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Abstract

The problem of parts feeding —orienting parts that are initially
jumbled - is common in industrial automation. In this paper
we consider a programmable parts feeder: a mechanism that
can be reprogrammed to handle differently shaped parts. We
presenta planning algorithm that acceptsan n-sided polygonal
part as input and, in time O(n?), generates a program (plan)
for the feeder that maximizes expected fedrate. We have
implemented the planner and verified some of the resulting
plans in our laboratory. This work illustrates a stochastic
framework for manipulation planning described in [5].

1 Introduction

Manufacturing processes such as injection molding and
stamping often produce a stream of unoriented parts that must
be reoriented before assembly. A parts feeder is a machine
that orients parts (Figure 1). Traditional parts feeders are often
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Figure 1: A parts feeder orients parts as they arrive on the
left-hand conveyor belt.

inflexible. Although there are a vast number of different tech-
niques for feeding parts, most are hand-crafted mechanisms
that depend critically on the shape of the part. When part ge-
ometry changes, the feeder must be mechanically redesigned
with a trial-and-error process that can require several months
[14].

In contrast, a programmable parts feeder can be repro-
grammed rather than physically modified when part geometry
changes. Flexibility is enhanced by automatically generating
the appropriate program (or plan). Our programmable parts
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feeder has two components:

e Mechanism. A device that can orient parts under soft-
ware control. We use a “frictionless” parallel- jaw gripper
[6]. This mechanism requires one controlled degree of
freedom to orient the gripper, and one uncontrolled de-
gree of freedom (such as a pneumatic actuator) to open
and close the jaws (Figure 2).

Planning Algorithm. A method for transforming a ge-
ometrical part description into a program for the mech-
anism. We present a planning algorithm that accepts an
n-sided polygonal part description as input and outputs
a stochastically optimal plan for orienting the part.

Our design is based on a stochastic approach to grasping
described in [6]. In that paper we used a brute-force search
Lo find stochastically optimal plans. Here we present an algo-
rithm that runs in polynomial time and prove that the planner
is complete for all polygonal parts. This paper does not ad-
dress three additional components of a programmable parts
feeder: a means for separating jumbled parts into a stream of
isolated parts, a conveyor belt for transporting parts in and out
of the feeder, and a binary filter that can distinguish between
symmetric part orientations (e.g., a silhouette trap).

1.0.1 Example

A parts feeding plan is a sequence of open loop squeezing
actions specified by the orientation of the gripper. Consider a
rectangular part whose initial orientation is unknown. Using
a frictionless gripper, a sequence of two squeeze actions will
insure that the part’s major axis is aligned with the gripper
regardless of the part’s initial orientation. See Figure 3.

Now consider a one-step plan that grasps only once. The
one-step plan will align the major axis with the gripper unless
the part’s major axis is initially almost orthogonal to the jaws.
If we had a probabilisticmodel of the part’s initial orientation,
then we could compute the probability that the major axis
will be aligned with the gripper after only one step. If this



Figure 2. Schematic of the programmable parts feeder
poised above a rectangular part.

Figure 3: Top view of a plan for feeding rectangular parts.
Gripper orientation is shown with two parallel lines. Four
traces of a two-step plan for orienting the part. Each trace
runs from top to bottom. The plan is open-loop: com-
manded actions do not depend on sensor data. Although
the part’s initial orientation is different in each trace, its
final orientation is the same.
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probability were, say, 0.8, then we may be willing to accept
the one-step plan rather than the more conservative two-step
plan.

How can we compare a one-step plan that succeeds with
probability 0.8 and a two-step plan that succeeds with proba-
bility 1? Consider augmenting the one-step plan witha binary
filter that rejects parts that are not aligned with the gripper.
Rejected parts are randomized and the plan is repeated until
the part is correctly oriented. We expect that, on average, we
will have to execute the one-step plan 1/0.8 = 1.25 times
until it succeeds. On the other hand, we only have to execute
the two-step plan once to succeed. If every step in the plan
requires one time unit then the expected time for the one-step
plan is 1.25 units and the expected time for the two-step plan
is 2.0 time units. Under these conditions the one-step plan
maximizes expected feedrate.

2 Related Work

An excellent introduction to mechanical parts feeders can be
found in [1]. [14] identified criteria for a parts feeder that
included changeover time for new parts, ability to handle a
wide variety of parts, and feed rate. He proposed several
designs for programmable parts feeders, one using impact
and another where programmed vibration was used to actively
excite parts into a stable orientation[15].

