Proceedings of the
IEEE Intelligent Vehicles Symposium 2000
Dearborn (M!), USA « October 3-5, 2000

Multi Agent Collaboration Using Distributed Value Functions

Enrique D. Ferreira

Institute for Complex Engineered Systems
Carnegie Mellon University
1201 Hamburg Hall
Pittsburgh PA, 15213-3890
edf+@cmu.edu

Abstract

In this paper we present the use of distributed value func-
tion techniques to reach collaboration in a multi-agent sys-
tem. We apply this method in two different simulation en-
vironments: a mobile robot planning/searching task and
an intelligent traffic system in an urban environment. In
the case of the intelligent traffic system, results show an
improvement with respect to a standard fix-time controller
and local adaptive controllers. Trajectories for optimal
search in an obstacle environment are obtained in the mo-
bile robot case. Some variations to the actual algorithm
are pointed out to suit our cases. We conclude discussing
our future work.

Keywords Reinforcement learning, distributed system,
mobile robot, traffic control.

1 Introduction

A significant part of real-world problems are difficult to
solve because of their complex behavior and interactions.
Other set of problems are difficult just because of their size.
A logical approach is to partition a large problem into small
ones that may be more manageable. However, that is not
so simple to do when there is strong coupling between the
subsystems. Adaptive and learning controllers may be able
to model the interactions and generate useful responses.
Reinforcement learning [8] (RL) is able to do just that by
looking at the reaction of the environment to the actions the
controller applies. Still, standard RL needs to work with
the complete state space. In [6], a method to distribute re-
inforcement learning knowledge through different agents
is introduced, called distributed value functions, and ap-
plied to a power grid system. In this paper we analyze
some of the results of the algorithm introduced and present
the application of the distributed value function idea to two
different applications related to inter-vehicle communica-

0-7803-6363-9/00/$10.00 © 2000 IEEE

Pradeep K. Khosla

Electrical and Computer Engineering Department
Carnegie Mellon University
1106 Hamerschlag Hall
Pittsburgh PA, 15213-3890
pkk@ece.cmu.edu

tion and coordination and intelligent traffic systems. These
are two very active areas at the moment. Large cities have
been presenting traffic problems since quite some time [1].
A centralized approach to monitor and control is widely
used but as systems becomes more complex and increase
in size, scalability becomes an issue not easily solvable.
Inter-Vehicle communication has been pushed forward due
to its technical feasibility in the near future {4, 7] and its
potential benefit, taking part of the burden out of large in-
frastructure investments, from military applications to the
common everyday driver.

This paper is organized as follows. Section 2 explains
the distributed value function approach and algorithms. In
section 3 a multi-robot and a intelligent transport system
example are developed in simulation to illustrate the al-
gorithms. Finally, section 4 summarizes our results and
points out future lines of research.

2 Distributed Value Function

We are considering problems that have a large state/action
space, making a distributed control solution desirable or
even necessary. If reinforcement learning is also appropri-
ate, the option of using distributed value functions may be
selected.

The standard reinforcement learning framework [8] con-
siders a system interacting with its environment by apply-
ing actions from a (finite) set 4 and getting a reinforcement
signal R back. The value function at state x € X satisfies
the Bellman equation:

V(x) = max(R(x,a) +y 2 p(¥ix,a)V(¥)) (D
acA YEX

where V(x) is the value function at state x, y is a discount

factor and p(’ |x, @) is the state transition probability func-

tion. The solution to this equation corresponds to the op-

timal value function and is given by the expected value of

the discounted sum of future rewards for the optimal policy

404

Im: X — 4by

V() = E (g'fR(x,,a,)> @

In the case of a distributed system, such us multi-robots
environments, with weak coupling between the different
agents in it, the state space could be partitioned making a
distributed representation of the reinforcement algorithm
more appropriate. The distributed system S can be rep-
resented in the following way. Let S be composed of N
agents. Each agent C; have access to a subset Xj of the state
of § and can apply actions in a subset 4 receiving a local
reward R;. In order to coordinate the actions of the different
agents, certain information is passed between neighboring
agents. Let the Distributed Value Function V;(x) for agent
C; at state x € X be defined by:

Vilx) = max (Ri(x,a) +

+YX fij Y, pX v a)Vi() €)

J xex

where f;; are weighting factors for the value function at
neighbor agent C; over agent C;. Figure 1 illustrates the
idea of distributed value functions. The recursive nature
of the equation allows non neighbors to interact making
the solution optimal in a non-local sense. For the optimal
policy, it can be shown that (3) is equivalent to the algebraic
system

A N

w TN)
N BTN

N\ Y&

Figure 1: Idea behind distributed value functions.

