in Proc of BOAR Coferane, Augnst 4-6, 1992, Hotsaren, Tozar

1af8

An Iconic Programming Language for Sensor-Based Robots
Matthew Gertz, David B. Stewart, Pradeep K. Khnsla

Department of Electrical and Computer Engineering
The Robotics Institute
Carnegie Mellon University, Pittsburgh, PA. 15213

Abstraci— In this t we describe an iconic program-
ming language call for senssr-based robotic sys-
temns. Onika is beth nwdular and reconfigursble and can be
sed with any systemn architectare and real4ime operating
system. Onika is also a multi-level pregra®ming environ-
wvenl whertin tasks are bulk by conhecling s serfes of jfoons
which in turn can be defined in terms of other icons at the
lnwar lovols. Export mers are abo allvwed to uwse control
block form to define servo tasks, The icoms in Onika are
koth shape and eolor caded like plece of a jigeow purale
thus providing a form of error control in the development
of high leve applications.

Keywords- Programming, Real-time, Temic Language,
Sensor-based robots, visnal programming,.

1 TIntroduction

Frogramming manipulatoes o perform tasks can often be a dif-
ficult and fruserating wsk. Many of the programming languag-
s available have a C-like syniax, which makes developing
applications very difficult for porvons no baving an adequans
background in programming, Deciphering and debugging
cryplis, non-pontable, and ill-commented code can waste many
man-hours of valusble time, while executing such questionahle
code can be physically dangemus to both machine sad opera-
tar, Man-howrs are also wasted whens an operator must undergo
Eengthy training to be able to operale a robotic system. While
C-language programming is appropriate for experienced pro-
ErEMITIETS, itis inappropriate for users who are interested only
Ineffectively using a manipulator ora robofle syseem. What is,
therefore, necded is a programming langudge and a system isag
smultancously provides the abity to develop systems level
eade ard also allows users 1o program applications easily.

Al Camegle Meflos University, we are pursuing research with
the goal of creating a programming and controd envitonment,
for sensor-based systems, that allows for rapid development of
applications trowgh submatic generation and validation of
redl-ume o008, In nrder o make sensor-kased robot systems
e85y to 1se and program, we are slsodevelpingan icanic pro-
grermeing fanguage (IPL) called Onika for use as a human-
maching inlerface for pogramming robotlc systems, In this
Papet, we provide an overview of the current vewbon of Onika
anl its capabilities for progranning sensoe-based sysems,

Omtka 15 a multi-lerel programming envimnmest thal is both

modular and weeoniigneable. At the highest level applications
for & semor-based manipolame’ are aeated by ci0osing icons

which represent objects, jobe, and expressions, and armnging
them in alogical sequence, At lower levels, robotics-savvy os-
ers [or experienced programmers) can sdditionally define jobs,
new icons, etc, for inclusion into the applications. At the lower
level, il is also to combine jcons representing tasks
inio control-bleck form asd to bind C-language code to as
beon. Onee a task Tevel leonic program s created in Onika, the
underlylng sysemi provides the capability to develop the
cquivalent C-program for execution. The wnderlying fystem
comssts of the reconfigorable software stucmre[10] aodd the
Cérhinam redl-time operatisg sysiem dat we have developed
3.

In contras to the previous work done on VPLs, described in
the noxt seclion, we are developing oor IFL to be reconfig-
urable, customizable, and able to sit inany anchitectore, draw-
ing upon the msourtes of the resident real-dime operating
systtm (such m 059, CHIMERA 0, VxWorks, eic). The
icomss in Onika are both skape and color coded and can be
thought of as pleces of a jig-saw pozzle, This is adventageous
beconse a novice ustr canot connoct completdy arblTrary
fconk to develop a program, at the task level, that doss not
make logieal senge,

