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Abstract

This paper describes the design and control of an efficient two-joint,
two-links flexible arm. This efficient arm was designed and built to
use most of the energy (provided by the motors) in performing the
tasks instead of moving the arm structure. The arm has most of its
mass concentrated at the tip and uses a special mechanical configu-
ration to decouple radial tip motions from angular tip motions. An
important problem when controlling lightweight flexible arms is the
large Coulomb friction of the motors. A two-nested-loop multivariable
controller is used to control the lightweight flexible arm with friction in
the joints. The inner loop controls the position of the motors while the
outer loop controls the tip position. The resolved acceleration method
is generalized to control this flexible arm. The compliance matrix is
used 10 model the oscillations of the structure and is included in the
decoupling/linearizing term of this controller. Experimental results are
presented.

1 Ihtroduction

This paper describes the design and control of a small two-joints, two-
links flexible arm that we have built in our laboratory, This arm oper-
ales in a plane on an air table. The arm is designed with exaggerated
flexibility to study the control of flexible structures and is very light
in weight compared to the mass placed at the tip (no mass placed at
the elbow joint). The objective of this research is to design efficient
and faster arms in the sense that most of the energy provided by the
motors is spent in doing the task (moving the tip mass) and very little
energy is wasted in moving the arm structure (unlike rigid arms).

To decouple the tip’s radial motions from its angular motions, a
special four-bar linkage. is used to drive the elbow joint from a motor
mounted near the base. The mechanics of the arm are described in
Section 2.- A.dynamic model of this arm that can be easily extended
o any n-degrees-of-freedom lumped-mass flexible arm is developed in
this section.

An important problem when controlling lightweight flexible arms is
the large Coulomb friction of the motors. A two-nested-loop control
scheme is used to control the arm. The inner loop controls the posi-
tion of the motors while the outer loop controls the tip position. The
method, which is the generalization of the control method described
in [1-3], is robust to changes in the dynamic friction and insensitive to
Coulomb friction. A generalization of the resolved acceleration method
[4] to the case of flexible arms is implemented in the outer loop. The
compliance matrix is used to model the oscillations of the structure and
is included in the decoupling/linearizing term -of this controller. Sec-
tion 3 describes the control scheme of the arm. Experimental results
are given in Section 4 and conclusions are drawn in Section 5.

2 Mechanical Issues
The flexible arm was designed to fulfill two mechanical specifications:
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1. The arm is very light in weight.

2. Radial motions of the tip are nearly decoupled from angular mo-
tions (if we neglect the vibrations because of flexibility).

In order to fulfill the first specification, the links were made of a
very lightweight wire (consequently having a significant elasticity) and
the motor which moves the elbow was placed close to the base of the
arm. A four-bar linkage was used to transmit the motion of the motor
to the elbow. To fulfill the second specification, the length of the two
links was made identical and the dimensions of the four-bar linkage
were specifically designed.

Subsections 2.1. and 2.2. study the kinematics and dynamics of the
arm under the assumption that it is rigid. Subsection 2.3. discusses
the flexibility effects.

2.1 Kinematics

Figure 1 illustrates the kinematics of the arm, neglecting its compliance.
The arm is composed of a four-bar linkage with pivots at points O, A,
B and ¢, and at the tip position P. Note that the length of link O-
A is twice tliat of link B-C' and the links O-C' and ('-P are of equal
length. With points O and A fixed (for the sake of studying kinematic
hehavior, otherwise, A is normally not fixed), it can be shown that the
tip describes a path very close to a straight line through the origin (0)
al an angle of 45 degrees to the X-axis. That is, as the radius to the
Lip (p) varies, the tip angle () remains close to 45 degrees. (49). The
point Fy is the ideal tip position assuming that

p = po = 2l cos(p — 45°). (1)

Figure 2 shows the normalized errors in the tip position as a func-
tion of the normalized tip radius (p/(2!)) for several values of parameter
« (afl). The value p/(2l) represents the percentage of arm extension
and has a maximum range of 0 - 1.0. For a typical value of a, say
0.2, we see from the plot that the deviations are quite small (< 1%)
in the range of 0.4 < p/(2l) < 0.8 and less than 5 % in the range
0.25 < p/(2l) < 0.9. Thus, by restricting the range of motion of the
arm, we can minimize the deviation from ideal behavior. This devia-
tion requires consideration for precise tip positioning, however, in the
kinematic calculations, the effects can be ignored with regard to system
dynamics. This can simplify dynamic calculations substantially.

