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Abstract

Surface-micromachined comb-drive resonators suspended by meander s
are modelled and simulated. General analytic expressions for lateral spring
stants and effective mass of meander springs are derived and verified by 
element simulations. The spring constant equations are accurate to withi
over a wide range of geometries. Analytic, simulated, and measured res
frequency values agree to within 0.3% for each of ten different microreson
designs.

1 Introduction

Surface-micromachined structures have been adopted as the mechanic
ments in a variety of integrated microsystems, such as polysilicon microacc
ometers, microresonator transducers, and active micromirror disp
Currently, these microstructures are handcrafted in a physical layout and
lyzed using electromechanical and mechanical finite-element simulation
contrast to the finite-element analysis approach, we view microelectromec
cal design in much the same way that circuit design is accomplished: as 
cess of assembling and sizing components to meet system specifica
Parameterized models of micromechanical components are required in or
simulate microsystems at this higher level of abstraction. The present la
component models for specific micromechanical process technologies r
sents a barrier to optimal design of integrated microsystems. We have c
microresonators as an application vehicle to demonstrate our general app
to micromechanical modelling and simulation.

Previous component modelling for microresonators includes lateral 
cous damping by Zhang [1] and electrostatic force of comb-finger actuato
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Johnson [2]. Small-signal equivalent circuits for microresonators operating 
near resonance have been developed (e.g. Nguyen [3]). In this paper, we
on the modeling of meander springs for simulations of microresonators u
arbitrary operating conditions. Meander springs have been designed in co
ultra-compliant suspensions for x-y micropositioners (e.g. Zhang [4]), m
mode positioners (e.g. Fedder [5]), and optical microshutters (e.g. Jaeklin
Meander suspensions have spring constants that are linear over a relativel
displacement and are less sensitive to residual stress than straight-beam
fixed suspensions. The lumped-parameter analytic models allow the micr
tem designer to analyze trade-offs quickly and to size the suspension app
ately through accurate and efficient simulation.

In the following sections, analytic equations for the lateral spring c
stants and effective mass of the meander suspension are derived. To ver
expressions, the analytic results are compared with finite-element simula
and experimental measurements for a set of ten lateral microresonators.

2 Modelling of Meander Springs

A.  Resonator Description
The lateral microresonators are fabricated using a four-mask surface-micr
chining polysilicon process (e.g. Tang [7]). A scanning electron micrograph
lateral resonator suspended by four meander springs is shown in Figure 1
comb-finger electrostatic actuators are situated symmetrically on two sid
the rigid shuttle mass. Each comb drive has 16 fingers on the shuttle side 
comb. Small anchors are placed inside the shuttle frame to act as latera
placement limit stops. Other physical parameters for the microresonator
given in section 3.

B.  Meander Spring Constants
A schematic of one spring is shown in Figure 2. Each meander is of lenga,
and width b, except for the first and last meanders, which are of width c. We call

Figure 1. Scanning electron micrograph of a lateral microresonator suspe
by four meander springs.

meander spring

limit stop

shuttle mass

comb drive
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the beam segments that span the meander width span beams (or spans) 
beam segments that connect the spans are called connector beams (or c
tors). We only consider the case where all spans are equal (b=c). However, the
analysis can be easily extended to the general case. Because of the flexur
metry in the suspension, the end of the spring has a guided-end boundary 
tion, where only translation in the preferred x-direction is allowed. The reaction
forces are Fx and Fy and the couple is Mo at the ends of the spring.

In the following analysis, the spring constants are derived using en
methods (Timoshenko [8]). The strain energy from each beam segment o
spring is summed to obtain the total strain energy,

where n is the number of meanders, E is Young’s modulus, Ia and Ib are the
bending moments of inertia for the connectors and spans, respectively, Ma,i is

the moment of the ith connector, and Mb,j is the moment of the jth span, where
i=j= 1 at the guided-end of the spring. The moments of the beam segmen
deduced from a free-body diagram of the spring. When determining thx-
directed spring constant, displacement of the spring end in the y-direction (δy)
and rotation of the spring end (θo) are constrained to be zero while the displac
ment in the x-direction (δx) is unconstrained. Application of Castigliano’s se
ond theorem produces three equations in three unknown variables (Fx, Mo, and
δx).

