Action Subservient Sensing and Design

Michael Erdmann

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

Abstract

This paper outlines a method for automatically de-
signing sensors from the specification of a robot’s task,
its actions, and its uncertainty in control. The sen-
sors provide precisely the information required by the
robot to perform its task, despite uncertainty in sens-
ing and control. The key idea is to generate a strategy
for a robot task by using a backchaining planner that
assumes perfect sensing while taking careful account
of control uncertainty. The resulting plan indirectly
specifies a sensor that tells the robot when to execute
which action. Although the planner assumes perfect
sensing information, the sensor need not actually pro-
vide perfect information. Instead, the sensor provides
only the information required for the plan to function
correctly.

1 Introduction

The goal of robotics is to develop autonomous systems.
In order to achieve this goal, we must understand
the relationship between action and sensing, and we
must be able to convert that understanding into robots
capable of operating productively and successfully in
an uncertain world.

The nature of the relationship between action and
sensing raises some fundamental questions:

o What is the information needed to solve a given
manipulation task?

o What tasks can be solved by a given repertoire of
operations?

¢ How sensitive are solutions of tasks to particular
assumptions about the world?

Obtaining answers to these questions forms the
central research agenda in robotics. We will here focus
on the first question. It is a most important question
in robotics. Within it are contained the basic issues
of task definition, action specification, environment
design, and sensing capabilities.

1050-4729/93 $3.00 © 1993 IEEE

592

1.1 Repositories of Information

When we ask “what information is required?” some
answers seem to appear immediately. Yet, when we
look more closely these answers become fuzzy. The an-
swers that appear immediately are of the form: some
information arises from sensors, other information is
encoded in the mechanism performing the task, some
information is encoded in the mechanism’s interpreta-
tion of the world, some in its predictive ability, and
still other information acts subtly through the envi-
ronment. It is obvious why these answers are fuzzy.
They are fuzzy because there is no clear notion of how
the information is distributed between these different
repositories of information.

1.2 A Bewildering Array of Strategies

As an example, imagine the task of placing a pencil
into an electric pencil sharpener in order to sharpen
the pencil. There are numerous methods for accom-
plishing this task. One is to grasp the pencil then move
one’s hand slowly while carefully looking at the pen-
cil and the sharpener, continuously readjusting one’s
aim as the pencil comes close to the sharpener’s hole.
Another is to close one’s eyes, place one hand on the
pencil sharpener, then with the other hand bring the
pencil to the sharpener, and guide it manually into the
hole using tactile feedback. A third strategy is to vi-
sually memorize the state of the world then move the
pencil into the sharpener with no feedback whatso-
ever. A fourth strategy consists of randomly stabbing
at the sharpener with the pencil until the pencil en-
ters the sharpener. A fifth strategy consists of build-
ing a linkage of some sort that can insert the pencil
into the sharpener from a large set of initial states.
The linkage is specially designed as a function of the
sharpener’s geometry and the possible starting loca-
tions of the pencil. A sixth strategy is to dispense
with the notions of pencil and sharpener, and instead
build a series of tightly coupled sensory feedback loops,
implemented on top of hardware that can grasp and
move long thin objects. The feedback loops might
implement such operations as pencil-seeking, pencil-

grasping, and hole-seeking. Numerous other strategies
may be constructed as hybrids of these six strategies.

This enormous array of strategies leaves one with a
distinct feeling of unease. In particular, the strategies
seem to gain their information very differently. Some
rely heavily on sensors, others on mechanical devices,
and yet others on prediction. This makes it very
difficult to answer the question “what information
is required to solve the task of putting a pencil
into a sharpener?” Indeed, we could complicate the
question even more by varying the sizes and shapes
of the pencil and the sharpener. One is tempted to
dismiss the question as non-sensical, based on the
apparent realization that there is no intrinsic measure
of required information and even no intrinsic task of
the form PUT THE PENCIL IN THE SHARPENER.

