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An Exploration of Sensorless Manipulation

MICHAEL A. ERDMANN ano MATTHEW T. MASON

Abstract—An autonomous robotic manipulator can reduce uncertainty
in the locations of objects in either of two ways: by sensing, or by motion
strategies. This paper explores the use of motion strategies to eliminate
uncertainty, without the use of sensors. The approach is demonstrated
within the context of a simple method to orient planar objects. A
randomly oriented object is dropped into a tray. When the tray is tilted,
the object can slide into walls, along walls, and into corners, sometimes
with the effect of reducing the number of possible orientations. For some
objects a sequence of tilting operations exists that leaves the object’s
orientation completely determined. This paper describes an automatic
planner that constructs such a tilting program, using a simple model of
the mechanics of sliding. The planner has been implemented, the resulting
programs have been executed using a tray attached to an industrial
manipulator, and sometimes the programs work. The paper also explores
the issue of sensorless manipulation, tray tilting in particular, within the
context of a formal framework first described by Lozano-Pérez, Mason,
and Taylor [5]. It is observed that sensorless motion strategies perform
conditional actions using mechanical decisions in place of environmental
inquiries.

I. INTRODUCTION

OBOTS MUST successfully plan and execute tasks in the

presence of uncertainty. Uncertainty constitutes an
inability to know precisely the relative locations of the objects
in a task. Uncertainty arises from model error, control error,
and sensor error. Model error produces uncertainty through-
out the planning and execution phases of a task. Control error
introduces uncertainty as actions are executed. Sensor error
limits the certainty with which an environment can become
known through inspection.

There are two methods for overcoming uncertainty: sensory
operations and motion strategies. Motion strategies use the
mechanics of the task to reduce uncertainty in the relative
locations of two or more objects. For example, consider the
problem of placing a book on a table. A sensor-based strategy
is to move the book down to the table, while watching
proximity and force sensors to detect contact. A motion
strategy is to move the book within a reasonable height above
the table, then simply drop the book. The book is guaranteed
to wind up on the table. The motion strategy is, in this case,
simpler and faster than the sensing strategy.

The encompassing goal of this research is to develop
automatic methods for analyzing and using the mechanics of
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the task to manipulate objects without the aid of sensing. Of
interest are both methods for automatically solving manipula-
tion problems in fixed environments, as well as methods for
automatically designing environments conducive to accom-
plishing particular tasks. This paper reports on an initial
investigation.

The first part of the paper considers orienting objects in a
simple domain, using only the mechanics of the domain. The
study of this domain offers some general insight into the
problem of sensorless manipulation. An automatic planner is
developed. The planner consists of one phase that determines
the possible motion transitions, and a second phase that
searches a space whose states reflect uncertainty at execution
time.

The second half of the paper considers the relationship of
sensorless manipulation to sensor-based manipulation. The
main observation is that both sensorless motion strategies and
sensor-based operations perform conditional actions. In both
cases, the effect of a conditional action is determined by the
actual state of the system at execution time. However, whereas
a sensor-based system selects an action based on explicit
sensor readings of the current state, a sensorless system lets
the current state select the effect of an action mechanically.

A. An Example

The example we have chosen to illustrate the issues of
sensorless manipulation is a system for orienting planar parts.
The system consists of a tray onto which randomly oriented
parts may be dropped. The tray may be tilted, causing the part
to slide and rotate while making contact with the tray walls and
corners. The objective is to construct a sequence of such tilting
operations that uniquely orients the part.

The tray-tilting domain offers a simple setting in which to
study sensorless manipulation, while still retaining the basic
ingredients of many sensorless problems. In particular, the
mechanics of the domain are complicated enough to require
explicit analysis in order to synthesize predictable motions.
Friction is important; part geometry is relevant. Most impor-
tantly, the tray-tilting domain forces us to consider general
ways of representing and reducing uncertainty. The structure
developed for the planner carries over to other domains, and
provides a first basis for studying the relationship between
sensorless and sensor-based manipulation.

Fig. 1 shows a tray-tilting operation, and one possible
resulting displacement of an Allen wrench in the tray. The
operation consists of starting with the tray horizontal, tilting
the tray so that the arrow indicates the direction of steepest
ascent, then lowering the tray back to horizontal. If we neglect
inertial forces, this is equivalent to leaving the tray still while
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Raising the right edge of the tray causes the Allen wrench to rotate to
a new stable orientation.

Fig. 1.

changing the direction of the gravity vector. In any case, the
arrow opposes the component of gravity tangential to the plane
of the tray, once the tray is tilted. This gravitational force acts
through the center of mass of the wrench, causing the wrench
to rotate as shown. Throughout the paper we will refer to the
direction of steepest ascent as the azimuth, and the angle of
slope as the elevation.

Fig. 2 is a pictorial listing of a tray-tilting program that
orients the Allen wrench. Starting from a completely arbitrary
orientation, a completely determined orientation (and position)
is obtained in nine steps. Each step is shown by a range of
suitable azimuths, with the wrench drawn in every possible
resulting orientation.

The program shown in Fig. 2 was produced automatically,
based on a simple model of the mechanics of tray-tilting
operations. The assumptions are as follows:

® Planar motion occurs.

® Inertial forces and impact forces are dominated by
frictional forees.

* Frictional forces conform to Coulomb’s law. The
coefficient of friction is identical for both static and
dynamic situations, and is constant both in space and
time.

® The frictional forces occurring between the wrench and
the bottom of the tray are neglected, except that the
elevation is chosen large enough that sliding occurs.

The planner consists of two phases, the confact analysis
phase and the search phase. Relying on the assumptions listed
above, the contact analysis phase determines how a given
azimuth affects the configuration of the wrench. The search
phase uses simple forward-chaining to construct a sequence of
tilting operations.