This kinematic design provides a means of decoupling the two joint
actuators. We mount one of the actuators so that it drives link O-A
with respect to ground. The net effect is a tangential force at the tip.
We niount the second actuator so that it drives link O-C' with respect
to link O-A. Thus, it generates equal and opposite torques on the two
links and the net effect is a radial force at the tip. In terms of position
control, a displacement of the first actuator generates a pure tangential
motion while the displacement of the second actuator produces a pure
radial motion. The decoupling effects are based on the ideal (straight-
line) behavior of the arm, however, there will he some deviation from
this fully decoupled behavior, especially near the extremes of travel
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(p =0, p =1)of the arm. One consequence of this geometry is
that there is approximately zero coupling between the actuators, i.e.,
a torque at one actuator generates very little reaction torque at the
other. This simplifies control and possibly reduces energy usage of the
arm.

2.2 Rigid arm dynamics

In this subsection, the dynamics of the arm is developed assuming
that it is rigid. The links are assumed to be approximately massless. A
complete model that contains effects of the link compliance is developed
in the next subsection. Using Lagrange equations (or Newton-Euler

equations), we get
o
) ,rl((p7>+( )).

-pi?

25 (2)

F,
F’ﬁ
where F,, F, are the radial and angular forces applied to the tip, re-
spectively. (p,7) are the polar coordinates of the tip and m is the tip
mass. Because of the decoupling between the two motors and by ap-

plying the principle of virtual work, the torques T} and T, generated
by the motors can be written as

T\ 0 2! cos( ) F,
Ty, | =\ 2sin(y) 0 E, |

2.3 Compliance

(3)

For a system (4-joint, planar arm) that can be modelled as having all
of its mass concentrated at the tip. it is useful to think in terms of the
compliance at the tip. Control of the tip mass then becomes a matter
of producing deflections to generate the appropriate tip forces. This is
the two-dimensional equivalent of deflecting a spring to generate a force.

It can be shown that the compliance (or stiffness) of a linear, two-
dimensional system can be defined by two. orthogonal stiffness values
[5]. The general relationship between forces and displacements is given

()

where F,. and F, are forces applied to tip: éx and éy are tip deflec-
tions; and k; ; are stiffness coefficients. The question now arises as to
how to find the relationship between forces and displacements, i.e., the
stiffness matrix at the tip. For simple systems. these values can be cal-
culated. For more complex systems or for confirming analytical results,
we can deduce these from observations of the natural frequencies of the
mechanical system. The stiffness matrix will, of course, vary with the
configuration of the arm, in particular, with the extension (p) of the
arm. Note that we have defined the stiffness matrix with respect to
coordinates X — Y aligned with the base-to-tip vector. We do this so
that the stiffuess matrix depends only on the variable p. Thus, a coor-
dinate rotation is needed to transform to world coordinates. For use on
a digital computer, tabular storage of stiffness parameters is indicated.

kl,‘)

P (4)

The first approach involves calculating stiffness parameters for indi-
vidual links and then combining these through appropriate force/moment
analysis. The stiffness parameters can be defined either in terms of
principal stiffness vectors (magnitude and orientation of the principal
stiffnesses) or in terms of the stiffness matrix. In either case, three
values are required (for any value of the extension, p) and these values
will be referenced to the coordinate axis aligned with the base-to-tip
radius vector. Performing the analysis for our particular arm with its
four-bar linkage, we get the following compliance matrix C', which is
the inverse of the stiffness matrix described in expression (4)