Figure 2. Meander spring schematic with guided-end boundary condition.
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The solution to eqns (2)-(4) results in a closed-form expression for thx-
directed spring constant of the fixed-fixed meander suspension, which is 
by kx = 4 Fx / δx.

where ã = (Ib / Ia) a. A similar procedure yields the y-directed spring constant
but in this case δx = 0,  θo=0, and δy is unconstrained.

Simplified approximations for (5)-(6) can be found for large n, which is defined
as n >> 3 b / (ã + b).

The lateral stiffness ratio, ky / kx, is proportional to n2 for large n. Values
for the stiffness ratio can be approximated by the square of the spring le

divided by spring width, (L / b)2, for b >> 3ã. Decreasing ky alleviates buckling
due to residual stress in the fixed-fixed suspension. However, decreasin
stiffness ratio can adversely affect the stability in comb-drive resonators.

Values calculated from the meander spring-constant expressions are
pared with finite-element calculations in Figure 3. The fixed parameters areE =
165 GPa, ν = 0.3, wa = wb = t = 2 µm, n = 6, and a = 10 µm. The finite element
calculations are performed using ABAQUS [9]. Four 3-node quadratic b
elements are used to model each span and connector beam. Spring-const
ues obtained from nonlinear finite-element analysis are within 1.6% of the
ues found from linear analysis, since we restrict the simulation to deflectio
0.1 µm. The finite-element and analytic calculations match to better than 1%
all geometries with sufficiently large span lengths. As the span lengt
decreased, the flexure spring-constant approaches that of a non-linear 
fixed beam suspension. The analytic calculation of kx for very small span
lengths (b < 2 µm) underestimates the spring constant by around 5% bec
axial extensional stress in the flexure is neglected. The analytic calculationky

kx =
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(ã+ b)n2

� 3bn+ 2b
i ;n odd

(5)

ky =

8>>>>>>>><
>>>>>>>>:

48EIb
h
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2)n+ 3ã2
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for span lengths below 20 µm substantially overestimates the spring consta
also because axial stress is neglected.

C.  Meander-Spring Effective Mass
An expression for the ‘effective mass’ of the meander spring in its fundam
vibrational mode is derived by relating the total kinetic energy of the sprin
terms of an equivalent lumped mass at the end of an ideal massless spr
schematic of the first vibrational mode of a meander spring with a guided
condition is shown in Figure 4(a). The mode shape is approximated by the 
mode shape of a displaced guided-end beam of length L, as shown by the dotted
line in Figure 4(a). Assigning the anchored end of the spring to the origin in
x-y plane, the expression for the mode shape of the guided-end beam is

To calculate the total kinetic energy, the meander spring is broken up into
crete S-shaped elements, as shown in Fig. 3(b). Each meander element c
of a span beam, orthogonally connected at both ends to the connector be
length a/2. Each meander element is approximated as having rigid-body tra
tion and rotation components whose magnitudes are linearly related to the 
shape of the guided-end beam. This approximation is valid for sufficient n
bers of meanders and small range displacement.

Translation and rotation of each meander element is defined at the c
of mass, with y-directed translation assumed to be negligible. Therefore,
translational velocity of the ith meander element has an amplitude, Vx(y), pro-
portional to the mode shape at y = ia.

Figure 3. Comparison of analytic meander spring constants (solid lines) 
finite-element analysis (points).
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where ωr is the resonant frequency. Likewise, the amplitude of the rotatio

velocity, Ω(y), of the ith meander is proportional to the spatial derivative of t
mode shape at y = ia.