Onika also permits smaller sets of iconic programs to be com-
bined to ceate larger programs (represented by one icon), thus
allowing for the rapid creation of a lbrary of tried-and-roe
procedures for the manipulator, Furthermore, by loading in the
specifications of any particular manipalator, it is planned that
our IFL Wil be shile lorut its programs on different manipula-
Lor systems without the user needing to rewrite the code. Trans-
hﬂmnmﬂdh:dmu:ﬂtlhwﬂrlﬂwllnﬂtsjﬂtm
archilecture, with the help of a specs file created for eack ma-
mipuhior {which would list construction data, join Hmis and
lengths, moments of inertla, and so forth), Finally, develop-
mentol a lwer-level Smulsor for the IPL is undarway, so that
an application ceated for a manipulator can be simulyed in
real-ime withoul changing the application at all — from & iele-
robotic standpoint, there wonld be no difference in the type of
informatioa received and the amount of cottrol ererted in a
simuktion a5 opposed to an schual run.

b Thioughout thin paper, we shall use the term manipuisisr 1o
refer o the system programmed by the 1PL: nevertheless it
should be noded ghat this [PL, being reconfiirshie ma modi-
lar, could be vsed for a vericty of systems, such a3 saleilite con-
trol, decp-sta remote caploradon, ar Industrial process control,

the 18 of menipuolalon is ever i t:mmenmm{ud
Emﬁ:mnuy i, then the ability to program these mathdnes
muosd booome vallable o the mscardicr or worker whe may
not have 2 background knowledge in compiiers or robotics. By
intreducing an IPL into existing smanipolator eysema, Aoor-
levd wotkers will be able 0 roncomplex and critical routines,
while the actud coding of lowerJevel asks for these machines
thiart the ioons represent can be limited o professional program-
mess.

r is crpanized a8 follows: The textSection desaibes
ﬁﬂ:ﬁm in fhis ten ond in Section 3, we bricfly dia-
cumes the hisory of oot PL, aad bow we inplemented a test
vapsiom o dememstrats he effectivenses of tuch o ecbesmes,
2ection 4 desaibes [rmmtmtmimnt:lﬂmﬂﬂﬂhimm
inSection 5, we discuss several sescarch issoes that we are pur-

siang. Finally, in Section f, we swmmarize the paper,

2 Previows Work

jiconic pOgramming languege 8 @istnct rom wihat is
anmwn a8 ap-ri;mi prograemming language (VPL), in that an

* 1PL! ecdies ou the user's association of sctiona and chjocts with
| pictures, shapes, and colars, rather than with less-informative
| Rowchats, Mﬂ|mmmlﬂmgwq¢mm
Teonbe interfices can be very uselul fir training new users 1o
pffectiv ale théir systema loons have proves 1o be eas-
T and have simyplified the tesks of moving throngh
. dijpctories sroessing files, and mnning executables as in Mac-
b amy Windows eovimnmess, An IPL extends this idea
icdeatifying an joon with a specific acion of objeet; by com-

gdﬂfﬂ.ﬁmmhn_' B way, an application can be desciibed
Aconsiferg it ﬂf:ﬂnnihtm expended for devel-
oping interfaces and visuad Jan o define an

Application. Yisual programminghas been appl
Verse domains and an excdlent meriew may be found in [11] .
In this short review of previous ok, oot goal is o provide a
pmpa-r:ﬁvcmdmntimliunrbrlhfﬂmm thal we chose ta in-
Clude in e development of Cndle,

Harme and Hoepelman Sngpest 2 ‘naturl language™ (NL) ap-
proact, Where questions asd staementy are maie based on
simple English sentences(2] | The disadrantage of this is hat
taternl bnguage™ is only mtural to those whn COMEmumicate
10 an [indo-Furopean Engmage. For instince, the stacture of
Chiness and Jepangae Inguages ar quite different than thal of
English, and Amelsan [American Sign Language) stmecturally
bears little resemblance 1o any spucen languags. We feel that
tobe aseful, an IPL shoayld be comcepiual, rather than English-
orignited, amd we have nspd it apiroach in owr wod, There

" Although g, technvically refers i the gramemer, syt snd
manipiaron O e programming ekments of particwlar type
of himnan-maching intprface, rathes than the interface to the
machine [esetf, we shall ose both e terms JRL. qnd Onika

iﬂmllghml this paper as reference ioboth the lugnage and tho
TREMHCE,

2478

are precedents for this approsch; for ingance, intemationl
traffic signs use concepis rather than writlen bngunpre, Be-
sides, avisnal robolic prograumming b gusge using the ML ap-
pmud:wnnldhcmmn:plntnpmmtﬂniniuﬁsmr
adventege gaincd from usng leons.

