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Abstract

When rats trained to forage in one environment are exposed to a second, highly

similar environment, their hippocampal place code exhibits a partial remapping in

the new environment that becomes more complete with repeated exposures (Tanila,

Shapiro, and Eichenbaum, 1997; Bostock, Muller, and Kubie, 1991). If the perforant

path projection to CA3 functions as a pattern completion mechanism, and the DG

projection via the mossy �bers performs pattern separation (O'Reilly and McClel-

land, 1994), then partial remapping can be understood as the combined e�ect of

these two projections. We investigated learning rules that could be responsible for

the gradual separation of two maps, and found that, while simple Hebbian learning

and Hebbian covariance learning would not produce the separation e�ect, BCM

learning was one rule that would.
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1 Introduction

Physiological evidence suggests that place cells in the dentate gyrus, CA3, and

CA1 of the rat hippocampus represent di�erent environments with di�erent

spatial activity patterns. These activity patterns, or place �elds, can be clearly

observed within the �rst ten minutes of exposure to a novel environment, and

in general do not change with repeated exposure to the environment. When

presented with two similar environments, cells initially have similar �elds in

both, but with repeated exposure to both environments, the �elds become

more distinct [2,4]. Because no changes were made to the environments, the
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changes in the responses of place cells most likely re
ect plasticity in the neural

circuitry of the rat. We therefore investigated what properties of synaptic

plasticity would be necessary to engender these experience-dependent changes.

2 Map Separation in the Hippocampus

In the Bostock, Muller and Kubie [2] experiment, rats foraged randomly for

food in a cylindrical arena with either a white or black cue card. In the be-

ginning, rats were repeatedly exposed to the cylinder with a white cue card.

Then, place cells in the hippocampus were recorded while the rats were ex-

posed �rst to the white card, followed by the black card. Rats were exposed to

the two conditions each day for several days. Initially, place cell �ring �elds in

the white card and black card environments were very similar, suggesting that

the hippocampus used a single representation for both environments. However,

upon repeated exposure to the two environments, place �elds were found to

diverge. Some cells were active in only one of the two environments; others

were active in both environments, but with place �elds that were topologically

unrelated to each other.

This plasticity is consistent with two hypotheses about partial remapping. One

is that individual place cells independently di�erentiated themselves between

the two environments, without regard for the behavior of other place cells.

The other, consistent with multiple map models of the hippocampus, is that

all of the place cells changed their representations simultaneously, re
ecting

a switch to a new map for the second environment. Unfortunately, at present

there is insuÆcient data available to distinguish between these two hypotheses.

In the Shapiro, Tanila and Eichenbaum [4] experiment, rats explored a four-

arm radial maze for a brain stimulation reward. Each arm of the maze was

marked with a distinct texture and odor, which served as \local" cues for the

rat's location. The curtains surrounding the maze bore four distinctive objects,

which served as \distal" cues. After repeatedly exploring in the �rst con�gu-

ration of cues, rats were repeatedly exposed to two environments successively:

the Standard environment, and a second environment, known as the Double

Rotation environment, in which the maze arms were rotated 90 degrees coun-

terclockwise and the distal cues were rotated 90 degrees clockwise. The place

�elds of cells recorded while the rat was in each of the environments were cat-

egorized into two types: those that rotated with one of the cue constellations,

and those that either disappeared completely or appeared in a position incon-

sistent with the rotation of any of the cues. Though the remapping between

the two environments remained partial throughout the experiment, the per-

centage of �elds rotating with either distal or local cues decreased as the rat

received more exposure to the two environments. Correspondingly, the per-

2



centage of cells with unrelated �elds in the two environments increased with

repeated exposure to both environments.

3 Modeling Map Separation

To simplify the computational requirements for simulation, we modeled the

simpler of the two tasks, the Bostock et al. task. To do this, we created a

virtual representation of the environments. Each environment contained either

a white or a black cue card and the maze wall, represented by a single point.

We simulated the entorhinal cortex with 1000 units, each tuned to a bearing

and distance of one of the cues with a gaussian response function.

Our model of information processing was the dual pathway architecture. Specif-

ically, information from the entorhinal cortex is propagated to CA3 both di-

rectly via the perforant path and indirectly, through the dentate gyrus, whose

mossy �ber projections provide input to CA3. We modeled DG using 20,000

sigmoidal units which received input from EC; strong global inhibition kept

all but the most active cells from �ring, resulting in activity patterns that

changed signi�cantly with small changes in EC activity. To match physio-

logical constraints, our model's mossy �ber projection from DG to CA3 was

signi�cantly more sparse than the perforant path projection; correspondingly,

individual mossy �ber synapses were ten times as strong as perforant path

synapses. For the 1,000 CA3 units, we used a linear �ring rate model, with

a non-zero threshold for �ring. Additionally, each layer also incorporated a

global inhibitory unit to provide competitive dynamics.

Physiological evidence indicates that LTP occurs in both the mossy �ber and

perforant path synapses in CA3. However, the plasticity associated with the

mossy �ber synapses appears to be nonassociative and is therefore unlikely to

be useful in directly storing spatial information. We therefore explored what

various forms of Hebbian plasticity in the perforant path inputs to CA3.