There is one final wrinkle to Allen wrench orienting. If the
wrench is dropped into the tray, one must consider that the
wrench may fall in either a left-handed or a right-handed
orientation. No planar operation can switch from one to the
other. Faced with this problem, the planner constructs a
sixteen-step plan that reduces the number of possible orienta-
tions to two—one for each reflection.

B. Motivational Issues

Sensorless manipulation is an important aspect of manipula-
tion in general. Many manipulation tasks require operations
that are primarily sensorless, relying heavily on task mechan-
ics in order to assure success. This section mentions a few of
these tasks, along with some issues that further motivate the
study of sensorless manipulation.

1) Some Sensorless Systems: Examples of systems em-
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Fig. 2. Beginning at the upper left and moving from left to right, we can
trace an automatically generated program that orients the wrench. Each
frame shows the set of possible wrench contacts, and the operation to be
applied. Each operation is represented by an interval of azimuths. The
azimuth arrows indicate the tray's direction of steepest ascent; gravity acts
in the opposite direction.

ploying sensorless manipulation include bowl feeders, assem-
bly line feeders, coin sorters, and a variety of other mechani-
cal devices. All these systems harness the mechanics of the
task to orient and position objects without the aid of sensing.
Bowl feeders move objects to some destination, forcing them
past a gauntlet of gates and protrusions that reorient the
objects. Objects not properly oriented pass through gates that
mechanically recognize the orienting failure and throw the
objects from the feeder back to their starting locations. Coin
sorters similarly use the sizes and weights of coins as
mechanical states in a decision procedure consisting of tracks
and holes.

2) Sensorless Motions in a Sensor-Based Plan: Sensorless
strategies are important as well in the context of sensor-based
manipulation. Generally, sensorless manipulation plays a role
in situations where sensing may not be readily performed or is
inappropriate, where instead the task mechanics must be used
to ensure success. Examples of tasks in which the mechanics
are important include pushing, hitting, grasping, dropping,
aligning, and throwing. For instance, during a grasping
operation the precise forces acting and motions resulting may
lie below the resolution of the available sensors. In particular,
the relative positions of the fingers and the object may be
indeterminate. Nonetheless, in many cases the remaining
uncertainty may be eliminated with sensorless motion strate-
gies. The mechanical interactions between the object and the
fingers may be harnessed to aid the grasp (see [1] and [10]).
For example, by squeezing or pushing with the fingers, the
object being grasped can be forced to align itself with one of
the fingers, thereby reducing uncertainty in orientation.
Recognizing that such an alignment is possible and predicting
how it will occur requires an understanding of the task
mechanics.

3) Relation of Sensorless and Sensor-Based Strategies:
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One source of potential confusion is to view sensorless
manipulation solely in terms of program efficiency, especially
in the context of tasks for which there exist both sensorless and
sensor-based solutions. Previously, in the book example, we
saw a sensorless strategy that was more efficient and required
less knowledge than a corresponding sensing strategy. In
general, this need not be the case. Nor should it be. In fact,
precisely because sensorless manipulation must consider
strategies that succeed independent of actual state at execution
time, one would expect these strategies to include at times
seemingly redundant or superfluous actions.

In general, one should view the uncertainty-reducing
property of sensorless motions as just another mode of
gathering information. Whether a sensorless strategy is
superior, inferior, or complementary to a sensor-based strat-
egy depends on the nature of the task. For complex tasks, a
sensor-based system would employ a sensorless strategy as
one step in an overall plan.

4) Feeders: One area in which the apparent redundancy of
sensorless strategies is appropriate is the design and use of
feeders. Feeders are high-volume systems in which all objects
essentially move through the same set of stages. Depending
upon an object’s configuration upon entering a given stage, the
object may or may not be affected by that stage. Once the
feeder pipeline is full, the fact that a stage may sometimes
perform no apparent action is irrelevant. The system as a
whole is spewing forth objects at a constant rate. This
uniformity of action application permits a simple and economi-
cal hardware design. In particular, the outputs of individual
stages are well-defined configurations. Thus a planner can use
the input-output specifications of various stages to chain
together sequences of stages to construct feeders for particular
applications.

The study of sensorless manipulation is important for
determining what types of feeders and orienting devices are
possible, that is, for deciding whether a desired set of
operations is mechanically feasible. In particular, the con-
struction of the individual stages in a feeder, and the efficient
composition of these stages, is facilitated by an understanding
of sensorless manipulation.

5) Scope of Sensorless Manipulation: The earlier inter-
play of mechanics and sensing raises an interesting theoretical
question: What tasks are solvable using only the task mechan-
ics, and what tasks require sensing? An answer to this question
would greatly aid our understanding of manipulation. The
question is interesting from a purely theoretical standpoint.
Additionally, characterizations of solvable tasks in terms of
sensing and mechanical requirements would allow us to
allocate sensors and design environments in efficient and
useful ways. We will return to a discussion of scope in the
second half of the paper, focusing on the relationship between
sensorless and sensor-based manipulation in terms of the kinds
of decisions each approach performs.

C. Previous Work

Sensorless robotic manipulation has been addressed in the
past. Mason [9] discusses the concept in general, and describes
a number of examples. Some recent research includes the use
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of pushing and squeezing to ecliminate uncertainty while
grasping objects [1], [7], [10], [12] and to orient parts [6].
There is also some recent theoretical work on the complexity
of sensorless manipulation [11].