621 _ €11 €12 F,—
Sy | T \e2a 22 F, )’

(5)

where

_ Psin’(e) ke
"l,l———ke_(l“"lkfb) (6)
€12 = 21 = 2 sin(y) cos( )/ ke (7)
22 = I cos (@) / ke, (8)

and ky, ke are the individual stiffnesses of links O-C' and C-P respec-
tively. Notice that the stiffness of link A-B does not appear because
this link is not subjected to bending. only tension and compression.
Figure 3 shows the calculated stiffness vectors for various configura-
tions of the experimental arm. While it may be more convenient for
control purposes to store values of the stiffness matrix, the vector plots
give a readily understandable picture of the stiffness characteristics.
Double arrowheads in Figure 3 indicate vectors extend beyond avail-
able space.

The dynamic model of a two-degrees-of-freedom lightweight flexible
arm with the mass concentrated at the tip can be represented by the
scheme of Figure 4 using the stiffness/compliance matrix. This is a
generalization of the dynamics of the rigid arm case (rigid arm dynam-
ics are a block in this diagram). In this figure, J is the jacobian of the
rigid arm kinematics that relates motor velocities to tip velocities (in
our particular arm, in polar coordinates), Tr is the matrix of expression
(3) that transforms tip forces into motor torques, F is the tip force,
P is the tip position and ©,,, are the corresponding joint coordinates
(actuator coordinates) assuming that the arm is undeflected.

3 Control issues

3.1 General scheme

Our armn presents two special problems that most other arms do not
have: a large Coulomb friction in the joints and flexibility in the links.
This requires the design of a special controller which is described in
this section. We use four measurements to control this arm: a track-
ing camera gives the tip position in cartesian coordinates (z,¥) and
two potentiometers mounted on the motors to give the motor position
{joint angles). Because the arm has been designed in such a way that
its rigid dynamics are neatly decoupled in polar coordinates, we will
use these coordinates for the tip position control. Transformation to
polar coordinates from cartesian measurements given by the camera is
straightforward and does not introduce any error because it does not
use any kinematic parameter of the arm.

In order to remove the effects of joint Coulomb friction and of time-
varying dynamic friction, a two nested multivariable loop control struc-
ture is proposed. An inner loop is closed around the motor to control
the joint (motor) angles and then an outer loop is closed that controls
the tip position. The general scheme of this control structure is shown
in Figure 5. The inner controller uses the errors between the actual
(0,,) and the commanded motor positions (©nr) and generates con-
trof signals which are the currents for the two motors. The outer loop
hasically uses the errors between the actual (P) and the desired (F;)
positions and generates control signals which are the command posi-
tions for the motors of the inner loop. This scheme is the generalization
of a control scheme that is robust to friction [1-3].

As a result of the procedure for controlling the motor position de-
veloped in the next subsection, we can describe the dynamics of the two
closed-loop motors as two decoupled time invariant linear systems. If
we use Ligh enough gains in the controllers of these loops, the dynamics
ol these systems can be made much faster than the dynamics of the
arm and, therefore. can be neglected in the design of the tip position
control loop. This greatly simplifies the design method.

3.2 Motor position control loops

The control scheme described in [1-3] is used for the control of motor
position. Let the dynamics of each motor be described by
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&0, by
ar dt
where K is the electromechanical constant of the motor i, i; is its
current, J; is its polar moment of inertia, V; is its dynamic friction
coefficient, C't; is the coupling torque between the ith motor and the
mechanical structure, CF; is its Coulomb friction, and the subindex
i = 1,2, designates the motor. To compensate for Coulomb friction
and the coupling torque, two feedforward terms were added to the
current, #;, generated by the motor position controller,

Kii; = J; +V; + CF; 4+ 4, (9)

i; = 1; + (CF; + Ct;)/ K. (10)

The first term linearizes the motor system by compensating for Coulomb
friction (which is nonlinear) and the second term decouples the dynam-
ics of the motor from the rest of the arm. We assume that Coulomb
friction is of the form

CF{t) =t | CF,| (11)

where the sign is that of the motor velocity. The Coulomb friction com-
pensation term is generated by knowing the amplitude of the Coulomb
friction and by estimating the actual velocity of the motor from posi-
tion measurements.

