IEEE/RSJ Internationai Workshop on intelligent
Robots and Systems IROS '91, Nov. 3-5, 1991,
Osaka, Japan. IEEE Cat. No. 91TH0375-6

A Configuration Space Friction Cone

(extended abstract)

Michael Erdmann*

Abstract

This paper provides a geometric tepresentation of friction for a
rigid planar part with two translational and one rotational degrees
of freedom. The construction of a generalized friction cone is
accomplished by imbedding into the part’s configuration space
the constraints that define the classical friction cone in real space.
The resulting representation provides a simple computational
method for determining the possible motions of a part subjected
to an applied force and torque. The representation has been
used both for simulating part motions and for planning assembly
operations. Generalizations to the six-dimensional configuration
space of a three-dimensional part are possible.

1. Introduction
The basic problem that this paper addresses is:

Given a rigid planar body, possibly in finite frictional
contact with immovable obstacles, given an initial
velocity of the body that is consistent with the contact
conditions, and given an applied force and torque, what
are the possible accelerations of the body?

The basic approach is to model Newton’s and Coulomb’s
laws in configuration space [Lozano-Pérez 83]. The result is
a geometric friction cone and a pair of geometric projection
operators that map an initial velocity and an applied generalized
force into a resulting set of possible accelerations. This set may
contain zero, one, or more possible accelerations, since rigid
body dynamics with Coulomb friction need not yield a unique
motion. The solution proposed in this paper provides all possible
accelerations consistent with the stated contact conditions and
the assumptions of rigid body dynamics. We do not model
deformations or impact.

2. Equations of Motion

In order to illustrate the approach, let us derive the equations
of motion for a planar object in single-point contact with an
immobile object. These equations will provide us with the
desired representation of friction in generalized force space.
We will assume that friction may be modelled as dry Coulomb
friction, with friction coefficient .

The main difficulty in representing friction for objects with
extent lies in relating forces at different points of contact. For
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Figure 1: The local real space normal, sliding tangent, and radius
vectors of a generic contact.

an object with extent, frictional reaction forces at some contact
points may induce torques about the object’s center of mass. The
two relevant issues are:

® Modelling contact friction in terms of the induced forces
and torques relative to the center of mass (or center of
compliance).

o Using this model to predict reaction forces and motions
resulting from applied forces and torques.

A rigid planar object has three degrees of freedom, two
translational and one rotational. It is convenient to choose the
reference point of the object at its center of mass (or more
generally at its center of compliance), and to represent the
object’s motions in terms of generalized coordinates.

The generalized coordinates are (x,y, ), viewed as elements
of the manifold %2 x S!. Here S! is the circle of radius p, and
p is taken to be the radius of gyration of the object. Thus the
relationship between the usual representation of orientation as an
angle § and the generalized coordinate g is g = p 4.

Consider Figure 1, which depicts an abstraction of a planar
object in one-point contact with some other object. Two different
contacts that could give rise to this same picture are shown in
Figure 2. We denote by no the unit real-space normal at the point
of contact, and write np = (ne.n,). Weletr = (r+,1y) denote the
vector from the point of contact to the moving object’s reference
point.

Suppose now that we permit the moving object to rotate
and translate while maintaining single-point contact with the
immobile object. The legal motions of the object thus constrained
have two degrees of freedom. We may describe these legal
motions as atwo-dimensional surface in the (x, ¥,q)configuration
space of the moving object. At any point on this surface we may
construct an outward unit normal to the surface, denoted by n.

Referring to Figure 1, we may write

1
n= E(nx: Ny, "q//’)-
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Figure 2: Two different types of contact between a moving
object and an obstacle. Both examples are described by the same
vectors at the point of contact, as in Figure 1. (The manner in
which these vectors change, as the object moves, is different for
the two types of contact.)

with A, = (p* + n;)‘/z/p, and n, to be determined.

It is no coincidence that the first two components of this
vector are directly parailel to the real space normal nyg. We
can see that this must be so, merely from force considerations.
Intuitively, one should think of the configuration space normal
n as specifying the direction of a generalized reaction force that
arises in response to a frictionless applied force acting on the
surface. Consequently, since we have chosen the reference point
at the center of mass, and chosen p to be the radius of gyration,
ng must simply be the torque induced about the reference point
by a unit reaction force at the point of contact:

Ng =My XpT.

where > ,p is the two-dimensional cross product.