1.3 Designing Sensors for Tasks

We will resist this temptation, and instead introduce
time as a measure relative to which one can study
information requirements. Specifically, one can first
seek the information required to accomplish a task as
quickly as possible. Relative to this base standard one
can then compare other strategies and their informa-
tion requirements.

2 Related Work

This work is motivated by a long history of work on
uncertainty. We will give a brief account here. Early
work on uncertainty sought to improve the perfor-
mance of robot planning and execution systems by
developing primitive operations specifically designed
to overcome uncertainty. The intent was to retain the
structure of high-level planning systems, while using
the primitive operations to encapsulate the low-level
activity needed to overcome uncertainty. Guarded
moves consisted of motions that terminated execution
when some sensory condition was satisfied. Similarly,
compliant motions were developed to maintain contact
with surfaces. See [Whitney 1977), [Mason 1981], and
[Raibert and Craig 1981], among others.

The natural next step was to incorporate these
local strategies into global motion planners. Early
work considered parameterizing strategies in terms of
quantities that could vary with particular problem
instantiations. The skeleton strategies of [Lozano-
Pérez 1976] and [Taylor 1976] offered a means of
relating error estimates to strategy specifications in
detail. [Brooks 1982] developed a symbolic algebra
system that could be used both to provide error
estimates for given operations, as well as to constrain

593

task variables or add new sensing operations in order
to guarantee task success.

Later, [Lozano-Pérez, Mason, and Taylor 1984]
proposed a planning framework for synthesizing fine-
motion strategies in the presence of uncertainty. This
framework generates plans by recursively backchaining
from the goal. Each backchaining step generates a
collection of sets, known as preimages, from which
entry into the goal is guaranteed, despite sensing and
control uncertainty. The preimage framework directly
incorporates uncertainty into the planning process.
See [Mason 1984], [Erdmann 1986], [Buckley 1987,
[Donald 1989], [Canny 1989] and [Latombe 1990] for
some further work on preimages.

An important offspring of the LMT preimage plan-
ning methodology is Donald’s work on Error Detection
and Recovery [Donald 1989]. Donald’s work moved
away from the requirement that a strategy, in order to
be considered a legitimate strategy, actually be guar-
anteed to solve a task in a fixed predetermined num-
ber of steps. Building on top of Donald’s ideas, [Erd-
mann 1990] studied active randomization as a primi-
tive strategy for accomplishing robot tasks. [Goldberg
1990] investigated probabilistic strategies for grasping
objects and developed a framework for planning opti-
mal orienting strategies relative to various cost func-
tions.

An important idea lies hidden in the work cited
above. If we look at the skeleton strategies of Tay-
lor and Lozano-Pérez, and the plan checker of Brooks,
we see an underlying design philosophy. Specifically,
strategies and environments are seen as interwoven.
Given a robot task there are two ways to proceed.
One is to develop a strategy for accomplishing the
task in the specified environment. Another direction
is to redesign the environment so that some simple
off-the-shelf strategy is guaranteed to succeed. For
instance, one might develop a nominal plan for ac-
complishing the task under the assumption of no un-
certainty. In order to ensure the plan’s success in an
uncertain world, one introduces a new sensor not orig-
inally postulated in the environment. This second di-
rection for dealing with uncertainty has not received as
much attention in recent years. An important research
question is to determine the conditions under which
redesigning the environment is a possible solution.
Studying the information requirements of manipula-
tion tasks is one approach to answering this question.
In related recent work, [Lazanas and Latombe 1992]
explore the idea of designing an environment in or-
der to simplify sensing and planning. They use a
preimage planner to navigate a robot between local
landmark regions within which sensing is perfect and

outside of which sensing is non-existent. [Canny and
Goldberg 1991] and [Donald and Jennings 1992 study
the design of task-directed sensing to simplify robot
programming. Canny and Goldberg are developing a
RISC approach to programming robotics, and advo-
cate using simple sensors, such as special light beam
sensors. Donald and Jennings study the lattice of sen-
sor values as a function of robot actions. Their robots
perform constructive recognizability experiments to ex-
tract relevant information from the environment.