Leifer ef. al. use icons (o represent manipulstion primithves [4;
these icons are then combined D Construct . manipolation pira-
gram, For the non-engineering of porson, programs can be
eagily created, debogged, modified without a detafled
knowledge of progrumning or computers i peneral, However,
for the engineer who mut decide whether or not to use PID
comtrol, force contrel, hybrid control, and so forth, the lkexicon
ﬂflhulmgm.p:l;rfhcinnﬂmumuﬂb:mpﬂnmﬂ to inclucd=
miore than one level of programming. Furthermose, coadition-
ala (zuch ax ifthen/dsa) should be added tocrcats a Totars; vo-
cabulary, and 1 grammar must be added so hat the vseris ket
from creating impossible mutines (.5, Move-To Move-Tb Bal}
Move-To Pick-Up). Furthermare, the IPL should ailloowr e cre-
atiom of -tagk icatioms, and the wser should be akls
o etely redefine icons and their memings without di-
minishing portability, In oer research we are developing meth-

ods 0 iImplement these necessany Prograimming concems in i
visual manner which iz eagily understood by the meer.

Mihling and Croft introduce a visual programming language
fior the acquisition and display of plans for planbing svetem
[5]. They icons for ects and icons for relations and ob-
Jecis, which are used for creating plans to achicve some Ingical
podl. Whal is notewarthy about thefr set-up is the notios of an
expandahle libeary oficons, Clearly, this is abeneficial tking 1o
have, However, to mintmize user comfusion, only apprapriats
Icons should be availible to the mer — for example, if 2 manip-
ulalor dosen't have acamen, then vision-romine kons should
not available a3 icon choices for an application during its cre-
ation. Some method of organizing icons by category and do-
main is needed to prevent users from ereating -
coriect but non-fnctional spplications. A methed of cabegori-
zation of types and parposes of icons into spme grammeatical
dichotomy is a major goal of pur research,

Flow chart methods are often as Angelaceio e, al,
have dona for E-R adented databases [1]. Widle mow charts
lend themselveswell k mapping the Aow of aroutine, they can
look intimidating and are not as fdendly to the wser in erms of
presentation of information a5 pictures would be. ‘This is 8
much mom important consideration than wany people might
think; wser-friendliness improves productivity. Furthermore,
armrows from one fow element to e next ufifitresanrily waste
Screm space. In the icunic approach we propose the creatinn of
applications from job icons, e icons sitad tit i e3ch odbier:
since loons 40 ot require et ludﬁm‘h&%.-ﬂey can ho
musch smaller than flow chart element and yet convey the
same amount of informadon and sense of program direction,
This minimizes wasted space, and allows more rootine gle-
menke to be geen at A time, which aids applicadon develop-
ment.

Flow chart methods are not at all wseful when describing bow
a job is defined by serm tasks runaing smoltaneowly, and so

gn defining: oo task we use tontrol-block form, Ad-
Eﬂumm the Pﬁﬂlﬂ'ﬁ i the lcone are mode easily dentiiahle
than the gepertc boxes of a Aowchart wilh respect o specific
routines, A Sowchart element must represent a “couplete™
gvenl (eciion + chjecia), ainee all fowchar cemenis of atype
should theoretically be interchangeable An PL, on the other
bond, could bave an object exily replacad in m event wihout
elfecting ils dependent action (and all ofthe valoes possibly as-
pocisted with ith amd vice-versa.

Museio ot al. wse icons which vary im shape, and are this: as-
semblen im sorl ﬂ'uji;uwpumh nmﬁngmﬂm
[71; cerlain icans can only interiock with nﬂlqumlm {both left-
right and wp-down). Their icone recembled liver colls; a hepa-
telogist was gubded tocreats valid models of e liver and test
theen by 1mimg Il Glimert [11] describes a sysiem called Proc-
BLOX that uses jfigsaw puzzle pleces (o present program con-
stnxcts, Onika mies icons, & mentdoned before, that are both
shope and colir coded puzde pieces. In this context, a re-
mod consem I our research is explonng the best way for
icoas o he idealifozd e class and grammar, whethet by shape,
. poler, size, o some ober visual difference.

o he next section, we desoribe aninjtial vemion of ouar IPL
called Bombworas.