Just as we have modelled the normal reaction force, so too can
we model the frictional reaction force. We can think of friction as
acting tangentially to the physical edge of contact. Let t; denote
the unit tangent to the edge of contact. Then t; must be of the
form t; = x(n,, —n,).

Friction acts along this tangent through the point of contact.
For a unit frictional reaction force, the induced torque about the
center of mass is therefore v,, with

Vg=1t; xpT.

Observe that v, = =(n.re +nyry).
Let us now write down the equations of motion. Figure 3
depicts a force-body diagram for the contact of Figure 1. Let
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Figure 3: Applied forces at the reference point and reaction
forces at the contact point for the contact of Figure 1.

Fy = (F, F, F,) be a generalized applied force. In other words,
the applied cartesian force is (F,,F,) and the applied torque
is = = pF,. This force is applied at the center of mass, that
is, at the reference point. Let the normal reaction force at the
point of contact have signed magnitude f ,, and let the frictional
reaction force have signed magnitude f,. We measure f, along
the outward normal ng, and f, along the tangent vector t,. For
the choice of t, as in Figure 1, the equations of motion are: (m is
the mass of the moving object)

fanetfing+F, = ma,
fany—fine+F, = ma, 1
fangtfivg+r = m,;za,

with the restriction 0 < if /| < jif .

Let us now view the vectors ng, t,, and r as elements of R>. In
other words, they are just like before, but with a third coordinate
that is zero.

Then we can write the configuration space normal n implicitly
as _\,n =ng+(mp ~ r)/p. Clearly :\,n describes the direction of
the generalized normal reaction force.

With this fact in mind, let us define the vector v; as vy =
t; + (t; » r)/p. In other words, vp = £(ny. —nx, vy /).

We can then rewrite the equations of motion (1) in generalized
coordinates as

fadin+fve +Fa=ma. 2)

subject again to the constraint 0 < |f,] < uf, Here a =
(ax,ay, p o) is the part’s acceleration expressed in configuration
space coordinates.

3. A Generalized Friction Cone

We see now that we may construct a two-dimensional cone
in generalized force space that describes the range of possible
reaction forces for a given contact. Specifically, this cone
describes the forces and torques acting at the object’s center of
mass that might arise as a result of normal and frictional reaction
forces acting on the object through the contact point.

The edges of the cone are described by the two rays A,n+ vy .
The cone is a two-dimensional planar subset of the three-
dimensional generalized force space. In order to build some
intuition, let observe that the configuration space normal models
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Figure 4: Relationship of real space and configuration space friction cones.

the direction of a real space normal reaction force and its induced
reaction torque. This is clear from the cross-product term in the
angular component n, of the normal n. Similarly, the edges of the
friction cone model the added direction of a real space tangential
reaction force and its induced torque. This is apparent from the
cross-produ¥t term in the angular component of the vector vy.
See Figure 4.

4. Ambiguities

Consider now the generalized friction cone visualized in its
plane of residence. See Figure 5. The normal to this plane
is given by a configuration space tangent vector that models pure
rotation about the contact point. This is because pure rotations
about the contact point do not require constraint forces. Let us
therefore define ¢, to be the unit tangent vector that represents
pure counterclockwise rotation about the contact point. Note that
t, is parallel to the vector (—ry, 7y, p).

Define t as a unit vector that is orthogonal to both n and
t,. Since there are two such vectors, we need to make some
choices. Let us choose the directions of t, and t* so that
t--m > Oand t! -t; > 0. Then t' -v; > 0 as well.
Figure 5 depicts the configuration space friction cone relative
to a coordinate frame given by t} and n, where [t},n, t,] form
an orthonormal coordinate frame. The previous discussion
implies that the generalized friction cone generally will appear
asymmetric relative to the configuration space normal n. This
situation is unlike that for a real space friction cone.

One consequence of this asymmetry is that for large enough
values of the coefficient of friction, the friction cone edge e*
actually dips below the tangent plane at the configuration space
surface of contact. In other words, e* - n < 0. This is very
strange, for it says that with sufficient friction, a contact can
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resist an applied force pointing away from the surface of contact.
In other words, were it not for friction, the applied force would
actually cause the contact to break and cause the object to spin
off into free space. In the full version of this paper, we show
how this condition explains various motion ambiguities that are
possible in the presence of friction.