This paper is directly inspired by an example described by
Grossman and Blasgen [4]. Grossman and Blasgen considered
dropping an object into a tray consisting of a planar surface
surrounded by bounding walls. The plane of the tray had been
tilted so that an object dropped onto the plane would ultimately
slide into a trihedral corner formed by the plane and two of the
walls. The set of final orientations that the object might
achieve in the corner could be predicted from the shape of the
object. By choosing the tilt angles appropriately, this set was
guaranteed to be of finite size. Once in the corner, the object’s
actual orientation could be determined by a sequence of
sensing and probing operations.

The key idea underlying the Grossman and Blasgen scheme
is the realization that many objects, in particular polyhedral
objects, have only a finite number of stable resting configura-
tions under the influence of gravity. Thus simply dropping an
object onto a plane reduces the orientation uncertainty from an
infinity of possibilities to a small and finite number. Forcing
the object to slide along a wall further constrains the set of
orientations, while forcing the object into a corner constrains
the object’s position as well.

The comparative roles of sensing and action were also
considered in a formal framework by Lozano-Pérez, Mason,
and Taylor [5]. The particular model employed assumed the
presence of position and force sensors, but the planner
described would use motion strategies when an advantage
could be obtained. Mason [8] described a variant planner, and
demonstrated that the planner was correct and complete, that
is, if a plan for a given problem exists, the planner converges
on a correct plan. Erdmann [2] showed that Mason’s variant
planner is not generally computable; implemented a less
powerful, but computable, version; and demonstrated the
plans in simulation.

II. A TrAY-TILTING PLANNER

This section describes the planner in more detail, starting
with the search phase. Following the description of the planner
is a summary of our experience with the physical implementa-
tion, and some of the limitations we discovered.

First, it is necessary to discuss the planner’s model of the
tray-tilting domain. The planner does not model the global
geometry of the tray. It models the tray as a string of walls,
joined together at square corners. Each wall also has a facing,
parallel, wall. In practice, this structure was implemented by a
rectangular tray, but the planner does not know that the facing
wall and the wall reached by two left turns are the same wall.
It would not care anyway, since all walls, and all corners, are
indistinguishable, as far as the planner is concerned.

The planner expects as input a geometric description of the
part to be oriented, in the form of a convex polygon. Notice
that for any polygonal object it is sufficient to consider the
convex hull of that object. This is because any feasible contact
between the object and the tray walls can consist only of
vertices and edges on the convex hull of the object. The
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planner also expects as input the ratio of moment of inertia to
mass of the part. This information is needed to determine the
relative rate of rotation to rate of sliding during certain part
motions.

The planner models four different types of contact, shown
in Fig. 3. (The term ‘‘edge’’ refers to an edge of the convex
hull of the part.)

(M, i) Object edge i is against a wall, roughly in the
middle.

(L, i) Edgeiis against a wall, and the object is in the left
corner.

(R, i) Edge i is against a wall, and the object is in the
right corner.

(J, i)  Object edge / is facing away from the wall, with

the object in the middle. The vertex or edge
opposite edge 7 is in contact with the wall. This
contact occurs when the object is allowed to slide
away from contact state (M, i) to make contact
with the facing wall, an operation that we call a
Jjump.

A. The Search Phase

Let us consider the search phase first, as this will motivate
the contact analysis phase. The search constructs a graph,
where each node of the graph is a set of possible contacts, and
each edge is an interval of azimuths. For example, suppose
node A consists of three contacts, that is, A = {Cy, Gy, C3}.
Suppose further that every azimuth between 45° and 90°
causes contact Cy to move to contact Cy, causes contact C, to
move to either contact C; or contact Cy, and leaves contact C;
unchanged. Let B be the node given by B = {C;, C,}. Then
the graph includes an edge [45°, 90°] directed from A to B.
The mapping on contacts defined by azimuths is determined
during the contact analysis phase. The nodes and edges of the
graph, however, are constructed as needed during the search.

A node in the graph thus reflects the uncertainty with which
the configuration of the part being oriented is known at
execution time. An edge in the graph describes a transition
from one state of uncertainty to another state of uncertainty as
a result of tilting the tray. The edges between nodes are
constructed from knowledge of how individual contact states
behave as a result of tilting the tray. This knowledge is
supplied by the contact analysis phase.

The initial node in the search is the set of contacts that might
result from dropping the object to be oriented onto the middle
of the tray, then tilting the tray so that the object slides to the
middle of a wall. Hence the initial node might consist of all
possible edge-wall contacts, for a particular wall. In the
wrench example, this means that the initial node consists of six
possible contacts if the reflection state of the wrench is known,
and twelve possible contacts if the reflection state is not
known.

The objective of the search phase is to determine a sequence
of edges leading from the initial node to a node of minimal
cardinality. Other factors, such as the length of the sequence,
may also be considered. The result is a sequence of azimuths at
which the tray should be tilted. The final node is the set of
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Fig. 3. The four contact types are illustrated using the wrench.

possible contacts at the end of the tilting program. If there is
only one such contact, then the object can be oriented
unambiguously. If there is more than one such contact, then
some other operation must distinguish between the contacts. A
different sensorless strategy, such as executing a grasp at each
possible location, could be used, or a sensory operation might
be used to discriminate among the remaining possibilities.

The search phase was implemented as a breadth-first
search. Such a search guarantees that the resulting path is the
shortest path to the final node. In other words, the tilting
program contains the fewest number of steps. Some pruning of
nodes that need to be expanded is possible. For instance, it is
never necessary to pursue edges from a node that is a superset
of an already visited node. This is because any strategy that
could successfully orient a part given the uncertainty of the
larger node, would also successfully orient the part given the
reduced uncertainty of the smaller node. For the Allen wrench
example, our search trees had depths of about nine levels, with
between one and five nodes expanded per level.

