shows functional dependencies. Links with one line
diverging into multiple ones indicate one-many
relationships; those with multiple lines in both directions
indicate many-many relationships. A link with a single line
would indicate a one-to-one relationship. For example, in
this database, only one person can be the buyer_agent in a
given sale, although many sales can have the same person

Database Schema Browser

USE

SALE

[FERson

LATITUDE
LONGITUOE
LOY S5IZE

AGENCY ESTIMATE
ASKING PRICE
DATE ON MARKET

SELLER_AGENT SELLER_AGENT_IN_SALE 55N
BIRTHDATE

SALARY

BUYER_AGENT BUVER_AGENT_IN_SALE

NUM ROOMS
ADDRESS
NEIGHBORHOOD

SOLD_IN HOUSE_S50LD

DATE 50LD
SELLING PRICE

NAME

SELLER SELLERLIN_SALE

BUYER_IN_SALE

«Delete Mex
<Create New Attributes>
wSaves
«Revert»
<Toggle Denotes Ohject»
ADDRESS
LATITUDE
LONGITUDE
LOT SIZE

g NEIGHBORHOOD
NUM ROOMS

2
—sor

3
BUYER ;

BUYER_AGEN‘:l
HOUSE_SOL;
SELLER ‘

SELLER_AGEEI;

? DynamicAggregate
69 [SALEs 2
[=I

<none>

Figure 1: Top: Entity-Relationship d‘i'égram for the Real Estate domain in the Database Schema érowser frame. Bottom: Four query

construction operations have been performed: 1) A copy of the House data type has been dragged from the ER diagram to
QueryEnvironment (VQE), where it becomes a dynamic aggregate of Houses; 2) navigation along the “sold_in" relationship to Sales; and
3) a set of relationships emanating from Sales has been displayed as arrows as options to nawgate further; 4) a menu of attributes for the

House dynamic aggregate is exposed.

as the buyer_agent. The role served by a relationship for an
object is labeled next to the data type. For instance, the
relationship between sales and houses serves the house_sold
role of the sale, while it is the sold_in role of the house.

ER diagrams are useful for browsing because they show
all the data types in the database and their attributes. They
also show all the relationships and their domain and range.
However, it’s important to emphasize that their purpose
here is just to show the structure of the database and as a
starting point for navigating with actual data sets.

The remainder of the example illustrates how a real
estate agent might create and modify a query during data
exploration. It illustrates a solution to a fundamental
limitation of current interactive visualization systems,
related to the integration of multiple distinct data objects
(i.e. a join in relational database terms). Previous systems
like IVEE and Visage enable users to assign sliders to filter
a set of data objects based on one or more attributes (e.g. to
filter houses based on number_of_rooms or lot_size). Both
systems also enable users to visualize relationships among
multiple attributes using graphical properties of objects in
charts (e.g. the relationship between number_of_rooms and
lot_size in a plot chart). However, users often need to view
relationships among attributes that are distributed across
multiple related objects. For example, one might want to

67

filter houses based on the salary of the buyers of the houses.
But salary is an attribute of person, not house. In our
database, houses are related to sales, which are related to
persons. Therefore, we need a way to specify the “path”
from house to person to use attributes of one to filter the
other or to view relationships between attributes of different
objects (e.g. person salary vs. sale price in Figure 3). In
general, it is not possible to anticipate every combination of
data objects a user will want to integrate or to create the
“universal” relation that joins all data into one object.
Therefore VQE contains a navigation mechanism to
dynamically construct paths among object sets to integrate
their attributes.
The following example illustrates:
¢ Navigation among sets of objects of different types.
e Visualization of attributes from multiple object
types in a single graphic.
e Ul techniques for assigning data attributes to be
visualized to graphical properties.
¢ Extension of dynamic query filter techniques to
control multiple objects sets.
¢ Coordination among visualizations derived from
different queries.
¢ Dynamic definition of new data attributes.

| Sage Picture

Q] @)
POINT BREEZE SQUIRREL HHLL SHADVSIDE|
NEIGHBORHOOD

ABcde
Text

12

H-Bar Line Gauge

| LATITUDE e-=il

b
LONGITUDE

NEIGHBORHOOD

Figure 2: A SageBrush sketch (right) and the resulting picture (left).