5. Computing Reaction Forces

The description of the generalized friction cone as a convex
subset of the plane F - t, = O raises the hope that we can easily
compute a reaction force in a manner similar to that described in
standard physics texts for blocks and point masses. Specifically,
we would like to take an applied force Fy4, and simply project it
tangentially onto the friction cone in order to determine a reaction
force. This is essentially the correct procedure, except that we
will need two projection operators, one that projects into the
plane F - t, = 0, and another that projects onto the edges of the
friction cone.

In this section we first consider the conditions leading to static
equilibrium. Next we consider the case in which the object is
initially at rest and is subjected to an applied force and torque
that may cause the object to move. We show how to compute
the reaction force for this case. Finally, we consider the general
case in which the object is moving initially. Throughout the
computation of reaction forces, we assume that the configuration
space friction cone lies above the tangent plane. It is fairly
straightforward to generalize the computations to the case in
which the friction cone dips below the tangent plane. There are
some complications, which we hinted at in Section 4. These deal
with multiple or zero solutions to the equations of motion. We
will not deal with these issues here, but see [Erdmann 84].




Figure 5: Planar view of the configuration space friction cone in
the plane F - t, = 0. Notice that the friction cone can actually dip
below the tangent plane. This is determined by the sign of the
parameter k,. (The outward normal to the configuration space
surface is n; the tangent plane is given by the vectors t, and t*.)

5.1. Static Equilibrium
We will address the general contact case presently. In this
subsection we would like to focus on one particular contact
mode, namely on static equilibrium. It is natural to focus first
on this contact mode, since the friction cone may be thought of
as a characterization of all applied forces that can result in static
equilibrium.

In order for static equilibrium to exist the following constraints
must be satisfied by the applied (generalized) force F.

(i) The normal component of the applied force at the contact
) mpC pp
point must point into the edge of contact.

(ii) The tangential component of the applied force at the point
of contact must have magnitude no greater than ;. times the
normal component.

(iii) The tangential component of the applied force in the
direction of pure rotation must be zero.

The first two constraints are the standard conditions for one-
sided contact with friction. The third condition arises because
the generalized friction cone is two-dimensional, whereas the
generalized force space is three-dimensional. Since forces along
the rotational tangent t, are perpendicular to the friction cone,
they cannot be opposed by any reaction force. Hence, for static
equilibrium to exist, such forces must vanish.

One can use the classical friction cone constraints to translate
these conditions into algebraic constraints on the applied force

- Specifically, we may rewrite the constraints as:
@y
gy

F ng < 0.

Fopg < F-t; < -3 Fong

(iii)’ F-t =0

Ideally, we would like to determine as well a similar
specification of the configuration space friction cone, using the
configuration space vectors n and t. One might hope for a set
of constraints of the form:

aF n<F t' <F n withF n<0. 3)

Such a pair of constraints would select a convex subset from
the plane defined by the equation F - t, = 0.

Unfortunately, as we have mentioned, the generalized friction
cone can dip below the tangent plane. Thus this straightforward
analogy to the real space case is not possible. Instead, we shall
see in this section that the constraints (3) must be formulated as:

Fn < KF t*
)
Fon < kFt
with
k= L’l,,i"/_“f{,'fﬁ
fn-ng (5)
t; -+t ong
kg = — —
SR LI 1))

Let us now derive the constraints (4) and (5) by using
Coulomb’s law and the conditions (i)', (ii)’, and (iii)’.

Since F - t, = 0 by (iii)’, and since n - t; = 0 by construction,
we have that:

F-np = (F-on-ng+(F t)t no+(F-tHt! -ng (6)
= (F-mn no+(F tHt" -no
Ft, = Fon -t,+F )t -t,+F - tHt - t, (D)
= (F-tHt" t,
Therefore, by expanding (it)’, we get:
(F e -t — J(F mn ng+ (F t9E" o (8)
F Ot t, = 0 [(F mnono+(F-tH -no| (9
Equivalently,
(F-th) lt,‘ e+ prt? ~no} < —u(F-mn-ny (10)
F tHlts 6 —pt! no| > p@F-mn-m (1D

The desired results (4) and (5) follow.

5.2. Computing Reaction Forces with the Object Initially

at Rest

We now consider the case in which the object can move in
response to an applied force. Let us assume that the object is
initially at rest, and that the friction cone actually lies above the
tangent plane. This means that k; is positive and k; is negative.