3 A History of Our IPL

Our first proiotype IFL calied Bookworm was developed o
mionsimls be effectivenees of iconie progmmning, ad to
rsomenf the issues which would demand investigation
n D8 regegch and ent of & more powerful IPL, The
BookWen [P was wsegic combine jobs and objects into ap-
pliciticgie, where the 3 i were dedned nring code (in the new-
ar IPL, Conika, the: jobrs used [n whe creation of applications are
themseives bomically defined rather than textually defined).

Bodioworm ssed a spedific grammar o decide which icons may
felinw oxther icons in a stery, For instance, an action foon which
required am object (2.8 Move-To <objed>) could ot be fol-
loweed by anedher action icom: it bad 1o ke followed by an ob-
ject. Shnilurly, objects had w be precened by an appropriate
Achoo-requiring-ehiject icon. The prammar was immediaely
Fnder: 0 the oser, sines wo used colors 1o
Tcoms: an jeon whose right half is blue must be followed by an
icon whose ledt half is Hoe, and so forth, Thers wers (hree dif-
ferent types of foon “words™ (greem-green, green-buoe, and
blue-green, representing action. dction requiring object, and
DBfect, respecively; we are aurendy petforming ressarch to
diseover exactly bow many different claszes of words are re-
quired for oer laiest IPL, Onika). The grasunar of an icon was
defined when the icon was created or modified, so that color
did not need o be the identifying key; it could mstcad have
been the shapes of e edges of the icons, for instance (useful
if the e in eolor-hind),

Bookworm ako coaformed o the conventions of the platfomm
o0 which it exises. For mstance, the Macintosh versiom could
be nm from pull-down menus and command keys as well as
detms; the Sun version of our present IPL, Chnilka, similarty nzes
SunView and X View conventions, In this way, nscrs familiar

EPTY

with a particular platform are more easily be able t anicipme
how (e IPL reacts to commands and keystikes,

Although Bockworm did not run a program on &n acteal ma-
nipulato, it did generate simultion fles for use wiih ROB-
SIM, a NASALangley robotic timulator, When the *Simulate
Skry” feon was selecied, AT ende was generated thrmogh p
Four-pasy metbod. First, Beokworm looked [or holes in e £to-
» and aborted the sinulaton iFft fousd any. Nexi, Bookwom
value panels for object bocations, and defined var-
ables for those locations, which it inserted into the AL fle. Ow
the next pass, ibose varisbles were inialized, and, Goaly, the
mext of the code way produced,

Bookwomm wi sirialy a higher-level IPL., Al an early stapge,
we recognized that bwerdevel rootises could alsn he codsd
nzing icons, albhough an entirely different grammar would be
required, since lowerlevel routines ate very spedfic and rep-
Tesent quite abstract concepts. Onika, e cument TPL onder de-
velopment, is much more stratified than Bookworm andcan be
uacd to croate bwer-level Jobs a8 wellas bigher-level applica-
tions, making itself more useful to programmers while still
keeping Inwer-lavel detnils imnaparcet io less technicaly-odi-
ented msers.

Cmca’s higher-level interface wnder development resembles
Boakworm strongly but allows for a much expanded grammas
(including conditonals, lops, a8d errar-trap routines), By us-
ing lcons and visual grammar coes (o identify procedures, we
avold maay of the problems of the flowekart spproach w0 visual
programming, including usage of screen space (muoch of which
is wasied in flowchan metbods), dependence on English, arnd
problems in recognition of routises {one flow chan box looks
prety moch like any other). Our fcom “stordes”™ are concise,
compact, and easily read.