To generate the decoupling term, the coupling torque Ct may be
obtained directly from the measurements of the strain gauges placed
at the joints or can be estimated from the actual deflection of the arm
obtained from the measurements of the motor and the tip position.

It was shown in [1-2] that closing the motor position loop with
high gain controllers makes the system less sensitive to perturbations
(caused by an imperfect compensation of the Coulomb friction) and to
time varying parameters (dynamic friction coefficient). A discrete P.D.
controller of high gains was designed so that the response of this loop
(motor position control) is significantly faster than the response of the
outer loop (tip position control) and without any overshoot. It was
shown in [1-2] that, in theory, the gains can be made arbitrarily large
even if the arm is a non-minimum phase system. Practical limits to
these gains are given by the saturation current of the D.C. motor am-
plifier. Summarizing, we want to achieve two objectives when designing
a controller for the motor position:

1. Remove the modeling errors and the nonlinearities introduced by
Coulomb friction and changes in the coefficient of the dynamic
friction.

2. Make the response of the motor much faster than the response of
the tip position control loop (outer loop in Figure 5).

These objectives are accomplished by
1. A feedforward term that compensates for Cloulomb friction.

2. A feedforward term that compensates for coupling torque be-
tween arm and motors.

3. Closing a high-gain feedback loop which increases the robustness
of the system and speeds the motor response.

The fulfillment of the second objective allows us to substitute for
the inner loop an equivalent block whose transfer function is approxi-
mately equal to ‘1°, j.e. the error in motor position is small and quickly
removed. This simplifies the design of the outer loop as will be seen in
the next subsection.

3.3 Tip position control loops

In this section, a method to control the tip position of the arm is de-
scribed. In what follows, we assume that the dynamics of the motor
position loops (inner loops) are negligible compared to the dynamics of
the arm. If this assumption holds, the arm dynamics may e cancelled
using the scheme described in Figure 6. This scheme transforms the
arm dynamics into two decoupled double integrators and, therefore.

can he considered an extension of the resolved acceleration method (4]
to the case of lightweight two-link flexible arms. Once the system has
been reduced, two independent P.D. controllers may be designed, one
for each coordinate of the tip position. A feedforward term is added
to avoid delays when following a trajectory and some integral action is
included in the controllers in order to remove small errors due to non
exact modelling of the arm kinematics.

The dynamics-cancelling scheme has the following components:

1. A positive feedback loop that uses the motor position calculated
from the tip position assuming that there are no deflections in
the arm (inverse rigid arm kinematics).

2. The inverse of the jacobian of the rigid arm kinematics. This
component transforms the deflections expressed in terms of the
tip position (difference in the tip position between the deflected
and the undeflected arm for given motor angles) into deflections
expressed in terms of motor position (difference in the motor
position between the deflected and the undeflected arm for a given
tip position).

3. Compliance matrix that relates the forces needed at the tip to
move the mass as we want with the deflections needed to achieve
this.

4. The inverse dynamics of the rigid arm (model (2)).

Notice that. in this procedure, we are cancelling, block by block, the
arm dynamics expressed in Figure 6 (we exclude motor dynamics that
have already been cancelled by the inner loop). A scheme equivalent to
Lhis one was developed in [2-3] for single-link lightweight flexible arms.
Because we use a special configuration that decouples radial from an-
gular motions, components 1 and 2 of the cancelling scheme are very
simple: #,,1 may be approximately expressed as a linear function of 7]
and 8,,, as a linear function of p in component 1; and J is a constant
diagonal matrix in component 2.

