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Abstract

Surface-micromachined comb-drive resonators suspended by meander springs
are modelled and simulated. General analytic expressions for lateral spring con-
stants and effective mass of meander springs are derived and verified by finite-
element simulations. The spring constant equations are accurate to within 1%
over a wide range of geometries. Analytic, simulated, and measured resonant
frequency values agree to within 0.3% for each of ten different microresonator
designs.

1 Introduction

Surface-micromachined structures have been adopted as the mechanical ele-
ments in a variety of integrated microsystems, such as polysilicon microacceler-
ometers, microresonator transducers, and active micromirror displays.
Currently, these microstructures are handcrafted in a physical layout and ana-
lyzed using electromechanical and mechanical finite-element simulation. In
contrast to the finite-element analysis approach, we view microelectromechani-
cal design in much the same way that circuit design is accomplished: as a pro-
cess of assembling and sizing components to meet system specifications.
Parameterized models of micromechanical components are required in order to
simulate microsystems at this higher level of abstraction. The present lack of
component models for specific micromechanical process technologies repre-
sents a barrier to optimal design of integrated microsystems. We have chosen
microresonators as an application vehicle to demonstrate our general approach
to micromechanical modelling and simulation.
Previous component modelling for microresonators includes lateral vis-

cous damping by Zhang [1] and electrostatic force of comb-finger actuators by
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Johnson [2]. Small-signal equivalent circuits for microresonators operating at or
near resonance have been developed (e.g. Nguyen [3]). In this paper, we focus
on the modeling of meander springs for simulations of microresonators under
arbitrary operating conditions. Meander springs have been designed in compact
ultra-compliant suspensions for x-y micropositioners (e.g. Zhang [4]), multi-
mode positioners (e.g. Fedder [5]), and optical microshutters (e.g. Jaeklin [6]).
Meander suspensions have spring constants that are linear over a relatively large
displacement and are less sensitive to residual stress than straight-beam fixed-
fixed suspensions. The lumped-parameter analytic models allow the microsys-
tem designer to analyze trade-offs quickly and to size the suspension appropri-
ately through accurate and efficient simulation.

In the following sections, analytic equations for the lateral spring con-
stants and effective mass of the meander suspension are derived. To verify the
expressions, the analytic results are compared with finite-element simulations
and experimental measurements for a set of ten lateral microresonators.

2 Modelling of Meander Springs

A. Resonator Description

The lateral microresonators are fabricated using a four-mask surface-microma-
chining polysilicon process (e.g. Tang [7]). A scanning electron micrograph of a

lateral resonator suspended by four meander springs is shown in Figure 1. Two
comb-finger electrostatic actuators are situated symmetrically on two sides of
the rigid shuttle mass. Each comb drive has 16 fingers on the shuttle side of the
comb. Small anchors are placed inside the shuttle frame to act as lateral-dis-
placement limit stops. Other physical parameters for the microresonators are
given in section 3.

B. Meander Spring Constants
A schematic of one spring is shown in Figure 2. Each meander is of ength
and widthb, except for the first and last meanders, which are of weidtte call

meander spring

limit stop

Figure 1. Scanning electron micrograph of a lateral microresonator suspended
by four meander springs.
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Figure 2. Meander spring schematic with guided-end boundary condition.

the beam segments that span the meander width span beams (or spans) and the
beam segments that connect the spans are called connector beams (or connec-
tors). We only consider the case where all spans are dge However, the
analysis can be easily extended to the general case. Because of the flexure sym-
metry in the suspension, the end of the spring has a guided-end boundary condi-
tion, where only translation in the prefernedirection is allowed. The reaction

forces arés, andFy and the couple ¥, at the ends of the spring.

In the following analysis, the spring constants are derived using energy
methods (Timoshenko [8]). The strain energy from each beam segment of the
spring is summed to obtain the total strain energy,

_Z/ 2 5—I_Z:/ 2E[b (1)

wheren is the number of meanderE,ls Young’s modulus|, andly, are the
bending moments of inertia for the connectors and spans, respediyglis

the moment of thé" connector, any, j is the moment of thg" span, where

i=j= 1 at the guided-end of the spring. The moments of the beam segments are
deduced from a free-body diagram of the spring. When determining- the
directed spring constant, displacement of the spring end ip-direction Qy)

and rotation of the spring enél,f are constrained to be zero while the displace-
ment in thex-direction @x) is unconstrained. Application of Castigliano’s sec-
ond theorem produces three equations in three unknown varighlés ( and

OX).

oU (2

5, = 6—Fy =0
B oU B (3)

0, = oML C
S, = o (4)

oF.
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The solution to eqns (2)-(4) results in a closed-form expression fox-the
directed spring constant of the fixed-fixed meander suspension, which is given
by k, = 4F, / dx.