B. The Contact Analysis Phase

The objective of the contact analysis phase is to determine
the mapping from contacts to contacts, as required for the
search phase. Consider, for example, a block in contact with a
horizontal wall, as shown in Fig. 4. Assume that the
coefficient of friction is g, and let « = tan~! u. Then the space
of azimuths may be divided into four regions, as shown in Fig.
5. The top central region in Fig. S corresponds to the friction
cone. Any orientations in this range result in force applications
that lie inside the friction cone, hence cause no object motions.
Directions in the top left region cause the object to slide
towards the right, while tray orientations in the top right
region cause the object to slide to the left. All orientations in
the lower region cause the object to break contact with the tray
wall, and “‘jump’’ to the facing wall.

The contact analysis phase considers the various edge-wall,
vertex-wall, and edge-wall-corner contacts mentioned previ-
ously. For each, it partitions the circle of azimuths, similar to
the partition in the block example shown in Fig. 5. Each
region is labeled with the contacts that would result from
tilting the tray at an angle contained in the region. This
information is passed to the search phase.

In general, the classical friction cone is not quite enough,
for two reasons: first, one must consider rotating objects; and
second, one must consider multiple contacts. Both of these
difficulties are addressed by using a generalized friction cone
derived by Erdmann [2]. Using this construction, the analysis
is ultimately no more complicated than that used in the block
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Fig. 4. A block sliding on a horizontal surface. Forces are applied at the
center of mass.
180 0
Break Contact
270
Fig. 5. A partition of azimuths into regions representing different motions of

the block of Fig. 4.

example previously. For example, for one-point contact, it is
again possible to break up the range of azimuths into four
regions. One region corresponds to azimuths that cause the
object to break contact with the wall. Another region
corresponds to azimuths that cause pure rotations about the
contact point. The remaining two regions correspond to
azimuths that cause sliding motions at the point of contact.
Thus it is possible to predict the instantaneous behavior of the
object given any particular tilting motion. From this informa-
tion it is possible to surmise the extended behavior of the
object, and predict the contact transitions required by the
search phase.

C. The Generalized Friction Cone

This section sketches briefly the form of the generalized
friction cone that we used in the contact analysis phase.
Consider a planar object that is permitted to rotate as well as
translate. The objects considered by the tray tilter are modeled
in this manner. In order to describe and predict the behavior of
such an object it is necessary to consider all the forces and
torques acting on the object. In general, any force acting on
the object will also induce a torque about the object’s center of
mass. In particular, any contact force, such as a frictional
force, will induce a (possibly zero) torque about the center of
mass. The purpose of the generalized friction cone is to
represent both the forces and induced torques arising from
contact forces.

The classical friction cone is a subset of force space, that
represents the range of reaction forces possible due to contact
with some object. Similarly, the generalized friction cone is a
subset of generalized force space that represents the range of
reaction forces and torques possible as a result of contact with
some object. For single-point contact, the generalized friction
cone is a two-dimensional cone in the three-dimensional
force—torque space. To see this, consider the classical friction

(98]
~
w

cone (see Fig. 4), and imagine it to be embedded in three-
space. To each force in the classical friction cone add a vector
perpendicular to the plane of the cone, that represents the
torque induced about the center of mass by that force. This
vector depends on the particular force considered, but it varies
linearly with the forces in the classical friction cone. The
result of this transformation is that the classical friction cone is
turned and tilted out of the plane of the paper. The result is the
generalized friction cone.

A nice property of the generalized friction cone is that it
may be used to predict the behavior of an object in single-point
contact, which is subject to an applied force and torque, such
as a gravitational or pushing force. Specifically, the applied
force and torque are viewed as a vector in force-torque space.
This vector is projected in a particular manner onto the
generalized friction cone to determine the reaction force and
torque resulting from the point of contact. Knowing this, the
net motion of the object may be determined. In essence, the
generalized friction cone provides a geometric method for
solving Newton’s equations.

Finally, for multiple-point contact, the generalized friction
cone is the vector sum of all the single-point contact friction
cones. Again, this representation describes the range of
possible reaction forces and torques. Again, the friction cone
may be used to determine the motion of an object in contact
which is subject to applied forces and torques.

D. Preliminary Experimental Results and Limitations

The tray-tilting method was physically implemented by
attaching trays to a PUMA 560 industrial manipulator. The
trays were lids of cardboard boxes, or in one case, a plastic
kitchen utensil box. The tray was tilted using the wrist motions
of the manipulator. The objects we tried were two different
Allen wrenches, and a binder clip (Fig. 6).

For each object, our planner generated a program in the
form of a sequence of tilt angles. We ran these programs
several dozen times. While we were not always able to satisfy
all the assumptions listed in Section I-A, to the extent that the
assumptions were satisfied, the programs were successful. All
in all, the programs succeeded about half the time; perhaps
more. Even of the failures, a surprising number actually ended
with the object in the correct orientation, having gotten there
by an unplanned path.

We believe that the failures can be attributed to violations of
the basic mechanical assumptions. These assumptions are
fairly restrictive. We will mention below the ways in which
the assumptions could be violated, and suggest possible
remedies. Any practical system would probably want to
consider these suggestions. A good approach would be to
extend the scope of the planner in order to effectively relax the
assumptions.

It is perhaps misleading to view tray tilting as the basis for a
practical orienting system. While one can imagine a home
robot occasionally resorting to orienting objects situated on
trays, the domain is too simple for general-purpose use. What
the tray-tilting domain does show, is that sensorless manipula-
tion is an important ingredient of manipulation in general.
Even with such simple features as walls and right-angled
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Fig. 6.

A binder clip. The planner can orient and position this object

unambiguously.

corners, nontrivial manipulation is possible. Understanding
the ways by which task mechanics may be used to solve robot
problems is an important question. The practical restrictions of
our assumptions, as evidenced by the failure modes, suggest
further directions of exploration.