3.2. Integrating Multiple Objects

Figure 1 (bottom) shows the query after one navigation step
has been completed, and another is beginning. First a copy
of the House data type was dragged from the ER diagram
into the VQE frame, where it became a dynamic aggregate.
The dynamic aggregate represents a set of houses, and
serves as a locus for browsing and querying operations on
the elements of the set. The data type of the dynamic
aggregate is preceded by its cardinality; in this database
there are 269 houses. In this case, the data type for houses
was dragged into the Query Environment, so all objects of
type house in the database formed a dynamic aggregate. It
is also possible to drag subsets of particular houses from
visualizations to form the aggregate. A mouse operation on
a dynamic aggregate brings up a choice of relationships for
navigation, displayed as arrows (in this case, there is only
one relationship for houses: sold_in). The user selected the
arrow, which produced the second dynamic aggregate,
labeled “Sales”. The choices for navigation from Sales has
also been displayed. Arrows show the direction of
navigation, and the labels depend on this direction as
described above. For instance, we are navigating away from
Sales, so the top relationship is labeled buyer rather than
buyer-in-sale. The user will select the “buyer” arrow in
order to build a third dynamic aggregate of Persons who
were buyers in the set of sales (Figure 3 shows all three
dynamic aggregates more clearly).

3.3. Selecting Properties to be Visualized

Next the user selects attributes to visualize. In this

68

scenario, the user is a real estate agent who is exploring a
hunch that many people have been stretching their finances
to buy near a city park. Figure 1 also shows the process of
selecting attributes from a menu. In this case the agent
wants to view house locations, and the relationship between
their cost and the ability of the buyers to afford them.
Consulting the schema, this requires latitude, longitude, and
neighborhood of the houses, selling price of the sales, and
salary of the buyer. To visualize these attributes, she wants
to create a map showing the first three attributes, and a
chart showing the remaining two. To create the map, a
SageBrush [10] frame is dragged into the VQE frame
(Figure 2 right). The agent constructs a sketch of the
desired visualization by dragging a map icon into the work
area, and drags copies of the latitude and longitude
attributes of the house dynamic aggregate into it. The
neighborhood attribute is also dragged to the color property
of the point icon on the map. The Create Picture button
sends a design request to the Sage expert system, which
returns a visualization design incorporating the attributes, in
this case a map of the houses (Figure 2 left). In the absence
of a sketch, or with a partial sketch, Sage uses heuristics to
design pictures to facilitate specified analysis tasks on
specified attributes.

3.4. Coordination Across Distinct Queries

The agent then sketches a plot chart in a manner similar to
the way the map was sketched. The chart is designed to
show the relationship between the selling-price of houses
and the salaries of the buyers. The updated state of VQE is
shown in Figure 3. In the chart, there is a clear correlation

" Query Fnvironment

DynamicAggregate ‘

" DynamicAggregate I Dynamichggregate
63 [HOUSE s 1 pes BALESs 2 P33 PERSON's 3
= LOT_SIZE [=]SEtLliNG_PRICE [=I SALARY
= ADDRESS [=] <none> [=] <none>
= LATITUDE }
= LONGITUDE SOLD_IN BUYER ;F
=] NEIGHBORHOOD
=] NUM_ROOMS
—] <ngne>
. Sage Picture i Sage Picture
PRICE (x 10A3)
600
a o
(o] O§OQPOO
o
gﬂ) o cﬁ)o - @ 5004 °
) 0on R
ﬁ(\ L] (2] °
[¢) 4001
o 12 “0
, (3 @ o ° oe o o
[] r -..1 0‘ .. o
: e 9% w'e ° o o%
L ® ’ .}‘ o8 °o o
- — o
&y oot
200 30 400
SALARY (x 10A3)

) [] Q
POINT BREEZE SQUIRREL HILL SHADVSIDé
NEIGHBORHOOD

Figure 3: Coordination between map and chart. Points are linked in the two graphics corresponding to the same tuple of house,

sale, and buyer. Here the agent has painted the region on the map using a bounding box where she suspects a relationship to
the salary-price graph. On the charnt, the black points are scattered throughout the distribution, indicating no clear pattern.

between price and salary, but the dependence on location
can’t be seen statically because there is nothing to visually
link corresponding points in the chart and map. The agent
then selects the region she is interested in on the map with a
bounding box to paint those houses black (Figure 3). The
displays are dynamically linked [3], so the points related to
these houses are also painted black in the chart. Note that
the attributes of different objects are displayed in separate
graphics but are coordinated by painting.