3 Complexity

This section argues for sensor design based on an ex-
amination of the complexity of several different ap-
proaches to motion planning. We draw our com-
plexity estimates from two domains. The actions in
these domains have non-deterministic or probabilis-
tic transitions. One domain consists of discrete state
spaces with discretely specified actions. See [Papadim-
itriou and Tsitsiklis 1987], and [Erdmann 1990] for
further details. The other domain consists of continu-
ous spaces with continuous actions, analogous to those
in the LMT [Lozano-Pérez, Mason, and Taylor 1984]
preimage methodology. See [Natarajan 1986, 1988],
[Canny and Reif 1987], [Canny 1988, 1989], and [Don-
ald 1988] for further details.

Table 1 summarizes the basic results. We omit
many details. One notices the following pattern: for
perfect sensing, planning seems to be easy; for general
sensing, planning seems to be intractable; and for
sensorless strategies, planning seems to be hard, but
not as hard as in the general case.

The results of Table 1 suggest that it makes sense
to look at problems in which sensing is perfect. One is
reluctant to do so, since perfect sensing is impossible.
There is a much more attractive view, however. This
view envisions sensing as a design problem. For any
task, one can assume perfect sensing in determining
the control strategy for accomplishing that task. Hav-
ing done so, one then builds an imperfect sensor that
nonetheless provides the information required for this
control strategy to operate.

4 A Family of Sensors for the
Point-Into-Disk Problem

In this section we illustrate our approach with a simple
task. The task is to move a point in the plane into a
circular disk centered at the origin of the plane. We
will look at the design of a sensor for this task, that is
specifically structured to guide the point into the disk.

594

Sensorless p NP 2(n 1))
Imperfect | PSPACE ~ PSPACE 9200 ®)
Sensing
Perfect P P P
Sensing
Perfect Probabilistic Adversarial
Discrete; Discrete; Continuous;
Optimal Optimal Guaranteed
Control Uncertainty
Task Space;
Strategy Type
Table 1: A rough complexity picture. In each case the

problem is to decide the existence of a k-step strategy
for attaining the goal from some initial region, given n
obstacle constraints. The right-most colamn concerns
tasks on continuous spaces, with the objective of finding
a guaranteed strategy that attains the goal. The other
two columns concern tasks on discrete spaces, with the
objective of obtaining an optimal strategy. The complexity
classes are classifications, except for the two exponentials,
which are known upper bounds.

In the process, we will see that it is possible to design
a family of sensors. The family of sensors defines
a tradeoff between the optimal approach strategy
that is possible with perfect sensing and the motions
possible given the actual information available from
an imperfect sensor.

4.1 Actions and Uncertainty

We take the motion system to be a simple first-
order system, in which the point is moved by com-
manding velocities that are subject to unknown but
bounded errors. Specifically, if the execution sys-
tem commands velocity vg, then the range of pos-
sible velocities is given by the ball B, |v,/(vo) =
{v" [vo— v*| < € |vo|}. A basic action consists of
commanding a velocity vo for some duration of time

At, where At can be arbitrarily small. This models a
simple feedback loop.

4.2 An Ideal Sensor

Let us ask ourselves what the ideal sensor for the
point-into-disk task might look like. A sensor that re-
ports precisely the current position of the point would

certainly be nice. In particular, given a position re-
ported by this sensor, the execution system can calcu-
late a velocity vector that aims directly towards the
goal. We will see presently that this perfect position
sensor is actually superideal, in that it provides more
information than is needed.

4.2.1 A World-Centered Sensor: Poor Degra-
dation with Noise

One issue to keep in mind is how one might implement
a perfect position sensor. One possibility is to estimate
the robot’s position by observing it, say with a camera.
Another implementation might use a series of joint
encoders. A third implementation might consist of a
grid of rectangular wires implanted in the plane, that
report back the (z,y) position of the robot.