Onika'e loweer-Tevel interface, designed o be used by crperd-
enced persons, wesembles nothing so moch asan ICCAD inter-
fm.!mmmgmmdhmngmiwmd
owput pins, are combined into comtrol block diagrams {con-
nections are dose avtomatically by the system, mlisving the
user of that tedions burden). Instead of having to change lines
in pages of cryptic real-time code, the 0281 can manimlae
tagks graphically, retdeving and changing task iformation
simply by clicking on the task’s feom with a mouse. Activation
and deacilvation of one or all tasks is done with onekeysroke,
and sk configurations can be modified as simply as selenting
8 tnak, deleting it, and drapging over nolhor sk Lo take i
place

Clealy, both the lower- and higher-level interfaces of Onika
mustrely en an underlying software support strociere, Onika
an te tallored for use on any system architecture, using any
real-ime system. The following section dlscusses Onika and
its relationsbip o owr awn system archichre,

4 Onika’s Position In the System Architecture

Fignre 1 shows the system software architecters for recofig-
arable sensor-hased coatrol systeme[9][10] that we ve devel-
Dped. In this architectare, we have defited weverd types of

routines, The most peneral manipulator routisc is the applica-
tiget, which specifies some goal to be echieved. For .
WA he dlshes” 1= & fairly typical application in day-

life. An application is defined by snme serial low (or lows) of
Juba, which define some singular actlon affecting an object,
“Liftthe plate,” "Put serubber on plate," and “Scrub™ are pood
exsmples of jobe exocuted mrially o achieve the spplication
goal of wathing the dishes. Finally, a b can be looscly de-
scribed a3 being defined by & collection of tavks, all of which
are runniog concorrendy to fulfill the conditions of a job, and
all of which have certain inpat and ootpat fmctions. “Perform
inverse dymamics,” “Resolve acceleration of scrubding mit,”
and “Invert scrubbing-arm jacoblan” are all of asks
mnning coocurrenfly © Gnish the job "Scrub,” Tasks them-
stlves arg defined by various sobrovtine calls and are texteally
eoled In O langumpe.

Omika can be used i create both jobs from tasks and applica-
tioms feom jobs. Users can open a task ledcon (Figare 2), and
deag icems representing tasks from the lexicon o a job canvar
(hese leons are smple CAD representalions, and are created
om the fly). Onee on the canvas, a ksk is created on the wider-
lying real-tanc system, and the o repsesentng that tesk an-
lematically connects iself in other task icons based on the
inputloutpul varlables of all the msks s quesion Figure 3).
This dllows the user to casily see whether or not & complete job
has been created. The mer con modify certadn valne: sseociat-
td with each task, such as the frequescy, the priority, and
whether or not the task is active or inactive. Task icons can be
cut and repasted, althosgh oaly ore instance of each task can
exist an the canvas. To crealt a job from tasks, the user need
ROT kT anyiing abont the imdetdying real-time: sysiem, nor
Inow much about computers, but be or she must kave some
nowiedge sboul robotics,

However, osce a job has been completdy defined (zhown in
Hi:t%nM4J’ the mth;_[-nhmn be saved and linked to an pictorial

(Fignre 5). This pictorial icon can be saved for general use
10 a fok dictivrary, and dragged o @ gpplicatian workspace 1o
become pant of an application (Figure 6), which cm also be
saved and relcaded. When the application is run, and the job is
encountered in a grogram Aow, the tasks associated with that
Job are antomatically Ioaded and activard based oo e manip-
ulator descriplion chosen by the wer. When the job is com-
plete, ils tasks are destroyed, and the program flow moves to
ke next job in the application. Jobs can cat, copied asd pasted
to the application as well, and of conree muliiple inganees of
Jobs inthe application are allowed. All of this iy trangparent to
the high-kevel user In order 1o creste applications from jobs,
the user need not know anything about the underl ying support
ystem, compulers, o even anything about robotics. He or the
Simply needs 1o know how (o drag job icons from one location
of the screen o the other in some meaingfol serial order
{"Move here, then do this, then move there, then do that..”™),
the backgromnd granmar-checker ensurisg that syntacticaly
inpossible applications cannot be grnerated.

Althcugh not vel implemented, it is planned that applications
will be psed 1o define other applications (for inslance, the ap-
plication “Wash the dishes” could be a sub-application of ke

4a78

application *Do the honsework'™), and that applications couli
Follow several flow branches (or even parallel few branches)
bated on conditions at some point in the application.