With this in mind, we now recount the failures observed.
One difficulty is that we must use an elevation somewhat
larger than the estimated angle of friction, in order to assure
that the object will really move. This means that the object will
accelerate, and, in some cases, the resulting inertial forces
may dominate the frictional forces. For instance, the object
might keep rolling along a wall, past the edge where it should
have stopped, or it might hit a wall hard enough to rotate to an
unplanned contact.

Another problem is lack of uniformity in the coefficient of
friction, which can cause unplanned rotations during a
“‘jump’’ from one wall to the facing wall. In severe cases,
associated with gross surface defects in the tray, the effective
coefficient of friction would be large enough to prevent
sliding.

The plastic kitchen utensil box had fillets along the junction
of the floor and the walls. Occasionally, a wrench would hit
the fillet and be reflected from a right-handed to a left-handed
configuration, or vice versa. Obviously, this violates the
assumption of planar motions.

A final difficulty arises from the planner’s inability to
determine a duration for a tilting operation. It has no means of
estimating velocities, nor does it know the dimensions of the
walls. The main problem is that occasionally the planner needs
to move from a corner contact to a middle contact. We
specified durations that were determined empirically.

There are three possible approaches to all of these difficul-
ties. First, we can construct a better implementation of the
planner’s model of a tray. More careful control of materials
and construction could reduce the problems associated with
inertial and impact forces, and nonuniformity of the coeffi-
cient of friction. Altering the dimensions of the tray can also
help, by shortening the length of jump operations, for
example. The second approach is to add planning code that
avoids problematic operations. For instance, longer jumps
might be avoided while still allowing shorter jumps. The third
approach is to relax some of the assumptions, and extend the

planner to cover the broader model of the task mechanics.
Perhaps inertial forces and impact forces could be exploited
rather than avoided.

The third approach is the most promising and interesting, as
it forces us to consider further the role of mechanics in
manipulation. More generally, along the lines of extending the
planner’s scope, it is desirable to understand and predict the
continuous behavior of objects. The planner employed in the
current tray-tilting scheme only considers discrete contact
states. It analyzes the effect of various applied forces for each
such contact, using the local differential information obtained
to predict global behavior. The extent to which this planning
approach is valid or should be augmented depends on a better
understanding of dynamic issues.

E. Observing Manipulation Programs in Action

One aspect of these experiments was particularly striking.
Generally, a human watching a manipulation task in progress
can recognize the purpose and method of each operation. We
see picking, transfers, placing, tapping, tilting, aligning,
insertions—all operations that we use ourselves, and which we
can usually perform better than robots. By contrast, a human
observing the tray-tilting experiments is usually baffled. We
found it very difficult to construct tray-tilting programs by
hand, or to orient an object in a tray with our eyes closed.
When some tilting operation is in progress, its purpose is
usually inscrutable, because we see only the actual orientation,
not the set of possible orientations. Within the narrow domain
of tray-tilting planning, robots can synthesize where humans
cannot even analyze.

III. THEORETICAL ISSUES

To characterize the scope of an automatic planner, that is, to
determine the set of manipulation problems the planner can
solve, is of great importance. In the context of this paper, the
question is: how does the scope of a sensorless planner
compare with a sensor-based planner; and more specifically,
what is the scope of the tray-tilting planner? Both of these
questions will, for the time being, remain open, although some
observations are possible. It is clear, for instance, that giving
sensory operations to a planner will not reduce the planner’s
scope. After all, the robot could always choose to ignore the
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sensors. It is also not too hard to construct a problem that
requires sensing. So the scope of sensor-based manipulation is
a superset of sensorless manipulation. But we would like to
know much more—how large the difference might be, and the
characteristics that place a problem outside the scope of
sensorless manipulation.

In this section, we will compare sensor-based and sensorless
manipulation using a formal framework described by Lozano-
Pérez, Mason, and Taylor [5] for sensor-based manipulation.
An obvious characteristic of sensor-based programs is that
they have conditional statements, choosing among alternative
actions based on sensory information. Although it is tempting
to say that sensorless manipulation programs do not make
decisions, we will see that an alternate view exists, for which
the decisions occur, but are implemented by the mechanics of
the task.

A. The Formal Framework

This section briefly recapitulates the framework described
by Lozano-Pérez, Mason, and Taylor [5], modified to reflect
the lack of sensors. We should note at the outset that the only
explicit role of sensors in that framework is to decide when an
action has achieved its goal, and to determine which of several
possible goals it achieved. The identity of an achieved subgoal
determines which of several possible next actions should be
taken. In general, sensors might be used in other ways—to
construct or modify a world model, to implement actions, or to
detect errors, for instance. None of these functions of sensors
are explicitly modeled by the formal framework, and hence
will not be considered here.

The basic premise is that, given a collection of goals and a
commanded action, the planner constructs a collection of pre-
images of the goals under the specified action. This collection
of pre-images constitutes precisely those regions in space from
which the commanded action is guaranteed to achieve one of
the goals in a recognizable manner, despite uncertainty in
sensing and control. Recognizability is crucial, as otherwise a
robot might attain its goal but never know it. The pre-images
thus defined constitute a new collection of subgoals, from
which another level of pre-images may be formed. This
process is repeated. When a subgoal is constructed that
contains the initial robot configuration, the chain of subgoals
represents a valid plan.

The pre-image methodology constitutes a formal description
of the problem of planning in the presence of uncertainty. The
particular form advanced by Lozano-Pérez, Mason, and
Taylor assumes generalized damper dynamics and Coulomb
friction, but the formal results are valid independent of any
particular model of control and task dynamics.