If we are given an applied force F,, we first check whether
F, - nis negative. If this is not the case, then the applied force
must point either parallel to or away from the configuration space
surface of contact, implying that there is no reaction force.

IfF,-n < 0, then we first project F, tangentially into the plane
of the friction cone. Specifically, we remove the t, component
of the applied force, leaving the force Fy — (- t)t..

(-



If the resulting projection points into the generalized friction
cone, then it defines the reaction force. Otherwise, we must
perform an additional projection, in order to project onto the
edges of the friction cone. This projection is parallel to the vector
+t}, again leaving the normal component of F4 unchanged. This
ensures that the reaction force will completely cancel the normal
component of the applied force, thereby preserving the contact.

Thus, if F4 is a generalized applied force, then the
configuration space surface responds with the reaction force

Fr = —(F4 n)n— At}

where h satisfies (F4 - n)/k; < h < (F4 - n)/k;. If the first
projection lies within the interior of the generalized friction cone,
then these inequalities are strict. In that case, h = F, - t}.
Otherwise, one of the inequalities is an equality, meaning that
the reaction force lies on an edge of the friction cone.

5.3. General Contact Conditions

We consider now the case in which the object may be in motion
initially, while in single-point contact with some configuration
space surface.

In order to maintain contact with a surface, it is necessary to
restrict the range of velocities and accelerations. In particular, in
order to remain on a surface of contact it must be the case that
the object’s velocity is tangential to the surface. This statement
applies equally in real space and in configuration space. In real

space, the contact velocity must be tangential to the real space

edge, that is, the contact velocity normal to the edge must be
Zero. Sxmxlarly, in configuration space, the reference point must
be moving tangentially to the conﬁguranon space surface. Its
normal velocity must be zero. In short, in order to maintain
contact with a surface, the following condition must hold:

v-n=0, (12)
where v is the object’s configuration space velocity and n is the
configuration space normal. We write v = (v,, vy, pw).

The same condition does not apply to accelerations. It is not
the case that either the normal contact acceleration or the normal
configuration space acceleration must be constrained to be zero.
This issue is related to the presence of centripetal and Coriolis
terms in the general equations of motion.

The correct acceleration constraint is derived by differentiating
Equation (12). If the configuration space normal n is
constant, then the condition reduces to assuming that the normal
configuration space acceleration be zero. Otherwise, an extra
term appears.

5.4. General Second Variation Constraint

In general, suppose that a surface in some configuration space of
n parameters xi, . . . , X, is represented by the implicit equation'

F(x1,....x,) = 0.
Then the first and second variation constraints are given by
dF d*F
— = d —-=0.
dt 0 an dr?

Here ¢ represents time. Intuitively, the constraints say that any
curve on the surface given by F cannot leave that surface.
The first variation constraint reduces to:

OF dx; _

Z Ox; dt

1For multiple contact there would be several such surface constraints,
corresponding to the intersection of surfaces in configuration space.

This is of course just the same as the velocity constraint (12),
with the configuration space normal n parallel to the vector
(OF [ Oxy,...,0F | Oxy).

The second variation constraint is the derivative of the first
variation constraint. So

LA PF dux; dx OF dx;
;:FZI Ox;Ox; dt dt Z ox; 0. 13

The rightmost, single, summation is the dot product of a vector
parallel to the configuration space normal with the configuration
space acceleration. The leftmost, double, summation consists of
centripetal and Coriolis terms.

For further details, see [Jellet 1872].

5.5. Second Variation Constraint for Type A and B Contacts

We will not derive the second variation constraints for the
contacts depicted in Figure 2, merely present the results.

The top contact in that figure is known as a Type B contact (see
[Lozano-Pérez 83]). It is defined by the interaction of a vertex of
the moving object with an edge of an obstacle. Observe that the
radius vector remains constant in length for this type of contact.
The bottom contact in the figure is known as a Type A contact.
It is defined by the interaction of an edge of the moving object
with a vertex of an obstacle. The radius vector can now change
length.

For Type B contacts the second variation constraint is of the
form:

n-(a+uir)=0.

For Type A contacts, the second variation constraint is of the
form

n-(a—o’r -2 X Vg)=0

Here v,, = (v:,,,0) and & is a vector representation of the
angular velocity «, namely as « = (0.0.w).