[8] developed plans to orient polygonal parts using a se-
quence of pushingactions. They used heuristics to find a plan
that maps all possible initial orientations intoa single final ori-
entation. [ 13] considered the related problem of designing an
arrangement of planar “fences” such that polygonal partson a
conveyor belt are oriented as they slide along the fences. [4]
developed multi-step plans to orient parts with a sequence of
tray-tilting actions. | 16] and [ 10] considered multi-step plans
to orient parts using a sequence of grasps with a parallel- jaw
gripper. Although each of the planning algorithms described
in this paragraph use realistic models of mechanics, none are
guaranteed to find a plan in polynomial time.

Natarajan [ 11] ignored the mechanics of parts feeders and
focussed on the abstract problem of planning with a given set
of transfer functions. Citing a result by [7] as evidence that
solving the problem for an arbitrary set of transfer functionsis
PSPACE-Complete, Natarajan developed a polynomial-time
planning algorithm for the class of monotonic transfer func-
tions. A function f is monotonic if the states have a cyclic
ordering: 8; < 6, < ... X 0y X 01, as is the case for the set
of planar orientations, and the sequence f(61), f(82), ... also
has cyclic order. Recently, [3] reported an O(kn?) algorithm
for the restricted problem where all functions are monotonic,
where n is the number of states and k is the number of avail-



able functions.

Here we identify a class of monotonic transfer functions
related to the mechanics of a parallel-jaw gripper. For an
n-sided polygonal part, there are O(n?) unique transfer func-
tions. Thus Eppstein’salgorithm could be used to find a guar-
anteed plan in time O(n*). We present a geometric algorithm
that finds a stochastically optimal plan in time O(n?).

3 Mechanical Analysis
We assume that:

1. The gripper has two linear jaws arranged in parallel.

2. The direction of gripper motion is orthogonalto the jaws.
3. The part is a rigid planar polygon of known shape.
4. The part’s initial position is unconstrained as long as it

lies somewhere between the two jaws. The part remains
between the jaws throughout grasping.

. All motion occurs in the plane and is slow enough that
inertial forces are negligible. The scope of this quasi-
static model is discussed in [9] and [ 12].

. Both jaws make contact simultaneously (pure squeez-
ing).

. Once contact is made between a jaw and the part, the two
surfaces remain in contact throughout the grasp. A grasp
continues until further motion would deform the part.

. There is zero friction between the part and the jaws.

. We can design a binary filter that accepts a particular
orientation of the part and rejects all others.

These assumptions are similar to those made by [2], [ 16],
and [10]. Assumptions 2, 6, and 8 simplify the analysis and
improve the combinatorics of the search. By restricting grip-
per motion to be orthogonal to the jaws (assumption 2), we
obtain a one-dimensional action space. Using a frictionless
gripper (assumption 8) insures that the state space is the finite
set of stable part orientations ([6] describe an implementation
of such a mechanism). Assuming simultaneous contact (as-
sumption 6) greatly simplifies the mechanical analysis. In the
last section we discuss how assumption 6 can be relaxed.

A squeeze action is the combination of orienting the grip-
per, closing the jaws as far as possible, and then opening the
Jjaws. Note that no sensing is required. When a part is grasped
with the frictionless gripper, it assumes one of a finite num-
ber of stable orientations corresponding to local minima in a
diameter function. Let a two-dimensional part be described

with a continuous curve, C, in the plane. The distance be-
tween two parallel tangent lines varies with the orientation
of the lines. Let S! be the set of planar orientations. The
diameter function, d : S! — R, is the distance between par-
allel tangents at angle 6. For polygonal parts, the diameter
function is piecewise sinusoidal as shown in top of Figure 4.
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Figure 4: The diameter function (top) and squeeze func-
tion (bottom) for the rectangular part.

When a part is grasped between the jaws of the gripper,
the distance between the jaws corresponds to the diameter.
Closing the jaws changes the diameter and thus the relative
orientation of the part. The jaws continue closing until the
diameter is at a local minimum that also defines a stable ori-
entation of the part. The diameter function can be viewed as
a potential energy function for a conservative system [5].

During a squeeze, part motion is determined by the diam-
cter function. That is, given an initial orientation of the part
with respect to the gripper, the part’s final orientation can be
determined from the diameter function. A transfer function,
relating initial orientations to final orientations, can be rep-
resented with a piecewise constant function that we call the
squeeze function, s : St — SL.