No real pattern is apparent in the chart. Recall that the
goal of the analysis was to determine locations in the city
where buyers are purchasing houses with prices
disproportionately higher than others relative to their
salaries. Not being certain of the locations where stretching
is suspected, the agent would like to go the other way - to
isolate the houses with high price/salary ratios, and see
where they fall on the map. One way to do this is to use
painting again. To highlight tuples where the ratio is above
2.5, for instance, all points above a diagonal line would
have to be painted either individually or with numerous
small (axis-aligned) bounding boxes. Likewise, to change
the ratio of interest (e.g. to 2 or 4), the same laborious
painting process would be required. The following section
discusses features that make this task easier.

69

3.5. Definition of New Properties

An alternative is to declaratively specify a new attribute, the
price/salary ratio. On the Sales dynamic aggregate, the
agent selects the menu item “Create New Attribute”. She
can then type in a formula as in spreadsheet programs. Here
she first drops a copy of the SELLING-PRICE attribute on
the cell, types “/sum()”, and then drops a copy of the
SALARY attribute from the PERSON dynamic aggregate
(Figure 4). She names the new property “StretchRatio”. The
system then creates the new attribute and updates all
instances of SALE with the derived value. This is another
case in which attributes of distinct objects are integrated.

L DynamicAggregate ' DynamicAggregate
53 BALES 2 33 PERSON s 3

SALARY
<none>

e=| SELLING_PRICE SALARY
s R R e b s et =
==|

<none>

SOLD_IN ;

-]
c
<]
m|
3|

Figure 4: Formulas for new attributes are assembled by
dragging references to other attributes, and by typing
arithmetic or aggregation operators.

Q [o]
POINT BREEZE SGQUIRREL HILL SHADYSIDE]

Hetnie regolc DR N v ieAggtegate.
a7 eed [HousE ¢ 1 [z3r ges BALE s T2 [0 B33 PERSON's 3
=] LOT_SIZE ==| SELLING_PRICE =) N SALARY
= StretchRatio i
345 i 115730 “‘”“1 F10.03 Gacii 2390827
= ADDRESS SOLO_N % 3.1188 "'—_——BUYE—%R = <none>
= UATITUDE - = <none>
= LONGITUDE
=s| NEIGHBORHOOD
=] NUM_ROOMS
L = <none> t

PRICE {x 10A3)
500

300

og

200

cm%

Om‘ao °

100

T T -
g 100 200 300 400
SALARY (x 10*3)

NEIGHBORHOOD

Figure 5: Dynamic Query sliders can be attached to any attribute. They control any pictures in the VQE, and they show

a histogram of values for that attribute.

3.6 Filtering Objects

Although it is possible to create a new visualization
containing this derived attribute, it is simpler to just
dynamically filter objects in the map using this attribute. So
instead the agent drops a Dynamic Query slider [2] on the
attribute. The interior of the slider shows a histogram, and
the border can be moved to filter sales based on the value.
Filtering affects the gray-scale of histogram values as in the
Influence Explorer [13], as well as the objects in the
existing visualizations.

The number of unfiltered entities in each dynamic
aggregate is also shown (“29/269 SALE”). In Figure 5, the
agent has found a range of very high price/salary ratios for
houses near the park. It is also interesting that these
represent lower priced houses purchased by people at the
lower end of the salary range. These observations are
possible because houses on the map and points on the chart
are being filtered based on properties of the sales and of the
people who bought them. The agent has also dropped
histogram sliders on the lot-size and salary atiributes. They
are not being used to restrict the selection set, but they

display the conditional distribution of values for the filtered
set (black), as well as the original distribution (gray).

Figure 6 shows an SQL query that would return the same
houses found by the exploration process above. It is less
transparent than the visual equivalent, and it would be
difficult to arrive at the cutoff without interactive,
incrementally modified visualizations.

3.7. Contributions

3.7.1. Query Language

This example scenario illustrates iterating between querying
and visualization during data exploration, the power that
results from integrating these functionalities within a single
interface, as well as the power of coordination across

SELECT longitude, latitude,
selling-price
FROM person, house, sale
WHERE person.id = buyer
AND house.id = house-sold
AND selling-price/salary > 2.96
Figure 6: SQL query for the houses found above. We have
assumed keys for the tables that were not needed in the
conceptual level interface.

salary,

70

multiple iterations that results from the shared access to the
database objects. The queries required more expressive
power than is available in previous visualization systems,
yet were simple to construct by virtue of the analogy to
direct manipulation operations in Visage. Integration of
multiple objects emerges from the navigation process,
selecting properties to be visualized is done with a sketch,
filtering is done with sliders and painting, and arithmetic
operations are entered as in spreadsheet formulas. In
previous direct manipulation systems there is no way to pair
up all the people with their houses in order to compare
salaries to prices. Even filtering out the low price/salary
datapoints is awkward because there is no representation of
this abstract intent; rather individual points must be painted.