(I=¥flly)Vi = Ri+vD fifll;;V; (4)
J#I

for all i, where V; is a vector stacking the values of V;(x;)
for all x; € X, R} stacks the local reinforcement signal for

the optimal policy and IT;; is the transition probability ma-
trix for neighbor agent j given agent i state/action pair.

To handle the problem of having only access to local infor-
mation Schneider et al. [6] proposed the use of Q-learning
to compute V;(x). The algorithm first computes the Q func-
tion, dependent of the state/action pair,

Qi(xi, ai) + (1—0)Qi(xi, 1)+
+ o(Ri(xi,ai) +YZﬁjVj(J‘4))
J

where o is the learning factor. The value function for agent
C; is given by

Vilx) = g&?)(Qi(xi,a) ©)

For the optimal policy, after substituting (5) into (6), as-
suming f;; = f for all i and doing some manipulation, it
can be shown that

Vitx) =Y, YV, J)R (x5, a5,) ©)

j =0

is a solution for (6). It means that the distributed values
maximize a weighted sum of future rewards over all agents.
The weights depend on the coefficients f;; selected before.
Furthermore, if f;; is symmetric, the sum of all V; will be
an equally weighted sum of discounted future distributed
rewards over all the system. It remains to show the con-
vergence of the Q-learning algorithm and the convergence
of the value functions to (7). Also, the influence of the se-
lection of the weight coefficients needs to be addressed to
try to find the optimum set of coefficients to improve the
solution.

3 Experiments

The distributed value function control algorithms have
been implemented using a multi-agent software architec-
ture developed by Carnegie Mellon University Advanced
Mechatronics Laboratory (AML) group called Port-Based
Adaptable Agent Architecture (PB3A) [3]. PB3A is a Java-
based programming framework that aims to facilitate the
development and deployment of self-adaptive, distributed,
multi-agent applications. This distributed, multi-agent ar-
chitecture allows systems to be created with the flexibility
and modularity required for the rapid construction of soft-
ware systems that analyze and dynamically modify them-
selves to improve performance. This architecture provides
user-level access to the three forms of software adaptabil-
ity: parametric fine tuning, algorithmic change, and code
mobility. PB3A has been developed basically for mobile
robot systems but its flexibility makes it easy to adapt to
other multi-agent systems like intelligent traffic monitor-
ing and control.

405

3.1 Urban Traffic Control

Using PB3A, the Q-learning approach to compute dis-
tributed value functions is implemented for a basic intel-
ligent transportation system. In a urban traffic situation,
adaptive traffic light systems are usually setup using global
optimization algorithms. Here, we apply the distributed
value function idea to compute the signal changes for each
intersection controller. For each intersection, the local state
consists of the signal group values, the number of vehi-
cles in each lane coming to the intersection and the times
since the last signal change for each signal group. The re-
ward chosen is the time the vehicles are waiting for the
green light. We should note here that, with this reward, we
should use min instead of max in (6). Nevertheless, all the
previous results are valid without any special changes. For
comparison purposes different types of intersection con-
trollers were designed: fixed-time controllers, periodically
switching between red, yellow, and green lights; adaptive
controllers based on local probabilities and queues; and the
distributed value function controller using Q-learning tech-
niques.

Figure 2: Road Model of Penn-Circle area.

The controllers are applied in simulation to a small section
in the urban area of the city of Pittsburgh PA, called Penn
Circle. The application came as a result of a collaboration
in a Community Project to improve the traffic in the area.
Penn-Circle is a four-lane, counterclockwise ring that con-
stitutes one of the main passages for drivers coming from
the eastern suburbs to get to downtown Pittsburgh.

The construction of Penn-Circle improved the traffic to
downtown but caused heavy damage to the businesses in

the area and completely changed the status of the neigh-
borhood in a relative short period of time. Besides, due
to the increase in traffic volume over the years, conges-
tion problems are occurring in specific areas of the circle
at peak hours. The congestion situation needs to be studied
together with a major restructure to revive the area.

Our goal is to study the traffic patterns and current

intersection-controller quality compared to more advanced
controllers. With PB3A, it was possible to deploy the
whole system very quickly and connect it with the traf-
fic simulator ARTIST developed by Bosch [5]. Figure 2
shows the road model of the Penn-Circle area developed
in ARTIST, with the locations of the main signal lights.
Figure 3 shows a sketch of how the different blocks of
the overall system are connected together. Seven intelli-
gent intersection controllers are used. Each of them com-
municates with their topological neighbors. To simulate

Protocol
Interface

Comm ontroller

16 18

Figure 3: Simulation system diagram.

the traffic in the system, vehicle counts data provided by
the City of Pittsburgh Dept. of City Planning and Trans
Associates, Inc., are used to generate origin-destination
matrices for morning and evening rush hour times. Ve-
hicle paths are computed when each vehicle is initialized,
varying between shortest path and shortest estimated time.
The simulator may also recompute the path dynamically
if some conflict arises because of congestion or incidents.
Fix-time optimal signal changes were developed using the
traffic data gathered. A local decentralized adaptive con-
troller developed together with ARTIST {5] for the city of
Oberhausen, Germany and adapted to Penn-Circle is also
employed for comparison purposes.