Finally. it should be mentioned that this scheme can be easily ex-
tended to lightweight flexible arms of n-degrees of freedom.

4 Experimental results

4.1 Apparatus

We have designed and built an apparatus to enable real-time control
experiments with a two-joint. planar arm. As shown in Fi igure 7, the
apparatus comprises of an air table, an arm with a tip mass, two ac-
tuators and joint sensors camera for tracking position of tip-mounted,
infrared LED and control computer.

The mechanical system was designed to closely approximate the be-
havior of the ideal system; i.e., the arm is very lightweight, carries an
effective point mass at its tip and has minimal friction and backlash.
The arm is constructed from music wires, .047 inch and .063 inch in
diameter and has a total mass of about .045 Ib . The tip mass is a
disk that floats on the air table and has a pivoted connection so that it
dues not generate torques on the tip of the arm; thus it appears to the
arin as & wass concentrated at the tip. Tip inass is adjustable by using
different disks, but is typically 0.12 1b m. The tip mass is substantially
greater than arm mass and, hence, a lumped-mass model is reason-
able. Small ball bearings used at the three passive joints of the arm
minimize friction. Tests have shown that the friction on the air table
have negligible effect on the behavior of the system. The dimensions
of the arm are: I = 9 in., 0-4 = 3 in.. and B-C = 1.5 in. A strut was
connected between the middle points of bars A-B and (-0 in order to
prevent buckling in link A-B and to minimize the deviation from ideal
behavior due to unequal bending in the two links.

. . - . , .
Joint actuators are DC' torque motors. An Intand QT-2404B mo-
tor, rated at 36 1b in. peak torque. drives the base link (O-A) directly.
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A second wotor. Inland model QT-1207D, rated at 1.25 Ib in., rides
on the base link and generates torque hetween the base link (O-4)
and first link (O-C'), through a 3:1 gear reduction. Torques available
from the motors are greater than the bending strength of the arm. so
torque limits are not a factor in the tip-control servo. Motor response
is generally fast compared to the tip response although this is affected
by amplifier current limits which are adjusted in the range of .5 to 4
amps. One Inland model EM19-48030-B01 linear current amplifier is
used for each motor. Experiments showed that Coulomb friction at the
motor joints is considerable. so our method is especially appropriate
for the control of this arm.

Three sensors are provided for control: one for each of the two joints
and one for the tip. Joint sensors are single-turn potentiometers con-
nected directly to the motor shafts: a 2 in. unit for the larger motor
(QT-2404) and a 7/8 in. unit for the smaller. A Hamamatsu tracking
camera, model PSD, with infrared passing filter. provides £5v signals
for the .r and y positions of an LED attached to the tip. Range of travel
within the field of view of the camera is between 7-15 in.
and about £ 4 in. on Y-axis.

on X-axis

A Sun/Ironics computer system provides for real-time control. pro-
gram development. and data display and analysis. The system includes
a Sun 3/160 workstation and Ironics 1V3201 C'PU connected via the
Sun VME bus and Ironics IV1645-01 A/D and [V1640-01 D/A boards
provide analog input and output. The Sun provides a networked Unix
environment for program development, interface with the the real-time
control hardware. and the storage and display of data. Control pro-
grams are written in ‘(" and compiled to run on the Ironics CPU under
the C‘himera operating system developed at CMU for real-time con-
trol. C'himera provides process scheduling and control primitives that
facilitate real-time control programming while emulating many UNIX
utilities for programming convenience.

4.2 Identification

The dynamics of the arm was divided (for modelling and control pur-
poses) into two submodels: motors submodel and mechanical structure
submodel. These submodels are coupled by the torques at the two mo-
tors. 1t has been shown that this way of modelling flexible arms has
some advantages over other methods when dealing with arms with large
Coulomb friction in the joints [1-3]. In our identification procedure, we
follow this approach and identify both submodels separately.