Tt iz eocpected that non-tecknically-orlsnted ssers wonld prinn
rily create applications from jobs, and that the mere robot/com-
puler-orienied vser would creats the jobe from tacks.
Experiments with the prototype 1PL Bookworm have shown
that mos! users can Jeamn create usable applications from joke
in kess than a balf-hapr,

While the Implementation of an intedace for technically-ori-
ented wiers o define jobs from tasks is Faidy straghtforward,
the implementatiom af powerful yet uier-friendly intarfuce For
people having litle or no backgound in robotics or computers
o ereale applications from jobs §s net. The next secthn dis-
cusses sume of the wesearch ismes that we will be exploring
while developing the IPL md supporting architecture.

5 Research and Development Issues

In prder to develop the fconic human-maching interface foc
crealing spplicofions from fobs, everd important reseamch and
development f1sues will nced tp be explomd. These include
(but are not limited i) the developroent of 4 grammar and the
presentation of informatios i the user.

Firat, & gmmmar for the intcrfacomustbe dereloped. ThiE msk,
it burn, raises three olber issues; first, how io repesenta con-
cept graphically and identifiably edthin a Emited aemoemt of
screen space (the iom); second, how 1o classify the job icoms
a5 v grammatical types and identifying the number of types
that will be needed, snch as “self-contained action,” “ackon re-
quiting ohject,” “object,” "conditional,” “modifier,” ete. (the
dichotomy); and third, bow present visaal grammadical choes to
the nser, 2o thatthe he or she does not wasie time by attempting
T Credte non-grammatical applications (the symitax).

Iin ldition to the developmeent of o grammas, the erganization
of isformation on the screen, and the devices by which it is af-
fected, are also of pammount importance, and research will be
to maximize their effectiveness. [nterface controls
to ceate, simulate, and ron manipulator applicatons mast be
easily interpretable and used. The presentation of be applica-
tion onder development st allow the ser to clearly se= and
nnderstand e ootne he of she 18 creating. Background error
chedking should immediately indicate when an impozsille ap-
plication is being buill and provent its soourrence, 10 tia laer
debugging Is kept to a minimuw, The interface iself should
conlbmn to the mub]ithuimm]anflhaph&mmm which it
exizk (for instance, om the Maciniosh, pne would expect piall-
dows menus and command keys i perfarn perations edmilar
to those that the user would expect they would in cdber Macin-
tosh programs), Finally, all loweslevel details muzt be trans-
parest o the nser; the interfsce should be developed writh non-
techmically-criented wsers fn mind. These stops are necessary
o creale as interface which can be nzed at all times, and wnder
any conditions, by users at any level of technical expentise.

We are especially interested in determining if an lconde pro-
Eramming interface will recuce the training fme, experience,

ani couratlon NCCESSATY 10 Oferale machinery which at lower
Iowls is quile complex. Infomal tests have shown that ygprs
who have some frmilinnity with computers amd window inE-
faes can leam 1o proficiently ese the pototype IPL Bodk-
wrins in lese than @ half-hoor We plmn oo ﬂﬂ.‘ummj-ﬂm'm
on an expanded version o gee how users whnm‘:me‘:{pui-
ented with wing compulers apdior mbotics adapt to Onilea,

6 Suwmmary

cribed am leonic pogrmming interface for creat-
El:;ﬁlg:lshm for emyor-broed nystoms soch as manipuls-
tors. This 1PL, called Cmika, will allow a wser to contml both
higherdevel and lower-level muolinet. Lowerlovwe] demils are
kept transparent to unn-b:h:ﬂ:ﬁ]ly-ﬂ'l;;tﬂ m"rﬂlﬂyg
lan{hmuﬂrairﬁng,:uupm WEOE Wi
Egunl;mct complex applicaticas for Hﬂnipllalm despite ay
lack of previous experiesce with ng amll.n'u: robotics.
To make the IFL as effedive | posshle, research is being per-
formed to deteriving the proper prammer and vissal presents.
tom for the [FL.