In the pre-image methodology, sensors provide information
to the termination predicate, whose job is to detect attain-
ment of one of the goals, terminating the motion in progress,
and initiating the appropriate next motion. The termination
predicate used by Lozano-Pérez, Mason, and Taylor, took the
current sensory information, and the current time, as input.
The termination predicate described by Mason [8] took the
entire sensor history, and the current time. The termination
predicate described by Erdmann [2] took only current sensor
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readings, and had no sense of time. Using Erdmann’s
termination predicate, the complex pre-image computation
problem reduces to a simpler back-projection problem,
which we will be able to use in this paper.

For the present case, sensory information is not available,
so the termination predicate can only use elapsed time. This
simplifies the description of the pre-images somewhat. In
particular, suppose that the initial state of a system is known to
lie in some start region of an appropriate state space. Upon
application of an action, the state of the system will evolve
over time. At any given time, the state of the system must lie in
some other region of state space, called the forward projec-
tion. The forward projection is a function of the start region,
the commanded action, the control uncertainty, and the
elapsed time. In the absence of sensory information, the
forward projection describes precisely the certainty with
which the state of the system is known. In order that the start
region be a pre-image, there must exist at least one point in
time at which any motion that originated in the start region
may be terminated with certainty inside a goal. Notice that this
termination time must be independent of the actual trajectory
followed. Thus given a collection of goals and a commanded
action, the start region is a pre-image if and only if its forward
projection is wholly inside some goal at some time.

B. Comparison of Sensor-Based and Sensorless
Manipulation

Let us briefly contrast planning with and without sensing.
The role of sensing in the pre-image methodology is to
recognize attained subgoals. Due to uncertainty, the subgoal
attained at the end of a motion is generally not uniquely
identifiable at the beginning of a motion. Sensing aids in
recognizing which of a class of possible subgoals was indeed
attained. This permits the plan executor to decide on the next
motion to execute.

In the absence of sensing, the plan executor cannot indulge
in sensor-based decisions. The subgoal to be attained at the
end of a motion must be known precisely at the beginning of a
motion. In fact, all commanded actions and all subgoals
encountered are known at the beginning of task execution.

It appears then that sensing facilitates conditional plans. In
the absence of sensing, plans assume a linear structure.
However, let us look more carefully at the nature of the goals
in each of these methods. Each subgoal in a sensorless plan
tends to be a union of some of the subgoals appearing in a
sensor-based plan. This is apparent in the tray-tilting scheme.
The nodes consist of sets of individual contacts, rather than
individual contacts. The nodes attempt to capture the uncer-
tainty in contact type by grouping together those contacts that
behave similarly under the application of tilt operations. Thus
the nodes in the search space are elements of the power set of
the contact states. This construction is similar to the construc-
tion of a deterministic finite automaton from a nondeterminis-
tic one.

These observations suggest that sensorless plans perform
decisions. The decisions are mechanical decisions rather than
conditional actions based on environmental inquiries. In
sensor-based plans, decisions are of the form *‘If state Sy, then
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perform action A, and state S, will result.”” In sensorless
plans, decisions are of the form *‘Perform action 4. If state S,
then state S, will result.”’

C. Back-Projections and Sensorless Pre-Images

So far we have considered a formal description of sensorless
plans, and have compared these to sensor-based plans. One
approach to computing sensor-based pre-images is to back-
project motion constraints from distinguished subsets of the
goals. This section examines such back-projections in the
context of sensorless pre-images.

Given a collection of goals and a commanded action, the
back-projection of the goals is the region of space from which
all trajectories under the commanded action are guaranteed to
reach at least one of the goals. In other words, any motion that
begins in the back-projection as a result of the commanded
action will eventually pass through one of the goal sets. For
some tasks, such as compliant motion tasks in planar environ-
ments, back-projections may be computed directly from
geometric descriptions of the environment, the goals, and the
control uncertainty. See [3] for further details.

Notice that, unlike pre-images, back-projections contain no
notion of goal recognizability. In particular, sensor readings
are irrelevant. The lack of sensor requirements suggests that
back-projections may be related to sensorless pre-images.
However, whereas sensorless pre-images use time to recog-
nize goal attainment, back-projections contain no notion of
time. Therefore, in order to apply back-projections to the
problem of sensorless manipulation, we must deal with the
role of time in the recognition of goals. In the process we shall
see that certain sensorless pre-images may indeed be described
using back-projections.

Consider a single goal, and some subset of the goal.
Suppose that for some action the forward projection of the
subset never leaves the goal. In other words, any motion
originating in the subset of the goal, as a result of commanding
the action, remains in the goal. We will refer to such a subset
as a stationary subset of the goal (relative to the commanded
action). For instance, suppose the space of interest is the real
axis, and the goal is the nonnegative side of the real line. Then
the forward projection of the origin under an action that says
“‘move right’’ forever remains in the goal. Thus the origin is a
valid stationary subset. Of course, so is any subset of the
positive axis. As another example, suppose that a block is
resting on a tabletop. Consider applying a force subject to
uncertainty. So long as all forces that actually might be
applied, that is, all forces in the error ball about the nominal
commanded force, lie within the friction cone of the table and
block, the block will remain forever on the tabletop. Thus the
table is itself a stationary goal relative to any such applied
force.

Now suppose we have a stationary subset of some goal
relative to some commanded action, and consider its back-
projection. Recall, this means that any point in the back-
projection is guaranteed to eventually reach the stationary set,
hence forever remain in the goal set. Thus the back-projection
is a pre-image in the limit as time approaches infinity. More
practically, consider the maximum time ¢, required to reach
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the stationary set via any motion beginning in the back-
projection, given the commanded action. If this maximum
time is finite, then the back-projection is actually a pre-image.
Indeed, the termination predicate can successfully halt any
motion that began in the back-projection, signaling entry into
the original goal set once time ¢, has elapsed. The maximum
time assumption is valid in finite polyhedral environments. In
more general environments it may be necessary to select a
subset of the back-projection for which the assumption is
valid.