4.2.1 Mechanical Structure

The experimental method described in Subsection 2.3 is used to iden-
tify the dynamics of the mechanical structure. The two motors are
immobilized, the arm is deflected by applying an arbitrary force to the
tip and then the tip is released. The oscillation produced at the tip
has two orthogonal components of different frequencies as was stated
in Section 2. They were measured experimentally and agreed with the
theoretical analysis (5) - (8). In order to find the two vibrational modes
and their directions, we used the following technique:

L. Record the z-y motion of the tip.
2. (‘alculate the Fourier transform of these two signals 2(t) and y(t).

3. The spectral analysis shows that X (w) presents two peaks xy and
&y at frequencies wy and wy; and Y(w) has other two peaks y;
and y, at the same frequencies w; and w; as X(w). w; and w;
are the frequencies of the two vibrational modes. The directions
of the axes of oscillation are calculated from the expression:

Yi

y; = arctan(—) = 1.2.

(12)
€

This procedure is repeated for different arm configurations (different

p). Fourier transforms are obtained using the FFT routine of the

MATRIX, (a CAD package for analysis and simulation of control

systems). Experimental results for our arm are given in Table 1.

p(in.) w; (Hz.) vy (deg) w2 (Hz.) w2 (deg) Ky (in. Ib) k. (in. 1b)
10.1 0.6514 13.7781  2.1983  106.1437 11.57 6.14

10.55  0.6839 143237 2.4332  102.3821 123 6.54

11.0 (1.6R39 15.3966  2.0844 104.9338 11.6 6.58

11.6 0.7328 17.2057  1.9866  103.7644 129 6.77

12.2 0.7491 19.0925  1.9215 1041487 125 6.82

12.6 0.7653 20.9127  1.9052 1114644 12,5 6.87

13.0 0.7816 22.6677 1.90 112.6137 123 6.99

13.6 0.7979 26.173 1.9215 116.3932 11.9 7.0

LLO  0.7979  28.5903 1.8889  119.2472 11.3 6.75

Table 1. Experimental vibrational modes.

The stiffuesses of the single links &, and k. are calculated using the
following procedure:
I. Calculate the compliances ¢, and ¢, in the principal coordinate

axes using the expression

1 1
nwf ’

= = —7.
mwz

2. Caleulate matrix €', from ¢, and ¢,. This is done by performing
a matrix transformation that corresponds to rotating an angle ¥
about the main axes.

3. Calculate ky and k. from expressions (10)-(12).

These experimental results show that the values of ky and k. are
quite consistent, hence their average values, ky = 12.1 and k. = 6.7,
will be used in the control. Notice that hoth modes are approximately
orthogonals: ¥ = ¥y + 90.

Finally. in order to complete the verification of our theoretical
model. we took out the strut between bars A-B and C-O (to sim-
plify the model and the verification) and repeated the experiment for
one configuration. The following results were obtained

p(in) wy (Hz.) ¢y (deg) wz (Hz.) v (deg) Ky (in. 1b) k. (in. Ib)
10.55  0.6I8%  11.5842  2.003 100.6535 9.09 6.39

The theoretical individual stiffnesses were calculated for this case,
using our massless flexible arm model. and they were: 9.02 in. 1b and
6.63 in. Ib. which agreed with the result of this last experiment. All
these results confirm the assumption of arm with massless links and
joints. with all its mass concentrated at the tip.

4.2.2 Motors Parameters

In order to identify the motor submodel. the mechanical structure
(finks) was taken out from the motors. As a result, the coupling torque
botween motors and arm was zero ((t; in expression (10)) and the mo-
tors could fun freely. In what follows. the parameters of the second
motor (which has some reduction) are not given in motor terms but in
joint terms.

First. we identified the Coulomb friction (‘F; by measuring the cur-
rent at which the motors start to move and their values are: 0.12 amps.
for the first motor and 0.16 amps. for the second. Once the values of
the Coulomb friction are obtained. we are able to approximately com-
pensate for the Coulomb friction by adding a term to the current with
the estimated absolute value and the sign of the motor velocity as was
described in Subsection 3.2.