We see then that the second variation constraint can be written
as

n-(a+h)=0,

for some vector h that is a function of the configuration space
parameters and their first time derivatives.

5.6. Computing Reaction Forces

Using the second variation constraints it is possible to compute
reaction forces for the general case in which the object is in
single-point contact with an obstacle. The object may be moving
initially, while maintaining contact with the obstacle. We simply
present the results here without derivation. These results assume
that the configuration space friction cone lies wholly above the
tangent plane.

Let us write the reaction force as Freqction = f» 1 +f . Recall
that this is a valid representation, since there can be no reaction
force along the tangent t, that represents pure rotation about the
contact point. Let us also write vy as v¢ = v,n+ v, t}, with
v, > 0. Finally, let Vo be the cartesian velocity of the contact
point. Specifically, vo is the velocity of the point on the moving
object that is coincident with the contact point. Then f, and f,
are given by the following rules:

f,.=max{0, - (Fappliod+mh) 'n}y

C = v, (Fuppiea - £} — v (mh -m) + 2 (mr - vf),
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fnlka, ifvg-t, >0,
falkt, ifvo-t; <O,
fi=A{ fnlka, ifvo-t;=0and —C/v, < f./ka,
falka, ifvo-t,=0and —C/v, > f,/ki.
~C/v,, ifvo-t,=0andf,/k, < —C/v: <f./ki.

These rules generalize the projection operators of Section 5.2.

6. Multiple Contacts

It is conceptually easy to generalize this approach to multiple
contacts. Specifically, for an object in multiple point contact with
its environment, the net friction cone is simply the vector sum
of the individual single-point friction cones. The full version of
this paper generalizes the method by which contact motions may
be predicted, given a set of contacts and an applied generalized
force. See also {Erdmann 84].

Observe that once one can compute reaction forces for a given
set of contacts, then one can solve the problem stated in the
Introduction. Specifically, for any set of geometric contacts,
one hypothesizes that some subset actually imparts forces to the
moving object. One then computes those forces and determines
the resulting motion of the object. If this motion violates no
physical constraints then it is a valid solution to the equations of
motion. The procedure just described requires time exponential
in the number of contacts, in the worst case, since one may need
to consider all possible subsets of the geometric set of contacts
in order to find one or more that are physically valid. Recent
results by [Baraff 90] suggest that this may be a fundamental
complexity.

7. Related Work

There has been considerable work on the modelling of friction.
An important contribution is the book by Jellet [Jellet 1872].
This book sets up the basic problem, modelling each contact as a
defining constraint surface, then listing possible contact modes.
Additionally, Jellet was well-aware of both static and dynamic
ambiguities in the solution of Newton’s equations with Coulomb
friction. [Lotstedt 81] discusses the inconsistency and ambiguity
of frictional dynamics as well, and provides a simulation-based
sotution. [Mason and Wang 87] further discuss this issue and
provide an impact model for removing ambiguities.

Much of the work on modelling friction arose in the context
of understanding the peg-in-hole problem. An important paper
that motivates the work discussed in this paper is [Whitney
82]. Other important work includes {Nevins, et. al. 75], [Drake
771, (Ohwovoriole, Hill, and Roth 80], [Ohwovoriole and Roth
81}, and the work by Simunovic [Simunovic 79]. More recent
work with an empbhasis on understanding three-dimensional peg-
in-hole assemblies in the presence of friction and uncertainty
includes [Caine 85] and [Sturges 88].

Of similar intent to our work is the paper by Rajan, Burridge,
and Schwartz [Rajan, Burridge, and Schwartz 87]. This paper
develops a characterization of the possible contact modes of a
planar body in frictional contact with rigid objects. The authors
split force-torque space into a number of regions, in each of
which the character of the contact mode is identical.

[Brost and Mason 89] also develop a method for determining
regions of invariant contact mode. Specifically, they represent
both forces and contact constraints as acceleration centers in the
plane. They introduce geometric operations similar to convex
hull as a means for combining disparate forces. The resulting
regions in the plane then fully characterize the object’s contact
modes.

A great advantage of both of these approaches is their two-
dimensional representation of the three-dimensional force-torque

space. This is achieved by noting that frictional reaction forces
form infinite cones, and thus may be described as regions on the
unit sphere in force-torque space.

Further details on the work discussed in this paper may be
found in [Erdmann 84].
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