The fact that the query language is visual has several

advantages. Quoting [15], Weiland and Shneiderman [14]
list 5 problems with textual query languages:

1. Excessive reliance on user recall of names, data
formats, and units.

2. Data models that require users to describe implicit
relationships via explicit queries (e.g., joins in
relational systems).

3. Lack of feedback in the process of formulating
queries.

4. No facility for suppressing unnecessary detail.

5. Lack of overview or browsing facility for meta-data
(the schema).

Their Graphical Query System addresses points 1, 3, and

4. We have addressed the remaining points (2 and 5) as
well. The ER diagram provides a meta-data browsing
facility; the navigation and attribute menus relieve the need
to recall names; the graph structure and sketch provides
feedback on the state of the query; and it uses a more
intuitive object-oriented data model, which reduces the
amount of low level detail.

3.7.2. Integration via Dynamic Aggregates

In previous query languages, query objects exist at the meta
level, and do not correspond to ordinary data objects. VQE
bridges this gap by considering the query graph nodes as
serving two functions: as prototype objects (i.e. variables)
and dynamic aggregates.

When serving their role as variables, query nodes are
bound to particular data objects such that the constraints
imposed among the nodes by the relationship links are
respected. Each tuple of bindings over all the query nodes
can contribute one graphical object to a visualization. This
corresponds to the join operation in relational databases,
and each tuple of bindings corresponds to a row in the
resulting table.

In their role as dynamic aggregates, query nodes collect
the set of objects in one column of a relational table. If a
query node is dragged into a Visage frame, it represents an
aggregate of all those data objects that could be consistently
bound to the node.

71

4. Related Work
4.1. GQL

GQL [8] is a conceptual level visual query interface with
the expressiveness of SQL. VQE’s visual representation of
the query graph is adapted from GQL, with some interface
modifications such as using containment to show attributes
rather than links. However GQL is not integrated with a
visualization system for displaying query results. Each
query generates a static table, so the paradigm is batch.

4.2. Exbase

Exbase [5] is perhaps the closest existing system to this
work in terms of motivation, in that it seecks to provide an
intermediary between a database and a visualization system.
However the emphasis is on explicitly representing the
history of user interaction with the database and
visualizations. Lee and Grinstein distinguish remote
database accesses from local processing, so there are
objects for database views, which are the result of queries,
and derived views, for example as the result of
manipulating sliders. Similarly, they maintain a derivation
history of visualization views.

We have not yet addressed the question of maintaining
histories, having chosen to focus on intuitive query
languages and integration of querying and visualization --
topics that Exbase, which uses SQL as a query language,
has not yet addressed.

4.3. Demonstrational Interfaces

There are two approaches to integrating abstraction into a
direct manipulation interface. Demonstrational interfaces
attempt to retain the direct mapping from domain objects to
visual objects. The meaning is that all domain objects
similar to the one being manipulated are affected. The
problem then is that you can’t be vague when manipulating
domain objects. Every person has a height, for instance, so
if you want to retrieve all people irrespective of height you
might manipulate the visual representation of people with
varying heights, so the system can induce that for you
height is just an accidental property [7].

Other systems, including VQE and SageBrush,
manipulate visual objects that are prototypes of domain
objects. Although this stretches the direct manipulation
paradigm, the ambiguity problem does not come up.
Although any houvse has a definite number of rooms, the
interface allows an explicit visual “variable” representing it,
which can be partially or totally constrained with a slider.

Still other systems use a combination of induction over
domain-level manipulations together with an explicit
declarative visual language [6]. In the future, we would like
to follow this path and induce VQE queries during Visage
exploration. The correspondence between action and query
must be clear, so that the user can reuse and modify it.

4.5, Large Databases

The rapid feedback in the direct manipulation paradigm is
incompatible with querying to secondary storage or remote
servers, which will be necessary for large databases. Query
Previews [4] offers an interface for previewing data before
downloading relevant subsets. IDEA [12] uses interactive
manipulation of a random subset of the data to form a good
query, which is then applied in batch mode to the whole
dataset. GUIDE [15] offers suggestions for dealing with
large schemas. These ideas could all be applied to VQE.

5. Summary

VQE combines a GQL-style visual language for
constructing datasets with direct-manipulation data
exploration capabilities as found in systems like Visage,
IVEE, and the Influence Explorer. Since queries and
visualizations share an object-oriented database,
visualizations resulting from a sequence of queries are
coordinated. Integration of navigation and query style
exploration allows use of direct manipulation where
possible but still retains the ability to capture and reuse
query sequences as declarative structures. Any frame
containing a sequence of nodes and links and associated
visualizations can be saved and/or cleared of data to be
reused with new datasets.