48E1, [(3G + b)n — b]

,hoever
o®n [ (3 + 4ib + b)n? — 2b(5i + 2b)n>t !
ke = (562 + 6iib — 9i?)n — 20?| (5)
48E1, 2 odd
a?n |(@ + bn® — 3bn + 2b|

whered = (I, /1) a. A similar procedure yields thedirected spring constant,
but in this caséx = 0, 8,=0, anddy is unconstrained.
48L1, [ (@ + b)n? — 3bn + 2b)
b? (332 + 4ab + b2)n® — 2b(50 + 2b)n+
ky = (52 + 66ib — 93%)n — 20?| (6)
48/?15 [(a~+ b)n — b] _ 1 odd
b2(n — 1) | (342 + 4db + b?)n + 332 — 17|
Simplified approximations for (5)-(6) can be found for langevhich is defined
asn>>3b/(@+h).

,noever

48L 1,
- a’(a+ b)n3 )
48F I, (8)

v~ 233 1 byn

The lateral stiffness ratidxy/ K., is proportional tan? for largen. Values
for the stiffness ratio can be approximated by the square of the spring length
divided by spring width,L(/ b)?, for b >> 3. Decreasing, alleviates buckling

due to residual stress in the fixed-fixed suspension. However, decreasing the
stiffness ratio can adversely affect the stability in comb-drive resonators.

Values calculated from the meander spring-constant expressions are com-
pared with finite-element calculations in Figure 3. The fixed parameters are:
165 GPay = 0.3,w, =W, =t=2pum, n= 6, anda = 10pm. The finite element
calculations are performed using ABAQUS [9]. Four 3-node quadratic beam
elements are used to model each span and connector beam. Spring-constant val-
ues obtained from nonlinear finite-element analysis are within 1.6% of the val-
ues found from linear analysis, since we restrict the simulation to deflections of
0.1um. The finite-element and analytic calculations match to better than 1% for
all geometries with sufficiently large span lengths. As the span length is
decreased, the flexure spring-constant approaches that of a non-linear fixed-
fixed beam suspension. The analytic calculationkpffor very small span

lengths b < 2 um) underestimates the spring constant by around 5% because
axial extensional stress in the flexure is neglected. The analytic calculak'gpn of
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Figure 3. Comparison of analytic meander spring constants (solid lines) with
finite-element analysis (points).

for span lengths below 20m substantially overestimates the spring constant,
also because axial stress is neglected.

C. Meander-Spring Effective Mass

An expression for the ‘effective mass’ of the meander spring in its fundamental
vibrational mode is derived by relating the total kinetic energy of the spring in
terms of an equivalent lumped mass at the end of an ideal massless spring. A
schematic of the first vibrational mode of a meander spring with a guided-end
condition is shown in Figure 4(a). The mode shape is approximated by the static
mode shape of a displaced guided-end beam of léngih shown by the dotted

line in Figure 4(a). Assigning the anchored end of the spring to the origin in the
x-y plane, the expression for the mode shape of the guided-end beam is

Xy)=A (y3 — 1.5Lyzj 9)

To calculate the total kinetic energy, the meander spring is broken up into dis-
crete S-shaped elements, as shown in Fig. 3(b). Each meander element consists
of a span beam, orthogonally connected at both ends to the connector beams of
lengtha/2. Each meander element is approximated as having rigid-body transla-
tion and rotation components whose magnitudes are linearly related to the mode
shape of the guided-end beam. This approximation is valid for sufficient num-
bers of meanders and small range displacement.

Translation and rotation of each meander element is defined at the center
of mass, withy-directed translation assumed to be negligible. Therefore, the
translational velocity of thé" meander element has an amplitudgy), pro-

portional to the mode shapeyat ia.

‘/x(y) = Wr X| (10)

y=ta
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Figure 4. (a) Finite-element simulation of meander spring connected to the
shuttle massMg, showing the undisplaced spring (dot-dash lines) and the first

vibrational mode shape (solid lines). The overall mode shape is approximated
by a guided-end beam mode shape (dotted line). (b) Discretization of meande
spring depicting the translation and rotation ofithrmeander.

wherew, is the resonant frequency. Likewise, the amplitude of the rotational

velocity, Q(y), of thei™™ meander is proportional to the spatial derivative of the
mode shape at=ia.

dX
Qy) = w, — (12)
dy y=ta
The maximum kinetic energy of the total mechanical system is
. 1 5 | > 1 >
Kna = 5 (Vo dphea) V7] +43 <§mm VY 500 ‘y:(i/z)
My, = phw(a+b) (13)
o= b (E 2
T Rt (14)

wherem,, andl, are the mass and the mass polar moment of inertia, respec-
tively, of one meander elemem is the shuttle massg, is the density of the

polysilicon beam, anth is the beam thickness. The maximum kinetic energy
can be rewritten in terms of the effective madsy, of the meander suspension.