The maximum kinetic energy of the total mechanical system is

where mm and Im are the mass and the mass polar moment of inertia, res
tively, of one meander element, Ms is the shuttle mass, ρ is the density of the
polysilicon beam, and h is the beam thickness. The maximum kinetic ene
can be rewritten in terms of the effective mass, Meff, of the meander suspension

y

x

 L

static mode shape of guided 
 end beam

Figure 4. (a) Finite-element simulation of meander spring connected to
shuttle mass, Ms, showing the undisplaced spring (dot-dash lines) and the 
vibrational mode shape (solid lines). The overall mode shape is approxim
by a guided-end beam mode shape (dotted line). (b) Discretization of mer
spring depicting the translation and rotation of the ithmeander.
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where the effective mass is given by

The fundamental resonance frequency is then found from Rayleigh’s meth
equating the maximum kinetic energy with the maximum strain energy at r
nance. The resonant frequency is given by

3 Experimental Results

Ten polysilicon microresonators have been fabricated to verify experimen
the analytic expressions for x-directed spring constant and resonant frequen
Each of the resonators has a different meander suspension, labelled A th
L. The measured polysilicon thickness is 1.78 µm. The rigid central shuttle is
identical for each resonator, and has a mass of approximately 25 ng. Bo
comb-finger width and meander beam width are 1.8 µm, and the gap between
fingers is 2.2 µm. The theoretical lateral force coefficient is approximately 0

nN/V2, calculated from a two-dimensional finite-element analysis. Table 1 
the spring parameters for each design. Values for kx and ky/kx are calculated
from eqns (5) and (6) using the measured beam thickness and width, a
assumed value of Young’s modulus for polysilicon of 165 GPa.

Lateral resonant frequency from analytic calculations, finite-element a
ysis, and measurements are compared in Figure 5 and the values are liste

Table 1. Data for the ten experimental meander-suspension
microresonators, labelled A through L

n a

[µm]

b

[µm]

kx
eqn (5)
[Ν/m]

ky/kx fr 
eqn (17)
[Hz]

fr 
(FE)
[Hz]

fr  ± σ
(measured)
[Hz]

A 10 63 81 0.0146 28 3040 3032 2697 ± 183

B 10 65 64 0.0150 45 3143 3137 3172 ±   55

C 10 37 47 0.0727 29 7379 7376 7548 ± 347

D 10 38 37 0.0757 46 7633 7635 8133 ± 342

E 20 27 63 0.0148 42 2908 2899 3348 ± 799

F 20 29 50 0.0145 72 2954 2947 2952 ± 159

G 20 16 37 0.0715 43 7057 7053 7213 ± 372

H 20 17 29 0.0722 73 7242 7243 7325 ± 375

I 10 22 28 0.345 29 17007 17029 17870 ± 833

L 20 10 17 0.356 74 17101 17130 17760 ± 724

Meff = 4I
m

n4
� 1

5L2n3
+ 2m

m

78n6
� 105n5

+ 7n2
+ 20

105n5
+ 2�hwa (16)

!r =

q
kx= (Ms +Meff) (17)
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last three columns of Table 1. The analytic resonant frequency values f
from eqn (17) agree to within 0.3% of the finite-element values and are plo
as a single data point on the figure. Resonant frequency is measured for
devices of each resonator design to obtain the average and standard de
values in the last column of Table 1. The large standard deviation in reso
frequency is due to the variation in beam width across the wafer. Calculate
onant frequency values are within 13% of the average measured values 
resonators except for the resonator with the largest meanders (A). The 
lated frequency of resonator A is well within 3σ of the measured value, how
ever. Neglecting the spring effective mass is a particularly bad approxim
for resonators A, B, E, and F, since the total beam length of each spri
greater than 0.5 mm. Residual stress in the film has less than 1% effect o
spring constants or resonant frequency of these structures, based on fini
ment simulations.

4 Conclusions

The set of analytic expressions for meander spring constants and effective
provides a rapid analysis of static and resonant behavior of meander-s
microresonators. The 1% accuracy of the analytic models is much better
the typical accuracy with which thin micromechanical beams can be fabric
Therefore, the models can be used to relate physical design and process
ances to micromechanical performance specifications. However, the limi
validity for these models still needs to be explored. Future work includes d
opment of spring-constant models for other spring geometries and for bou
conditions other than the guided-end condition.

Figure 5. Resonant frequency for the ten microresonator layouts comp
analytic and finite-element (FE) data with measured data. The layouts
presented in increasing resonant frequency. Error bars on the measure
represent ±3σ variation across the wafer.
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