We define the squeeze function such that if 8 is the initial
orientation of the part with respect to the gripper, s(f) is the
final orientation of the part with respect to the gripper. The
squeeze function can be derived from the diameter function
as follows. All orientations that lie between a pair of ad jacent
local maxima in the diameter function will map into the same



final orientation. The squeeze function is constant over this
interval of orientations. Each local maximum in the diameter
function corresponds to a discontinuity in the squeeze func-
tion. In order for the squeeze function to be single-valued,
we assume that all steps are closed on the left. See bottom of
figure 4.

Note that the squeeze functionhas period  due to rotational
symmetry in the gripper. Rotational symmetry in the part also
introduces periodicity into the squeeze function. In general
the squeeze function has period T such that

s(0+T)=s(0)+T. (1)
Periodicity in the squeeze function gives rise to aliasing,
where the part in orientation # behaves identically to the
part in @ + T. Any sequence of actions that maps 6 to 6
will map 8 + T to 8 + T. This implies that no sequence of
squeeze-grasp actions can map orientations § and 6 + T into
a single final orientation. Thus a part can only be oriented up
to symmetry in its squeeze function.

3.1 Prior Probability Distribution

After the first squeeze action, the part ’s orientation relative to
the gripper willbe one of the stable orientations corresponding
to local minima in the diameter function.

If the first gripper angle (action) in the plan is chosen ran-
domly, the part’s initial orientation can be described with a
uniform random variable on the set of planar orientations[5].
After the first action the probability that the part is at orienta-
tion 6 is related to the probability that the part was initially
in some orientation @ such that s(f) = ¢'. Accordingly, we
can compute the prior probability distribution by integrating
the probability density between discontinuities in the transfer
function. The prior probability distribution is related to the
width of the steps in the squeeze function.

An ambiguity arises when the part’s initial orientation is
exactly at a local maximum in the diameter function corre-
sponding to an unstable equilibrium. However if we assume
that the prior probability density for orientations is continuous,
the initial squeeze will encounter an unstable equilibrium with
probability zero. Thereafter we avoid ambiguous actions.

3.2 Cost Metric

We relate a cost function to the time required to orient a part.
Let cq be the time cost for each action and ¢y be the time cost
for the binary filter (applied once per iteration). Consider an
i-step plan p;. The cost for one iteration of p; is icg +cy.
Recall that the binary filter rejects all but one orientation.
The plan tries to make this orientation likely so that parts go
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through as often as possible. For a given probability dis-
tribution we can identify a most-likely state (breaking ties
arbitrarily), 8*. After executing the plan, the gripper aligns
the part over the filter so that only parts in orientation §* are
accepted. All others are recycled for later iterations of the
plan.

On average, a plan will go through 1/ P(6*) iterations until
6* is achieved, where P(6*) is the probability of achieving
state #* in one iteration. Multiplying the cost per iteration by
the expected number of iterations, the expected cost for an
i-step iterative plan, p;, is

icg +cy

Clp:) = PO

@)
An optimal i-step plan is one with minimal expected cost,

p; =argmin C(pi). )
The globally optimal plan is the best plan over all values of 4;

its cost is
(4)

We define a stochastically opimal parts-feeding plan, p*
to be a plan such that C(p*) = C .

C" =minC(p})

4 The Algorithm

We define the stochastic parts feeding problem as follows:

e Givena list of n rational vertices describing a planar part
and the ratio ¢ = ¢y /ca, where c; is the time for the filter
step and ¢, is the time for a single squeeze action.

o Find a list of gripper angles corresponding to a plan
for orienting the part with maximal expected feedrate (a
stochastically optimal plan).

The algorithm for solving this problem proceeds in two
phases. Phase I finds a series of plans based on part geometry:
a one-step plan, a two-step plan, and so on up toa fixed length
limit. Phase II applies cost and probability models to select a
globally optimal plan.

4.1 Phasel

Phase I works backward from a single final state, finding an
action that collapses a set of states into this state. This set
then becomes the target for another action. A sequence of
plans for orienting the part can be derived from the sequence
of state sets. Phase I is specified below.



. Compute the transfer function for squeezing. Let
T be its period.

. Find the widest single step and define ©¢, © such
that © = s(81). Let hy = |©)] Let N =
Zlc+1) Leti=2

. Let ©; be the widest interval such that |s(©;)] <
hi_i. Let h; = |@,’I.