After compensating for the Coulomb friction, the remaining dy-
namics of the motors are linear and can be identified by any of the
standard techniques. The model is now given by

Onils) _ %"’

fils)  sls+ 3

The parameters that remain to be identified are the motor inertia

i=1,2. (13)
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Ji and the dynamic frictions V;. The electromechanical constant of the
wmotors Ii; are obtained from the catalog. .J; and V; are estimated from
the frequency response of the system.

4.3 Control
4.3.1 Motor control loop

After compensating for the coupling torque and the Coulomb friction,
controllers for the motor position were designed so as to make the
response of the motors as fast as possible, but without having any
overshoot. Limits in the velocity of response were given by the ampli-
fier current limits, which were 4 amps. for the first motor and 2 amps.
for the second. A sampling time of 3 msec. was used for the inner loop.

To test the motor control, the tip was kept in a fixed position (12
in. or 0 mrad in the polar coordinates) and steplike position com-
mands were generated for the motors. The commanded positions for
the motors were such that they would have placed the tip in positions
between 10.82 in. (-50 mrad) and 13.18 inch. (50 mrad) if the tip
had been free. Because the tip was fixed at an intermediate position,
the arm experienced substantial bending when the motors tried to fol-
low these trajectories and the coupling torques ('t; were significant.
Figure 8 shows the motor responses obtained in this experiment us-
ing the control scheme of Subsection 3.2. The responses have nearly
zero steady-state error which shows the effectiveness of the coupling
torque and Coulomb friction compensation. The settling time is about
80 msec in both motors. This means that the time constants of the
motor control loops are about 20 msec. These dynamics are signif-
icantly faster than the dynamics of the mechanical structure {modes
of vibration), confirming the assumption that the inner loop dynamics
are negligible.

4.3.2 Tip control loop

The scheme of Figure 6 is used here to control the tip position. The
motions are directly commanded in polar coordinates so the first block
of this figure that transforms the position from cartesian to polar co-
ordinates is not needed. Second order paraholic profiles are used as
reference trajectories. so the reference p, describes a parabola and so
does 4,. The sampling time for the tip position control loop is also 3
msce, same as the motor loop.

Experiments to control the tip position were carried out using the
complete scheme of Figure 6. The arm was moved from the point 10.82
inch. (-100 mrad) to the point 13.18 in. (100 mrad) and vice versa at
high speed (to go from one position to the other in 0.4 sec). Responses
are shown in Figures 9 and 10.

5 Conclusions

Lightweight arms have the advantages that they are easy to move and
are more efficient than the heavier arms because very little energy is
wasted in moving the arm structure. In turn, these arms usually exhibit
some flexibility phenomena. that cause nearly undamped oscillations to
appear in the mechanical structure during the motion.

A two-degree-of-freedom, planar. very lightweight flexible arm was
designed, built and controlled in our laboratory. A simple dynawmic
model was developed for this arm that is based on two submodels: one
that describes the motors, and the other describes the mechanical struc-
ture. The two submodels are coupled through the torques that the link
generates on the motors. A control scheme that is robust to changes in
the dynamic friction of the motor and that removes the effects of the
Coulomb friction is used to control the tip position of the arm. This
control scheme is based on very simple concepts and each term of the
controller is designed to perform a specific function: terms that cancel
Coulomb friction, terms that decouple the motors from the arm, inner
loop control scheme to make the motor response fast, cancelling terms
for the mechanical structure dynamics, feedforward term for the tip

response, etc. The experimental results show that the performance of
the control scheme is quite good.

The control scheme is hased on the assumption that motor dynamics
are much faster than mechanical structure dynamics. This assumption
must be satisfied before closing the tip position loop. The decoupling
hetween radial and angular motions achieved by the four-bar linkage
simplifies kinematic considerations. but is not a necessary condition of
this control method. Finally, this method may be easily extended to
lightweight flexible arms with any number of degrees-of-freedom.
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