| s
i Partial support for this researh was provided by HNASA Bon-
'Eiarhlinndhbmtnrﬁ the of Electrical and

| Computer Engineering, and The Rodotics nstitute, Camegis
j ®ellon University

eomploie iy Bookworm Pretogpe 1L, Additional thanks go
t Dr. Ricpy thpq&lJFLﬂthﬁthphd:ﬂnhngWHﬁm
Iatinnchip, £
More Information on Onika Chimera red-titne opem
SISEH. and reconfipuratie soffvare can be obtained by con-
P K. Khosla st Depanment of Elscyrs-
] The Robotics Instinge, Camegie Mellop
Universily, Pivshurgh, PA 15213

36-61, Rome, Ttaly,

(2] Hanne, & H and Hoepelman,J, by, “Combined Graphic-
and Natwral Languyage-Tnterscton {Deaign and lsplemen-
laticn), ™ Prute:dings of CGiraphics Inferface ‘B, June 6.8,
1985, pp. 105111, Edrmvcnton, A lherta.

[0 DB, Stewart, DB, Schmiez, ang PK. Khosla, “Implement-
ing real-lime mbotic sysirms Uking Chimer I1,™ in Froe.
Of IEEE Inil, Conf. an Evbaummdnmmm. Cincin-
uati, OH, pp. S08-603, May 1990 Chisers

(4] Leifer, L., Van der Loos, M., mg Lees, 1, “Visyal Lag-
Lrage Programming: for robot command-control in -
Strudured enviconments,*

Sofd

hiemational Confercnes on Advanced Robotics: Robots
I Unstruciured Faviroament, Tone 19.22, 1991, pp. 31-
35, Pisa, Ttaly,

[5] Mahlieg, D. E_ and Croft, W, B, "4 Vimnl Langnage for
the Acquisition and Display of Plans ™ 1939 IFEE Work-

shop oo Visual Languapes, Oct 4.5, 108D, pp, 50-54,
Rome, [taly,

[6] Miyao, 1., Wakshayashi, ©_ Vochida, M., and Obtaham, T
"Visualized and Modeless ing Environment for
Form Manipulation Langusge” 1989 15RE Wokshop on
Visual Langmages, Oct. 4-6, 1999, pp. 98-104, Rome, lialy,

Environment for Tlver dimulation Snadies_ "

] Prusinkiewicz, P and Kneken, O *Virtual Conirol
Panels,” Procesdin of Graphics Interface "8, Tune G-,
1968, pp. 185-191, Edmanton, Alhers,

M Stewart, D, B, “Resl-Time Softwarg Dresign anvd Aamalysis
of Reconfigurable Advanced Sensor-Based Systens,™
PhD. prospecius, The Robatics Institute, Camegie Mellon
University, March 31, 1000

[10] Stewart, D. B., Volpe, R.A.. andKhosls, P K, "Tntegration
of software modules for reconfipurable sensor-based con-
trol systems," in Proc, Jo50 TEEERE] International Cen.

Jference on Intelligent Robots ond Systens (IROS ‘91),
Raleigh, North Caroling, Tnly 1992,

[11] Myers, B, A,, Taxowomics of Visual Programming asd
Frogram Visualization, Journal of Visyal Languages and
Compuoring, 1990, PRET-123,

[11] Glivert, E, P.. Out of Flatnd: Towards 3.0 Visual Prg-
Eramming, ings of 1987 Fall Joint Computer Con-
ference, October, 1287, Dallas, TX, pp 202-200

user
Yical Leyi]
user inerface pragramming
i Onika Ianguage
b
b P
Jo JobT

job @ job § conligaration

job R ; Programmer

Now-Real-Tims il - y e

Heal-Time

rél:rhﬁﬂ].ll‘ﬂﬁ}tl R

subsysiem

...............

from sensor A e acipator &

from senzorf

@ icomic prograims (jobs) % mal-time tasks

‘ Eraphical interfaces sabroating calls

Figure 1: Software A rehitecture for Reconfigurable Bystens

ﬁﬂfﬂ'

7af8

e
R T

Figure S:Pulling task Iml'll.n::: the job canvas (S version of ﬂlkﬂ]

s [ZMeke @ palusi panel
W Actian |e8lf-¢inlabnod) |
o) Ackioa requiring e ject)
- I 0h et
o Dun-lime reuting:
m [toi_jogitick_mome | |

Figure 5: Creating an Icon for the Job (Mac II version of Book worm)