Q-learning is applied until convergence of the distributed
value functions. ARTIST is run on a Sun Sparc 20, dual
processor while the PB3A Q-learning algorithm is run on
an Intel 400 MHz dual pentium running RedHat Linux.

406

The process took about 10000 simulations of 15 minutes
of traffic. The discount factor y = 0.95 and the learning
coefficient o is setup initially to 0.15 and decay over time.
The weight factors f;; are setup to compute the average
of the value of each agent and its neighbors. After train-
ing, test is done with the learned policy and compared to
the performance of the other controllers mentioned above.
Figures 4 to 6 show the results. Both adaptive controllers
outperform the fix-time controller. reducing the traffic vol-
ume in the system and improving the number of stops a ve-
hicle makes in its way through the area. PB3A distributed
controller does a better job than the adaptive controller in
reducing the network vehicle density at the cost of the per-
centage of stopped vehicles.

25 T T T T T

Net Density (veh/lane.km):

g NN
N e !
B

] : ; 1 — adaptive
! : : : -+ fix-time
: 5 i i |- pb3a
0 i i i i :
0 500 1000 1500 2000 2500 3000

time (secs)

Figure 4: Traffic density over time.

08 T T ! T I
: : . N — 38
:, : b R — ggapﬁve
07k :},}r' o : o :H““ g === fix-time |4
R E AR ;:EH(,}H'“,.'H,":IJ'
RN EENRR SRR RN TR R ERERRE RSN
O-SI;ql ,u,.,‘;,.,v:ul',trin.x '-’:" R “h: i ik
Mag bovou g g Mk t AT sl Ay
i Tt b X 0 iﬂ.;‘.a i :,'uh.l'.",i‘:.'. et ‘,,: mm-n ﬂ'wln'
05 -#n,ili. i "i’{‘l (- :"ll,l\l':.;’::“i':n ':’I’ulh,n' Mhlu ..|¥|':ﬁ HE ,4 ity .:u ll:,l l‘n “' d
1 [T Iy |
’n '“:’;!H,P'\'\ Hoy ;“ ! !, P
!

Iv
II|I'|I’I ! ;'\ | t

FERG ORI 1 IS e d
""',” : { !f' :

0 500 1000 1500 2000 2500 3000
time (secs)

Figure 5: Percentage of non-moving cars over time.

450 T — — T T
. #non-moving vehicles :

400f e

300,
250} |* * pb3a

+ o+ flx—tlme
P adaptlve

Ob e K / . H i
0 100 200 300 400 500 600
#vehicles

Figure 6: Vehicle distribution.

3.2 Multi-Vehicle Planning

In the case of the mobile-robot system, PB3A is interfaced
with RAVE [2], an environment to combine real and virtual
robots also developed at Carnegie Mellon University AML
group.

To illustrate the distributed value function approach we se-
lected a team search and rescue mission. Given an area,
a team of mobile robots have to coordinate its movements
to search for a party within the area in the minimum time
possible.

Each robot knows its position, its sensor range and the
means to recognize the searched object. It is also assumed
that all the robots have a rough map of the environment in
which they are performing the search mission. The actions
are the possible movements of the robot (forward, back-
ward, left and right turns). The reward signal is the new
area covered by the robot in its movement. An additional
negative reward would be issued for bumping into other
objects.

However, this case is a little different from the standard al-
gorithm shown in the previous section because the reward
for agent i, the new area covered by the robot in its tra-
jectory, depends on the relative position to its neighbors.
It can be thought as a global reward, hence not fully dis-
tributed. To maintain the decentralization the communi-
cation between neighbors must include the value function
plus their positions or range information to be able to com-
pute the intersection of their sensor ranges. To keep the
same framework we augment the local state by adding the
neighbor states. There is still another detail to take care
of. We must use a window of values to keep track of re-
cently visited states. Further augmenting the state space
also takes care of the mathematics although increasing the

407

size of the problem.

To train the team, for every trial, an object to be searched
is randomly generated. The team is randomly setup on the
location as well. Trials end when the searched object is
localized. Each virtual robot is modeled to simulate a Pio-
neer I robot as shown in Figure 7. Different environment

Figure 7: Pioneer II robot.

configurations are trained and tested from a room with dif-
ferent obstacle locations to a hallway next to the lab. Simi-
lar values for y and a to the previous example are used. In
the case of a real robot, vision algorithms are used to de-
tect the searched object, in this case another robot. Figure 8
shows the hallway problem while Figure 9 displays a room
with obstacles, both described in the RAVE environment.