Observe that all of these sensors are world-centered.
Specifically, they report back the configuration of the
robot in some world coordinate system. Given this
configuration, the run-time executive then calculates
the difference in position between the robot and
the goal in order to suggest a commanded velocity.
This procedure is fine for a truly perfect sensor, but
degrades poorly as the sensor becomes noisy or as the
position of the goal becomes uncertain. In particular,
suppose we model the uncertainty of such a world-
centered sensor as an error ball with a fixed error
radius. If the error radius is larger than the goal, then
as the robot approaches close to its goal, the system
will be unable to decide on which side of the goal the
robot is located. This makes it impossible to execute
a velocity guaranteed to attain the goal.

While this example is simple, the problem is funda-
mental. It exists in even greater magnitude for general
manipulation tasks.

4.2.2 A Task-Centered Sensor: Respects Un-
certainty

A second approach is to build a task-centered sensor.
What might such a sensor for the point-into-disk task
look like? A good representation for a perfect sensor
is not a cartesian grid but a polar coordinate grid
that is centered at the goal. As with the perfect
cartesian sensor, the perfect polar coordinate sensor
reports back the configuration of the robot relative
to the hole, but in polar coordinates. The coordinates
are then again used to compute a velocity vector along
which the robot should move.

Fortunately, we can go yet a step further. The polar
coordinate sensor reports back both the distance of
the robot from the goal and the angle that measures
the relative direction between the robot and the

595

goal. Only the angle is used to calculate a motion
command; the distance is ignored. This observation
immediately suggests that the ideal sensor need only
report the angular coordinate of the polar coordinate
representation. In short, the ideal perfect sensor is a
directional beacon situated at the goal, that reports
the direction from the goal to the robot. This sensor
senses one degree of informational freedom.

Let us observe that this task-centered sensor de-
grades nicely with noise. In particular, an error of a
few degrees in the directional beacon simply means
that the robot will move slightly in the wrong direc-
tion. Near the goal, the sensor can quickly detect and
correct such inaccurate motions.

There are two principles at play here. First, the
sensor is task-centered. Second, the sensor error
mirrors the control error.

4.3 Designing a Sensor with Time-
Indexed Backprojections

The basic procedure for designing both the sensor and
the strategy that together accomplish the task is to
backchain from the goal under the assumption of a
perfect sensor. The reason for using a perfect sensor
is that it considerably simplifies the planning problem,
without forcing us into a particular implementation of
the sensor. The backchaining process tells us what
information is required, how it is used, and how to
design a sensor so that the information degrades nicely
in the presence of uncertainty.

The backchaining process is inductive. Initially, the
planner constructs a collection of backchaining regions
from the goal disk. At each subsequent stage, the
planner constructs a collection of backchaining regions
from some other circular region.

Recall that our basic model of an action is a pair:
a velocity vy and a time At. This model of action
leads to time-indexed backprojections. See Figure 1.
The semantics are as follows. If the robot starts off in
the crescent-shaped region depicted in the figure, then
upon execution of velocity v for time At, the robot is
guaranteed to be somewhere inside the disk of radius
ri, despite control uncertainty.

4.4 Planning a Strategy

During a given stage of the backchaining process, the
planner expands the current disk of radius 7 to a
new disk of radius ry + (1 — €,) [vo| At. Specifically,
the planner computes time-indexed backprojections
for all possible velocity directions. The union of
the resulting crescent-shaped regions forms a band of

a=IV°IAt

qk=p'"- ev|v°|Al

Jime-indexed backprojection

Figure 1: This figure shows a typical time-indexed
backprojection of a two-dimensional disk. The goal disk
has radius rx and is centered at the origin. The action is to
execute the nominal velocity vo for time At. The velocity
uncertainty is given by an error ball with radius e, |vol|.
The resulting time-indexed backprojection is a disk with
radius gx = rx — €y [vo| At centered at (a,0) = —v, At.
The shaded crescent-shaped area is the portion of the
backprojection that lies outside of the goal disk. The
point pi is one of the intersection points of the circles that
circumscribe the two disks. For comparison, the dashed
lines outline the full backprojection (see [Erdmann 1986]).

width (1-e¢,) |[vo| At about the old composite subgoal
disk of radius rg.