Bor i

sl ba ol Lmi¥as

e o e s L L S

| [HE

o e e A R A A AR

Flgrﬂ 4: The completed job (Sun version of Onika). Note that two t
are on and generating output as denoted by solid lines

- Film HH n—m-m:

i EEE T T L e R

4)

. P - :' - =y

o ¥ . E 5 B
am
ﬂﬂﬂﬂﬂﬂﬂ! T
i | |-.- il T PO

e Ll '-':"'-. |.:-';_ -"':':' | :_'L 1 '-'l;-'xl L5 t g" ‘I| !r'r-'{-

Figure 6: Using the Job's Icon in an A pplication
(Mac 1T version of BooKw ori)

SOAR ‘92 was published with incorrect figures. Here are the correct figures:

Correct figures for Gertz, Stewart, and Khosla, “An Iconic Programming Language for Sensor-Based Robots,” SOAR 1992.

user
T

iconic
programming

(language .

configuration
programmer

féonfiguration R y \/ \
a < >
\C)‘_ (b)

control
modules

-

graphical
user interface

C, math,
and utility

subroutine
libraries

d

to/from other
subsystem

special purpo
processoF

typed data in

_ sensor
interfaceX

A

raw data in

i/o device
driverx

_ sensor
interfaceY

A
raw data in

i/o device
drivery

_actuator
interfaceZ

raw data out

i/o device
driverz

Chimera 3.0

J

from sensoX

from sensoiY

@ iconic programs (jobs)
- graphical interfaces

v
to actuatoZ

O real-time tasks
® subroutine calls

Figure 1: Software Architecture for Reconfigurable Systems.

Onika by Hatthew Gertz

Figure 2: Loading the Task Lexicon into Onika (Sun version of Onika). The lexicon
contains directory references to various task files in the system; when the lexicon is
loaded, these files are opened, and icons representing these tasks are created on the
fly. These icons can be dragged to the Job Canvas, where they can be combined to
define a job which the manipulator will perform.

Onika job canvas

Figure 3: Pulling Task Icons onto the Job Canvas (Sun version of Onika). The
user has just dragged the icon “zero” to the job canvas, where it automatically
connected itself to the icon representing the “resolved acceleration” task.
Additionally, the user has turned the “zero” task on; it is generating output (a
constant zero), and thus its connection line is solid. (Dashed lines, such as those
coming from the “jacobian multiply” task and “resolved acceleration” task
outputs, indicate that the task generating the output is not active.) The user can
also select any icon in the lexicon or canvas with the middle mouse button to
examine and change task values.

Onika job canvas

|
1
I gyl dac_
r— I
12| 0
ZErD |o|reee 'r
#d 1 |
1
168.8 1
N ! [
1
Gdof |
L el v
A r _

AM[:

- L]

el

186.8 |
|
|
|
|
I

Figure 4: The completed job (Sun version of Onika). Note that two tasks are on
and generating output (“zero” and “resolved acceleration”).

8% File Edit Commands [HNE]

Job Canvas
B}

Mame of icon:

|cartesian_teleuperatiun |

Current icon: I

Figure 5: Creating an Icon for a Job or Application (Mac Il version of Onika). The
user selects colors for the icon from a color palette and saves the icon. Onika will
then determine the proper grammar type for the icon, whether it's an object,
action, or other type of “word” being defined, and attaches the appropriate
identifier shapes/colors on either side of the icon. The icon is identified with a
certain existing application or job as chosen by the user, placed in a dictionary of
the user’s choice, and can thereafter be used in creating other applications. In this
figure, the user is creating an icon to represent the job of Figure 4, so that the job
may be included in a higher-level application.

3% File Edit Commands (D @

Application Workspace

BerRAEE

Figure 6: Using a job’s icon in an Application (Mac Il version of Onika). The
icons are dragged from the job dictionary and inserted into the application The
application, if complete, can be run or simulated at any time. Additionally, by
double-clicking on a job’s icon, the user can examine and change values
associated with that job. In this case, Onika inserted a space between the last
two icons when the next-to-lact icon was inserted, since that icon requires an
object to follow it in order for the application to be syntactically correct.