As a slight variation, let us consider subsets of goals that are
only partially stationary. Specifically, suppose that the for-
ward projection of some subset G of a goal is guaranteed only
to remain inside the goal for a finite amount of time, say until
time f.;. Again, form the back-projection of this partially
stationary subset G. Now choose a subset B of this back-
projection, from which all motions are guaranteed to reach G
by time Zfeper. If Zener i8 less than or equal to ¢,,;, then B is a pre-
image. Indeed, at any time in the range [fomer» fexit] the
termination predicate can successfully halt any motion that
began in B at time zero. A typical example is given by any task
involving dead reckoning.

D. Relation to the Tray-Tilting Scheme

The tray-tilting scheme is a form of pre-image computation
via the back-projection method just described. The tray-tilting
scheme is not implemented via back-chaining or back-
projection. In fact, the tray-tilting method is implemented
using a forward-chaining search. However, there is a differ-
ence between problem implementation and problem descrip-
tion. The nodes of the tray-tilting search graph correspond to
the individual subgoals of the pre-image methodology. The
azimuths correspond to the commanded actions. The nodes of
minimal cardinality comprise the initial collection of goals.
These are not known until the search algorithm completes.
Nonetheless, conceptually, the nodes of minimal cardinality
form the goal states. Finally, the initial node, consisting of all
edge-wall contacts possible after the object has been dropped
into the tray, corresponds to the starting region of the pre-
image methodology.

In fact, with one exception, each node created after
application of a particular tilt operation is a stationary
subgoal—continued application of the same operator does not
result in any motions leaving the node. The search algorithm
actually computes the transitive closure of contacts reachable
under a given applied force. Thus a given node S, is essentially
the forward projection of some other node S,. The second
node S; is therefore a subset of the back-projection of the first
node S;. By our previous comments, this back-projection and
hence the node S, must be pre-images of the node S,.

The exception mentioned above deals with motions from
corners into the middle of tray walls. In order to recognize
transitions from corner contacts to edge-wall contacts, the
search algorithm employs a crude form of the bounded time
variation discussed previously. This permits the search al-
gorithm to stop computing the transitive closure after the
object to be oriented has slid from a corner contact to an edge-
wall contact, but before the object has slid into the opposing
corner.
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E. Nondeterminism and Conditional Actions

In pursuing the view of sensorless manipulation as nonde-
terministic sensor-based manipulation, suppose that we create
a plan under the assumption of perfect sensing. Suppose
further that the plan executor actually does not possess any
sensors. The question is how well can the plan executor
execute the sensor-based plan without sensors. If the plan
executor can operate nondeterministically, then it can execute
the sensor-based plan faithfully. Specifically, at any decision
point, the executor need merely guess the correct sensor
values, nondeterministically choosing the next action to
perform.

The point to observe is that sensing is entirely a matter of
making decisions. Assuming that the physics of a task are
fixed, sensing does not influence the class of actions possible,
merely the recognition of success. Of course, the recognition
of success decides the order in which actions are chained
together. The extent to which this limits the class of solvable
tasks is an open question.

Suppose that we insist on a deterministic plan executor, and
we want to determine how well the executor can perform the
sensor-based plan. There is no general answer, but we can at
least set up the problem. Consider a single conditional action.
Suppose that the start state is in one of the sets {R;}. For
convenience, suppose these start regions are nonoverlapping.
Assume further that the conditional action says to command
the action A if the actual start state is in the set R ;. The action
is to be executed until one of the goals is known to have been
attained.

Assume that the plan executor cannot distinguish between
the different start regions {R;}. We would like to know how
well the plan executor can perform the conditional action.
Actually, we do not require that the plan executor exhibit
exactly the same effects as the conditional action, merely that
it achieve one of the goals.

Observe that the question may be answered by applying the
sensorless pre-image methodology described earlier, with
initial start region R = U R,. If there is any sequence of
motions from R to one of the goals, the pre-image methodol-
ogy will find it. The effects of this sequence may not parallel
the effects of the conditional action, but at least they will
achieve one of the goals. Unfortunately, applying the pre-
image methodology offers only a procedural solution for
particular cases, and only for single conditional actions. It
does not provide in general terms a comparison of sensor-
based manipulation with sensorless manipulation.

Let us consider a simple form of combining the component
actions that comprise a conditional action. Specifically,
suppose that there are only finitely many start regions {R;}
and corresponding actions {4}, and suppose that we wish to
perform the component actions in the order A4;, - - -, 4,. This
is analogous to converting a nondeterministic Turing machine
into a deterministic machine. We can describe the conditions
under which this choice of combination is guaranteed to
achieve one of the goals. Specifically, there must exist times
ty, =+, t, such that commanding action A; until time ¢,
followed by action A, until time #,, and so forth, will
eventually lead to one of the goals. Said differently, the

377

repeated forward projection of the start region R under the
actions Ay, -+, A, (with switching times #,, -+, £,) must be
wholly contained in some goal.

For example, suppose that commanding a particular action
A ; causes motions beginning in the corresponding start region
R, to enter a goal, and otherwise causes all motions beginning
in a goal or in any other start region R, with i # j, to remain
in either the goal or the set R;. Then the previous conditions
are satisfiable. In fact, any ordering of the commanded
actions would achieve the desired result.