4.5 Differential Backchaining

Suppose that one repeatedly computes time-indexed
backprojections, starting with the goal disk of radius
r, and backchaining over and over. At the k+1°* stage
one has a disk of radius r; centered at the origin. Here
& runs from 0 on upward, with r¢ = r. Given r; and
vo At, one computes a time-indexed backprojection,
which is a disk of radius q; centered at —vy At. The
circles bounding these two disks intersect at the points
P and its mirror image (relative to the line given by
Vo).

For simplicity, let us assume that vy is parallel
to the z-axis and that it is pointing in the negative
z direction. Let us define a = |vg At|, and write
Pt = (z,ye). Then we observe that g = ry — €, a
and that r; r+ k(1 — ¢)a. By solving for the
intersection of two circles, it follows that

Zr =rc.,+lc(l—e.,)c,a+%(l—eﬁ)a.

Furthermore, y; is implicitly defined by the equation
s +yl=ri.

The interesting question is what happens as we
make the time constant At of the feedback loop very

small. Suppose we let @ — 0. In order to backchain

596

Figure 2: The two solid lines bound a cone of progress,
which is indicated by the shaded region. The nominal
commanded velocity is vo (—1,0), with uncertainty
€» = 0.25. If the robot starts within the cone of progress,
then commanding velocity vo for a differential amount
of time is guaranteed to move the robot closer to the
origin, despite the uncertainty in control. Each pair of
circles comprises a composite subgoal disk and its time-
indexed backprojection relative to the velocity vo the time
duration At = 0.1. Observe that the solid lines nearly
trace out the intersection points of each subgoal disk with
its time-indexed backprojection. As At becomes smaller,
this match becomes better.

out to some location p, we must therefore let &
approach infinity in such a way that the product ka
remains constant, say at some value ¢ that depends on
p- Thus we have that

Ty — € (r+c(1—e,,)),
w - \/l—ff(r-l-c(l—ev)).

We therefore see that

A
Tk €y)

In other words, the intersection points {p;} line up in
a straight line with slope /1 — eﬁ/c.,. A similar line
is formed by the mirror points {—pi}. Together these
two lines form a cone.

What does this cone mean? The interior of the cone
consists of all those locations at which the nominal
velocity vo is guaranteed to make progress towards
the goal for at least a differential amount of time. We
refer to such a cone as a cone of progress.

4.6 Cones of Progress

The previous construction should come as no surprise.
The cone appeared in a different form in {Erdmann

1990] in the context of randomization. That work
discusses a simple feedback loop for accomplishing
the point-into-disk task, despite uncertainty in sensing
and control. The feedback loop operated as follows.
The robot would sense its current position. If all
position interpretations consistent with the observed
sensor value lay wholly within some cone of progress,
then the robot would determine a velocity vector and a
maximum execution time that would permit the robot
to move closer to the goal. On the other hand, if
no single cone of progress contained all the possible
locations of the robot, then no action was guaranteed
to move the robot closer to the goal. In that case, the
robot would execute a random motion.

There are two important ideas contained in the last
paragraph. The first concerns speed of progress. The
second is a description of a better sensor. First, in the
randomization example of [Erdmann 1990], the sensor
was a cartesian sensor whose uncertainty was modelled
as an error ball. This meant that for observed sensor
values close to the origin, the system could not decide
that its position lay in any particular cone of progress.
Conversely, for observed sensor values far away from
the origin, the location of the sensor interpretation
set inside a cone of progress determined the amount
of progress that the system could make. In other
words, we see that it is the relationship of a particular
sensor and sensed value to all the cones of progress
that determines whether progress is possible and if so,
how much progress. This is the sensing-speed tradeoff
that we mentioned earlier.

The second idea concerns the design of a task-
specific sensor. We argued earlier based on simple
symmetry that the sensor should be an angular sen-
sor that is centered at the goal and that looks out
from the goal toward the robot (or vice-versa). That
argument finds further support in the current geomet-
ric reasoning. In order for the robot to be certain
that a particular action will move it closer to the goal,
the robot needs to know that its current position lies
within the cone of progress associated with that ac-
tion. This requirement points towards the design of a
sensor that recognizes cones of progress. For the ex-
ample above, this means that we need a sensor that
can decide whether the robot is located in some con-
ical region with half-angle cos~1(¢,) that is centered
at the goal.