T WartdVises, Cliservert

Porter Hall
B Level

Figure 8: Hallway environment in RAVE observer window.

Figure 9 shows a possible set of trajectories established by

the robots after training. It should be noted that the robots

‘performed different trajectories over time. This dynamic

variation may result in greater adaptability to changing en-
vironments.

This approach to the problem constitutes an alternative to
the usual planning techniques for mobile robots that in-
volve the design of check points, where robots have to ro-
tate in order to cover an area. It should also be noted the in-
crease in the information exchange between robots needed
to be able to formulate the problem in this context. It may
constitute a drawback, but in most cases the extra location
information is usually transmitted between robots for other
purposes.

The combination of RAVE, PB3A and the Q-learning al-
gorithm allows the system to derive the team strategy in
simulation, faster than real-time, and switched to the real
robots once training is done.

¢ Worldview® Obseivest

1
:
H
;

Figure 9: Trajectories determined by the Q-learning algo-
rithm for 2 robots in a room environment with sparse ob-
stacles.

4 Summary

A decentralized Q-learning algorithm to compute dis-
tributed value functions is analyzed. It is shown that the Q-
learning algorithm has a solution that is a weighted sum of
future discounted rewards over all the agents. Two exam-
ples are shown: urban traffic control systems and mobile
robot planning task. Its power comes from the capability
to partition the larger problem into smaller ones but still
being able to make local decisions with a global perspec-
tive. Parameter selection and convergence issues need to be
addressed. This approach is specially suitable for cooper-
ation between teams of similar agents. For heterogeneous
systems, hierarchical architectures need to be studied. The
dynamics of the adaptability of the planning trajectories of
the mobile robots generated by this approach needs to be
studied. Further developments for the traffic control exam-
ple will include the use of vehicle-to-vehicle communica-
tion, inclusion of bus schedules, emergency vehicle activ-
ity, and vehicle navigation features.

408

Acknowledgements

We would like to thank K. Dixon, J. Jackson, R. Malak, Y.
Patel and T. Pham for the development of the PB3A archi-
tecture, D. Manstetten and T. Schwab, Bosch, for their help
with the traffic simulator ARTIST and Thomas Ke, Trans
Associates, Inc., for providing the traffic data for Penn-
Circle. This work is supported in part by DARPA/ETO un-
der contracts F30602-96-2-0240 and DABT63-97-1-0003
and by the Institute for Complex Engineered Systems at
Carnegie Mellon University. We also thank the Intel Cor-
poration for providing part of the computing hardware.

References

[1] J.J. Cheese, M. Cartwright, L W. Routledge and B. Ra-
dia. UTMC- the UK initiative for ITS: An update: Re-
sults of the first call, progress of the second call. In
Proceedings of the Intn’l Conference on Road Trans-
portation, Information and Control, pages 100-103,
London, England, April 1998.

[2] K.R. Dixon, J.M. Dolan, W.S. Huang, C.J.J. Paredis
and PK. Khosla. RAVE: A real and virtual environ-
ment for multiple robot systems. In Proceedings of
the IEEE/RSJ International Conference on Intelligent
Robots and Systems, Volume 3, pages 1360—67, Octo-
ber 1999.

[3] K.R. Dixon, T.Q. Pham and PK. Khosla. Port-based
adaptable agent architecture. In Proceedings of the In-
ternational Workshop on Self-adaptive Software, Ox-
ford University, England, April 2000.

[4] H. Fujii, O. Hayashi and N. Nakagata. Experimen-
tal research on inter-vehicle communication using in-
frared rays. In Proceedings of the 1996 IEEE In-
telligent Vehicles Symposium, pages 266-71, Tokyo,
Japan, September 1996.

[5] W. Krautter, T. Bleile, D. Manstetten and T. Schwab.
Traffic simulation with ARTIST. In Proceedings
of Conference on Intelligent Transportation Systems,
pages 472-77, Boston, MA, Nov 1997.

[6] J. Schneider, W.K. Wong, A. Moore and M. Ried-
miller. Distributed value functions. In Machine Learn-
ing. Proceedings of the Sixteenth International Confer-
ence on Machine Learning, pages 371-8, Bled, Slove-
nia, June 1999.

[7] E. Sourour and M. Nakagawa. Mutual decentral-
ized synchronization for intervehicle communications.

IEEE Transactions on Vehicular Technology, Vol-
ume 48, Number 6, pages 2015-27, 1999.

[8] R. Sutton and A. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

409