1
K Fryax = 5 (Ms + Meff) sz

(15)

y=L
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where the effective mass is given by

nt—1 78n% — 105n° + 7n?% + 20
Mest = &l oz 3 + 2mm 10515

The fundamental resonance frequency is then found from Rayleigh’s method by
eguating the maximum kinetic energy with the maximum strain energy at reso-
nance. The resonant frequency is given by

+ 2phwa (16)

wr = k) (M, + Mer) (17)

3 Experimental Results

Ten polysilicon microresonators have been fabricated to verify experimentally
the analytic expressions ferdirected spring constant and resonant frequency.
Each of the resonators has a different meander suspension, labelled A through
L. The measured polysilicon thickness is 1. The rigid central shuttle is
identical for each resonator, and has a mass of approximately 25 ng. Both the
comb-finger width and meander beam width arepirg and the gap between
fingers is 2.2um. The theoretical lateral force coefficient is approximately 0.14

nN/V2, calculated from a two-dimensional finite-element analysis. Table 1 lists
the spring parameters for each design. Valuekfandky/k, are calculated
from eqns (5) and (6) using the measured beam thickness and width, and an
assumed value of Young’s modulus for polysilicon of 165 GPa.

Lateral resonant frequency from analytic calculations, finite-element anal-
ysis, and measurements are compared in Figure 5 and the values are listed in the

Table 1. Data for the ten experimental meander-suspension
microresonators, labelled A through L

nla b Ky k/ke | fr f; ffto
egn (5) eqn (17)| (FE) (measured)
[um] | [pm] | [N/m] [HZ] [HZ] [HZz]

10 63 81| 0.0146 28 304
10 65 64| 0.015¢ 4% 314
10 37 47/ 0.0727 29 737 7316 754847
10 38 37| 0.07571 46 763 7635 818342

D 3032 2697183
3
9
3
20 27 63| 0.0148 4 2908 2899 334899
4
l
P
’
1

3137  31¥255

N

PN N
A v~ L4 L4 A4

20 29 50| 0.014% 7! 295 2947 296259
20 16 37| 0.071% 4 705 7033 724372
20 17 29| 0.0722 73 724 7243 732875
10 22 28| 0.345 29 1700 17029 178¥®33
20 10 17| 0.356 74 1710 17130 1776024

| I Mmoo Ol ®m >




182 Microsystems and Microstructures

20 | _ i
E 18 L | *analytic /dFE } i
T 16| | #measure ]
3 14| ]
c
%)_ 12 t -
© 10+ -
= 8} i )
c
S 6l { } * B,
3 a4l )
g L3 & or " _

0 1 1 1 1 1 1 1 1 1 1

E F A B G H C D | L

Resonator layout

Figure 5. Resonant frequency for the ten microresonator layouts comparing
analytic and finite-element (FE) data with measured data. The layouts are
presented in increasing resonant frequency. Error bars on the measured data
represent3c variation across the wafer.

last three columns of Table 1. The analytic resonant frequency values found
from eqn (17) agree to within 0.3% of the finite-element values and are plotted
as a single data point on the figure. Resonant frequency is measured for three
devices of each resonator design to obtain the average and standard deviation
values in the last column of Table 1. The large standard deviation in resonant
frequency is due to the variation in beam width across the wafer. Calculated res-
onant frequency values are within 13% of the average measured values for all
resonators except for the resonator with the largest meanders (A). The calcu-
lated frequency of resonator A is well withio 8f the measured value, how-
ever. Neglecting the spring effective mass is a particularly bad approximation
for resonators A, B, E, and F, since the total beam length of each spring is
greater than 0.5 mm. Residual stress in the film has less than 1% effect on the
spring constants or resonant frequency of these structures, based on finite-ele-
ment simulations.

4 Conclusions

The set of analytic expressions for meander spring constants and effective mass
provides a rapid analysis of static and resonant behavior of meander-spring
microresonators. The 1% accuracy of the analytic models is much better than
the typical accuracy with which thin micromechanical beams can be fabricated.
Therefore, the models can be used to relate physical design and process toler-
ances to micromechanical performance specifications. However, the limits of
validity for these models still needs to be explored. Future work includes devel-
opment of spring-constant models for other spring geometries and for boundary
conditions other than the guided-end condition.
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