

Correct figures for Gertz, Stewart, and Khosla, “An Iconic Programming Language for Sensor-Based Robots,” SOAR 1992.

sensor
interfaceX

configuration
programmer
and editor

job R

Configuration R

special purpose
processorF

sensor
interfaceY

raw data out

typed data out

C, math,

libraries

and utility
subroutine

i/o device

raw data in

typed data in

to/from other
subsystem

job S
job T

actuator
interfaceZ

to actuatorZfrom sensorY

raw data in

typed data in

from sensorX

iconic
programming

language

iconic programs (jobs)

graphical interfaces

real-time tasks

subroutine calls

graphical
user interface

drivery
i/o device
driverz

i/o device
driverx

Onika

Subsystem W

Chimera 3.0

user

a
b

cd

e

fh

g

job P
job Q

Figure 1: Software Architecture for Reconfigurable Systems.

control
modules

SOAR ‘92 was published with incorrect figures. Here are the correct figures:

Figure 2: Loading the Task Lexicon into Onika (Sun version of Onika). The lexicon
contains directory references to various task files in the system; when the lexicon is
loaded, these files are opened, and icons representing these tasks are created on the
fly. These icons can be dragged to the Job Canvas, where they can be combined to
define a job which the manipulator will perform.

Figure 3: Pulling Task Icons onto the Job Canvas (Sun version of Onika). The
user has just dragged the icon “zero” to the job canvas, where it automatically
connected itself to the icon representing the “resolved acceleration” task.
Additionally, the user has turned the “zero” task on; it is generating output (a
constant zero), and thus its connection line is solid. (Dashed lines, such as those
coming from the “jacobian multiply” task and “resolved acceleration” task
outputs, indicate that the task generating the output is not active.) The user can
also select any icon in the lexicon or canvas with the middle mouse button to
examine and change task values.

Figure 4: The completed job (Sun version of Onika). Note that two tasks are on
and generating output (“zero” and “resolved acceleration”).

Figure 5: Creating an Icon for a Job or Application (Mac II version of Onika). The
user selects colors for the icon from a color palette and saves the icon. Onika will
then determine the proper grammar type for the icon, whether it’s an object,
action, or other type of “word” being defined, and attaches the appropriate
identifier shapes/colors on either side of the icon. The icon is identified with a
certain existing application or job as chosen by the user, placed in a dictionary of
the user’s choice, and can thereafter be used in creating other applications. In this
figure, the user is creating an icon to represent the job of Figure 4, so that the job
may be included in a higher-level application.

Figure 6: Using a job’s icon in an Application (Mac II version of Onika). The
icons are dragged from the job dictionary and inserted into the application The
application, if complete, can be run or simulated at any time. Additionally, by
double-clicking on a job’s icon, the user can examine and change values
associated with that job. In this case, Onika inserted a space between the last
two icons when the next-to-lact icon was inserted, since that icon requires an
object to follow it in order for the application to be syntactically correct.