As a concrete example, consider a planar rectangular block
that is not a square. Imagine sliding the rectangle on a
horizontal edge. The block can be in two distinguishable
states. Either a short side is resting on the edge, or a long side
is resting on the edge. The goal is to slide the block into some
region on its right, and to orient the block so that a long side is
resting on the horizontal edge. A sensing strategy might
contain the following conditional action: If the block is
properly oriented, apply a force that will cause the block to
slide to the right. If the block is improperly oriented, apply a
force that will cause the block to orient itself properly while
sliding to the right.

Suppose that the reorienting force is so chosen that it only
rotates the block if the block is in the incorrect state. Suppose
further that the goal is the entire region to the right of some
point on the horizontal edge. Then the sensor-based strategy
may be executed without using sensors to determine the
orientation of the block. In fact, either ordering of the
commanded forces will achieve the desired goal. The tray-
tilting scheme is based on this method of combination.

IV. CoNCLUSIONS
A. Solvable Tasks

Let us return to the issue of describing the scope of a
planner, that is, the class of tasks the planner can solve. In this
and previous papers we have explored a number of different
planning methods. Some of our results relate to the scope of a
planner, but usually in terms of some abstractly defined class
of tasks. For instance, Mason [8] demonstrated that one
variation of the pre-image planner can solve all tasks that have
a valid solution. But what tasks are those? We have no means
of determining whether a task is solvable, other than to try to
construct a solution.

For the most part, various planners are compared not in
terms of their scopes, but in terms of their descriptions. In
other words, we compare the planning methods in terms of the
termination predicates available and in terms of the back-
projections used to compute pre-images. This type of compari-
son does not provide a characterization of the solvable tasks.
While we have a notion of the generators of a methodology,
we do not understand the relations between these generators.
Thus we cannot predict the effect of removing or changing one
of these generators. Missing are both absolute task descrip-
tions and methods for extracting characterizations out of
generator specifications.

For the present paper, it is desirable to characterize the tasks
solvable by the tray-tilting scheme. As a necessary condition
for an object to be orientable unambiguously, we know that it
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should not possess any rotational symmetries relative to its
center of mass. The extent to which this condition is also
sufficient is unknown. In fact, suppose that we eliminate the
jump operator. Now consider the task of orienting a convex
object whose interior angles are all acute. Suppose the
coefficient of friction is zero. It is impossible to orient the
object. The only transitions possible are sliding along a wall,
which never rotates the object, and turning through a corner,
which always rotates the object to an adjacent edge. It is
impossible to reduce the number of possible orientations.

B. Future Work

Section II-D included some directions for improving the
fidelity of the planner’s models, by improving either the
experimental tools or the planning system. In this section, we
describe some other directions for future work.

First, the synthesis of various planning methods is desir-
able. While we have some understanding of individual
operations, their combined behavior is not well understood. A
planner should, for example, be able to use the pushing
analysis of [1] or [10] to predict the outcome of the jump
operator in the tray-tilting scheme. The pre-image methodol-
ogy described above for dealing with uncertainty should be
used to successfully handle errors arising from surface texture
irregularities or control limitations. For example, it may be
possible to bound the position and orientation of an object after
some operation has been performed, using a dynamic analysis.
If the bounded region includes points away from the desired
contacts, small tapping or tilting operations might be used to
regain contact with the desired walls and corners.

Second, one should not be bound to the use of a real tray.
Rather, one should abstract the physical implementation of the
tray-tilting scheme just as the planner abstracts the operators it
applies. For example, instead of using a tray with immovable
walls, one could simply use a tiltable plane with no walls, a
couple of straight boards, and a couple of corners. Depending
on the desired operator, one could arrange the boards and
corners appropriately. The jump operator could be imple-
mented by simply picking up the current contact wall and
moving it to the other side of the object. The halfway sliding
operator could be implemented by using boards of various
lengths, or by moving a corner relative to the object.
Naturally, this implementation introduces its own difficulties,
related to the motion of the boards and corners. The point,
however, is that a particular ideal behavior may be imple-
mented in numerous ways. The particular method chosen
should be influenced by such factors as the object type, the
control capabilities, and an understanding of effects not
explicitly modeled by the planner.

Third, one should consider more general mechanical opera-
tions than those available in the tray-tilting domain. The
operations in the tray-tilting domain were limited to jumps,
sliding, alignment with edges, and rotation at right-angled
corners. In any practical application more versatile operations
would probably be required. For instance, one could imagine
trying to unravel the tray into a feeder of some sort. Suddenly
right-angled corners seem unwieldy and restrictive, corners
with arbitrary angles being more powerful. While the general
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methods of dealing with uncertainty and of sensorless planning
carry over from the tray-tilting domain, the particular opera-
tors employed by the tray tilter may not. In any application,
we should use the theoretical tools discussed earlier to guide
our approach, while developing more robust and versatile
actions.

C. Summary

This paper has explored sensorless manipulation in the
domain of planar parts orienting. A planner was developed for
orienting parts dropped onto a tray under the influence of
gravity. The planner consisted of two phases. The first phase
was a contact analysis phase. This phase analyzed the various
edge-wall and edge-wall-corner contacts possible. The output
of the contact analysis phase was a description of the
transitions achievable between different contacts as a result of
tilting the tray. The second phase of the planner consisted of a
search phase. The search phase used the contact transitions to
determine a sequence of tray-tilting operations that would
orient the part unambiguously. In cases where unambiguous
orientations could not be achieved, the search phase would try
to minimize the number of final orientations.

This paper also explored some theoretical issues of sensor-
less manipulation. In particular, the paper described sensorless
manipulation within the formal framework of the pre-image
methodology. Special cases of pre-images were shown to be
variants of back-projections. The tray-tilting scheme was
recognized as one such special case. Finally, it was noted that
comparisons between different manipulation schemes often
occur at the level of generating components, rather than at the
level of solvable tasks.
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