In the future we want to tighten the integration of the
direct manipulation and query paradigms. On the one hand,
we want to move navigation closer to querying with
heuristics to infer queries from navigation so that any
exploration session can be browsed, modified, and reused.
On the other, we want to increase the expressive power of
the query language to include disjunction, negation, and
grouping, which can presently only be expressed by
navigation.

Acknowledgements

This project was supported by DARPA, contracts DAA-
1593K0005 and N660061-96-C-8503. We are grateful to
the members of the Visualization and Intelligent Interfaces
Group at CMU, and the Visage team at Maya Design Group
for numerous discussions and for valuable comments on
this paper.

References

[1] Christopher Ahlberg and Erik Wistrand. IVEE: The
information visualization & exploration environment. In
Proceedings of IEEE Information Visualization Symposium,
InfoVis’95. IEEE, 1995.

[2] Christopher Ahlberg, Christopher Williamson, and Ben
Shneiderman. Dynamic queries for information exploration: An
implementation and evaluation. In Proceedings of the Conference
on Human Factors in Computing Systems (SIGCHI ‘92), pages
619--626. ACM Press, 1992,

[3] Richard A. Becker and William S. Cleveland. Brushing
scatterplots. Technometrics, 29(2), 1987.

[4] Khoa Doan, Catherine Plaisant, and Ben Shneiderman. Query

72

previews in networked information systems. Technical Report
CAR-TR-788, University of Maryland, Department of Computer
Science, Human-Computer Interaction Laboratory and Institute for
Systems Research, University of Maryland, College Park, MD
20742, 1995.

[5] John Peter Lee and Georges G. Grinstein. Describing visual
interactions to the database: closing the loop between user and
data. In Proceedings of Visual Data Exploration and Analysis 111
(SPIE “96), 1996.

[6] Francesmary Modugno. Extending end-user programming in a
visual shell with programming by demonstration and graphical
language techniques. Technical Report CMU-CS-95-130,
Carnegie Mellon, Computer Science Department, 1995. PhD
Thesis.

[71 Brad A. Myers, Jade Goldstein, and Matthew A. Goldberg.
Creating charts by demonstration. In Proceedings of the
Conference on Human Factors in Computing Systems (SIGCHI
'94), pages 106--111. ACM/SIGCHI, 1994.

[8] A. Papantonakis and P. J. H. King. Syntax and semantics of
GQL, a graphical query language. Journal of Visual Languages
and Computing, 6:3--25, 1995.

[9] Steven F. Roth, Mei C. Chuah, Stephan Kerpedjiev, John A.
Kolojejchick, and Peter Lucas. Towards an information
visualization ~workspace: Combining multiple means of
expression. Human-Computer Interaction, in press, 1997.

[10] Steven F. Roth, John Kolojejchick, Joe Mattis, and Jade
Goldstein. Interactive graphic design using automatic presentation
knowledge. In Proceedings of the Conference on Human Factors
in Computing Systems (SIGCHI '94), pages 112--117, 1994.

[11] Steven F. Roth, Peter Lucas, Jeffrey A. Senn, Cristina C.
Gomberg, Michael B. Burks, Philip J. Stroffolino, John A.
Kolojejchick, and Carolyn Dunmire. Visage: A user interface
environment for exploring information. In Proceedings of
Information Visualization, pages 3--12. IEEE, 1996.

[12] Peter G. Selfridge, Devesh Srivastava, and Lynn O. Wilson.
Idea: Interactive data exploration and analysis. In Proceedings of
SIGMOD 1996, 1996.

[13] Lisa Tweedie, Robert Spence, Huw Dawkes, and Hua Su.
Externalising abstract mathematical models. In Proceedings of the
Conference on Human Factors in Computing Systems (SIGCHI
‘96), pages 406--412. ACM/SIGCHI, 1996.

[14] William J. Weiland and Ben Shneiderman. A graphical query
interface based on aggregation/generalization hierarchies.
Technical Report CAR-TR-562, University of Maryland,
Department of Computer Science, Human-Computer Interaction
Laboratory and Institute for Systems Research, University of
Maryland, College Park, MD 20742, 1992.

[15] Harry K. T. Wong and Ivy Kuo. Guide: Graphical user
interface for database exploration. In Proceedings of the 8th
VLDB Conference, 1982.