In summary:
¢ Sensors should not recognize states.

¢ Sensors should recognize applicable actions,
by recognizing cones of progress.

597

4.7 Coverings by Cones of Progress

Designing a sensor to recognize a single cone of
progress is not enough. The entire state space need not
be covered by a single cone of progress. This leads us
to a family of sensors. At one extreme we have a sensor
that is capable of recognizing the robot’s presence
or absence in each and every cone of progress. For
the example above this amounts to a perfect angular
sensor. Given such a sensor we would at run-time see
the robot executing a nearly straight-line trajectory
from its initial location to the goal.

At the other extreme we have a sensor that is
capable at run-time of recognizing the robot’s presence
in at least one cone of progress, but not necessarily
more. One view of such a sensor is as follows. We,
as sensor designers, decide on a covering of the state
space by some small collection of cones of progress.
(There may be many such minimal coverings.) We
then design a sensor that can recognize this covering.
In other words, at run-time the sensor accurately
reports the robot’s position in at least one cone of
progress. Note that the speed of progress is slower
than for the perfect angular sensor. Instead of heading
straight for the goal, the robot moves along a path of
directions aligned with the axes of those cones that
comprise the covering.

4.8 Implementation

We implemented a radial sensor for inserting a cylin-
drical peg into a hole, using a Zebra Zero robot. The
peg’s diameter was about 6mm, and the hole’s diame-
ter was about 7mm. We built a small gripper attach-
ment with four IR detectors in it. When the robot
grasps the peg, the peg centers itself in the gripper so
that it is surrounded by the IR detectors. We placed
an IR source inside the hole. Near the hole the sen-
sors detect the direction in which the robot must move
the peg. For each execution, the robot would initially
place the peg within a 3 to 7mm radius of the hole.
The robot would then consult the IR detectors, move
the peg about 1.5mm in a radial direction toward the
hole, and repeat until it placed the peg over the hole.
Once over the hole, the robot would simply open the
gripper and let the peg fall in. We did not keep ex-
perimental data. In viewing old videotape it seems
that the strategy places the peg into the hole reliably
about 75% of the time. This is fine for our purposes.
It is not great, and of course, the clearance ratio 1.17
is huge, but the setup serves as a feasibility test.

We note that placing an IR source in the hole is
not practical in realworld settings. Instead, one might
build a special gripper with proximity sensors instead

of IR detectors. These sensors should differentiate
between solid metal and hole. Such a gripper cum
proximity detector provides information much as did
our previous gripper cum IR source/detector. The
advantage is the localization of the sensor to the
gripper.

Finally, we note that the radial sensor is simply
a description of the information required to insert
the peg into the hole. A real sensor need not be
implemented as a “lighthouse”. This is really just
a metaphor describing the required information. An
excellent implementation of a radial sensor occurred
long ago, in the Charles Stark Draper Labs. [Nevins et
al. 1975] used force sensing to detect the moments that
result when a peg overlaps a hole. The perpendicular
to this moment describes a radial direction of motion,
and thus implements a radial sensor

4.9 Summary

The cones of progress specify exactly what knowledge
the robot must have in order to make progress, and
how the available information affects the speed of
progress. A sensor should be viewed as recognizing
cones of progress. A perfect sensor maps an observed
sensed value to all cones of progress that contain the
robot’s actual location. A noisy sensor maps the
observed sensed value to a smaller collection of cones
of progress. Given this description, one can then
design physical sensors that try to recognize as many
cones of progress as one requires in order to accomplish
a task quickly.

5 Acknowledgments

Many thanks to Bruce Donald, Tomds Lozano-Pérez,
Matt Mason, Tamara Abell, Yan-Bin Jia, and Nina
Zumel for their insights, discussions, and comments.
Support for this research was provided in part by
Carnegie Mellon University, an equipment grant from

AT&T, an NSF Research Initiation Award (IRI-9010686),

and an NSF Presidential Young Investigator award
(IRI-9157643).