4 Learning Rules

The �rst learning rule we considered was simple Hebbian learning, �wij =

x_i � yj, where xi is the activity of presynaptic unit i, yj is the activity of

postsynaptic unit j, and wij is the eÆcacy of the synapse between them. To

bound the magnitude of the weights, a per-neuron weight vector normalization

was performed after each epoch of learning.

The e�ect of this learning rule was the opposite of what we desired. Neurons
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with �elds of di�erent strengths in the two environments developed stronger

�elds in both environments. This behavior follows from the fact that this

learning rule maximizes the variance of the activity of the neuron; spatially

selective activity in two environments yields greater variance in activity than

activity in only one environment.

The second learning rule we considered was Hebbian covariance learning,

�wij = (xi � xi) �
�
yj � yj

�
, where xi is the (time averaged) mean activity

of the presynaptic neuron and yj is the mean activity of the postsynaptic neu-

ron. This rule would occasionally cause a cell to di�erentiate its place �elds

in the two environments; however, this behavior was relatively rare. Further-

more, this learning rule causes weights to adapt when either the presynaptic

or postsynaptic neuron is active. Thus, all of a neuron's weights will change

with exposure to any of the environments in which it is active. This results

in previous environments being forgotten at the same rate at which new envi-

ronments are acquired. In our simulations, exposure to a second environment

almost completely obliterated the memory of the �rst. This observation is

incompatible with the existence of multiple maps in hippocampus.

The third learning rule we considered was the BCM [1] learning rule:
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This learning rule has two important properties. First, learning only occurs

when both the presynaptic and postsynaptic cells are active. This avoids in-

terference problems between environments because only weights for features

present in an environment will be modi�ed. Additionally, the BCM learn-

ing rule de�nes a sliding threshold � which determines the boundary be-

tween suÆciently active and insuÆciently active. Strong postsynaptic activity

will strengthen active synapses; weak postsynaptic activity will weaken active

synapses. Thus, place �elds which are strongly active in one environment but

more weakly active in the second environment typically remain strong in the

�rst environment but are further weakened in the second. This results in cells

becoming more discriminating about the environment in which they are active.

In simulations, we classi�ed the �elds of cells into one of four categories (see

Figure 1). The �rst category contained cells that were active in neither of the

two environments. This was a result of the global inhibition suppressing their

activity. The second and third categories contained cells that were active in

either the �rst but not the second environment or the second but not the �rst.

The fourth category contained cells that were active in both environments.

4



N/N F/N N/F F/F UnrelatedConvergedDivergedUnchanged
0

5

10

15

20

25

30

35

40

P
er

ce
nt

ag
e 

of
 c

el
ls

Distribution of field changes between environments

F/F

Fig. 1. The distribution of place cell behaviors in our model. Env1/Env2: F = Field

present, N = No �eld present.

The �elds of cells in the fourth category were analyzed for learning e�ects.

Some �elds were present in both environments but were either unrelated in the

two environments, or were unchanged due to learning. Of the cells whose �elds

changed due to learning, most �elds diverged in the two environments with

repeated exposure to both. Speci�cally, �elds which were initially correlated

in the two environments were typically weakened in the second environment,

resulting in a strong place �eld in the �rst environment, and little or no �eld in

the second environment. A minority of cells that exhibited very strong �elds

in both environments were strengthened by the learning process, converging

to the same �eld in both environments.

5 Discussion

The map separation seen in our model is most speci�cally attributed to the

orthogonalization properties of DG and the BCM learning rule. The DG serves

to orthogonalize input patterns, resulting in far more signi�cant changes to the

mossy �ber input to CA3 between environments than to the perforant path

input. This has both direct and indirect consequences. The direct consequence

is that, since CA3 cell activity is based on a contribution from the dentate,

activity patterns in CA3 will naturally be less overlapping than if CA3 activity

were solely a function of perforant path input. The cause of many of the CA3

cells being active in only one of the two environments was the contribution of

activity from DG. The indirect consequence is that, even if a CA3 cell receives

enough input from the perforant path to be active in both environments,
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the DG contribution often biases the strength of the activity enough to a�ect

whether the activity of the �eld falls mostly on the positive or negative portions

of the BCM curve. Thus, the small di�erences in activity due to the dentate

are magni�ed by the BCM learning rule to produce a map separation e�ect.

There are two interesting predictions made by the model. First, while maps in

both environments will undergo some change as a result of learning, the map of

the newer environment will change more signi�cantly. This asymmetry is due

to the prolonged initial exposure of the rat to the �rst environment. This expo-

sure strengthens weights, reinforcing the map for the �rst environment. These

stronger weights make weakening �elds in the �rst environment more diÆcult

than in the second environment. Thus, a cell with a �eld in each environment

is more likely to lose this �eld in the second environment. A second prediction

made by the model is that DG �elds should show remapping prior to CA3 or

CA1 �elds, since it is DG's novel representation of the second environment

that in part engenders di�erentiation between the two environments.
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