6 Bibliography

Brooks, R. A. 1982. Symbolic Error Analysis and Robot
Planning. Int J Rob Res. 1(4):29-68.

Buckley, S. J. 1987. Planning and Teaching Compliant
Motion Strategies. AI-TR-936. Ph.D. Thesis. MIT.
Canny, J. F. 1988. The Complexity of Robot Motion
Planning. MIT Press.

Canny, J. F. 1989. On Computability of Fine Motion
Plans. Proc 1989 IEEE ICRA, pp. 177-182.

Canny, J. F., and Goldberg, K. Y. 1991. “RISC-
Robotics,” talk given at CMU, Oct 11, 1991.

Canny, J., and Reif, J. 1987. New Lower-Bound Tech-
niques for Robot Motion Planning Problems. 28th FOCS.
Donald, B. R. 1988. The Complexity of Planar Com-
pliant Motion Planning with Uncertainty. ACM S Comp
Geom.

Donald, B. R. 1989. Error Detection and Recovery in
Robotics. Springer LNCS No. 336.

Donald, B. R., and Jennings, J. 1992. Constructive
Recognizability for Task-Directed Robot Programming.
Robotics and Autonomous Systems. 9:41-74.

Erdmann, M. A. 1984. On Motion Planning with Un-
certainty. AI-TR-810. S.M. thesis. MIT.

Erdmann, M. A. 1986. Using Backprojections for Fine
Motion Planning with Uncertainty. Int J Rob Res. 5(1).
Erdmann, M. A. 1990. On Probabilistic Strategies for
Robot Tasks. AI-TR-1155. Ph.D. thesis. MIT.
Goldberg, K. 1990. Stochastic Plans for Robotic Manip-
ulation. Ph.D. Thesis. CMU.

Latombe, J.-C. 1991. Robot Motion Planning. Kluwer.
Lazanas, A. and Latombe, J.-C. 1992. Landmark-
Based Robot Navigation. Proc AAAI-92.

Lozano-Pérez, T. 1976. The Design of a Mechanical
Assembly System. AI-TR-397. S.M. thesis. MIT.
Lozano-Pérez, T., Mason, M. T., and Taylor, R. H.
1984. Automatic Synthesis of Fine-Motion Strategies for
Robots. Int J Rob Res. 3(1):3-24.

Mason, M. T. 1981. Compliance and Force Control for
Computer Controlled Manipulators. IEEE Trans Sys Man
Cyber. SMC-11(6):418-432.

Mason, M. T. 1984. Automatic Planning of Fine-Motions:
Correctness and Completeness. Proc 1984 IEEE ICRA.
Natarajan, B. K. 1986. An Algorithmic Approach to the
Automated Design of Parts Orienters. Proc 27th FOCS.
Natarajan, B. K. 1988. The Complexity of Fine Motion
Planning. Int J Rob Res. 7(2):36-42.

Nevins, J., Whitney, D., Drake, S., Killoran, D.,
Lynch, M., Seltzer, D., Simunovic, S., Spencer,
R. M., Watson, P., and Woodin, A. 1975. Exploratory
Research in Industrial Modular Assembly. Report R-921.
C. S. Draper Laboratory, Cambridge, Mass.
Papadimitriou, C. H., and Tsitsiklis, J. N. 1987,
The Complexity of Markov Decision Processes. Math Op
Res. 12(3):441-450.

Raibert, M. H., and Craig, J. J. 1981. Hybrid Po-
sition/Force Control of Manipulators. J Dyn Sys Meas
Cont. 102:126-133.

Taylor, R. H. 1976. A Synthesis of Manipulator Con-
trol Programs from Task-Level Specifications. AIM-282.
Ph.D. thesis. Stanford University.

Whitney, D. E. 1977. Force Feedback Control of Manip-
ulator Fine Motions. J Dyn Sys Meas Cont. 98:91-97.

598