. If ¢ > Nor h; =T, let k = 7 and goto step 5.
Otherwise, increment i and goto step 3.

. Return the list (89,01, ..., 0).

Figures 4 through 6 illustrate how the algorithm proceeds
for a rectangular part. All orientations in ®; map into the
single orientation in @ when the frictionless gripper is closed.
O is the image of ©1, and O is the preimage of ©. Step 3
searches for the widest interval whose image is smaller than
©;_1. This interval becomes ©;. We can implement step
3 geometrically using a square box of dimension h;_,. We
position the box over the step function such that the range of
output angles contained in the box is smaller than the range of
inputangles. That is, the function must enter on the box’s left-
hand edge and exit on the box’s right-hand edge as illustrated

in Figure 6. 5@)

2 L

@O *

O,
Figure 5: In step 2, the widest single step in the transfer
function is identified. All the orientations in ©, (horizon-
tal bar at bottom), map into the single final orientation:
69 (dot at ),

Continuing, wider and wider intervals are found until the
condition in Step 4 of Phase I is satisfied. This condition is
used to insure that the algorithm runs in time O(n?). Phase
I returns k sets corresponding to an optimal 1-step plan, an
optimal 2-step plan, ..., an optimal k-step plan.
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Figure 6: In step 3, we identify the largest interval whose
image is smaller than h; = |8,]. This can be visualized
by left-aligning a box of dimension h; with each step. If
the squeeze function emerges from the right edge of the
box, then the corresponding image is smaller than k. The
largest such interval in this case is 8, (shown at bottom).

4.2 Phase I

To find the globally optimal plan, Phase II evaluates the ex-
pected cost of each locally optimal plan found by Phase I and
chooses the plan with minimal expected cost. Recall from sec-
tion 3.2 that the cost of a plan is related the number of steps
and the probability that it succeeds in one iteration. Each
iteration of plan pf has 4 steps plus one step for the filter. The
probability that it succeeds in one iteration is related to the
size of its preimage. With a uniform probability distribution
as insured by a random twist of the gripper on the first step of
cach iteration, the probability that plan p} succeeds is 27 /h;,
where h; is the length of its preimage. Thus the expected cost
for plan p} is (icq + ¢y )27/ ;.

4.3 Recovering the Forward Plan

To recover the forward plan we must work backward from
the final interval, ©¢ (a point). Let 6; be the leftmost point in
interval ©;: @; = [0;,6; + h;). The relative orientation of
O, with respect to Oq is 6y = 6; — fy. An action applied at
angle o will cause all orientations in © to be aligned with
the gripper.

Next we must relate the relative orientation of ©; to that of
0. This is 02 = 6 — f;. That is, by rotating the gripper by
03 radians and then squeezing, we convert all orientations in
interval ©; to orientations in interval 1. We proceed back-
wards until we reach ©;. Then by reversing and negating
the sequence: [—ok, —0k—1, ..., —01] we have a set of grip-
per angles that defines an open-loop plan for converting all



orientations in ®} to the single orientation .

Note that at each step we align the intervals precisely against
their left edge. We can allow some error margin in gripper
angle by noting the relative difference in size between neigh-
boring intervals in the sequence. For example O, is smaller
than © so we can adjust the gripper angle by half the differ-
ence in size. Let ¢; = (|8:] — |©i-1[)/2.

The forward squeezing plan is

pr = [—0% + €x, —0k_1 + €k—t, s —1+ €] (5)

§ Correctness

We prove the algorithm finds stochastically optimal plans by
proving that each i-step plan collapses the largest possible
preimage and then proving that the size of the preimage is
directly related to the expected cost. For details and general-
ization to other cost and probability models see [5].

6 Complexity

We define the complexity of the algorithm as a function of the
number of edges of the polygon, n. We neglect the numerical
complexity of representing vertices and angles as rational
numbers.

The computational complexity of the algorithm is O(n?).
Step 1 of Phasc I, computing the squeeze function, can be
performed in time O(nlogn) (see [6]). Steps 2 and 3 of
Phase I run in time O(n). To see this, note that we only need
to consider positioning the box flush with each step and there
are O(n) steps. In [5] we prove that a stochastically optimal
plan requires no more than N = %—’l'(c + 1) steps. Since
hy > m/n, Phase I requires only O(n) iterations of Step 3.

The computational complexity of Phase II is O(n), since
there will be at most O(n) plans and it takes time O(1) to
compute the expected cost for each plan and O(n) to choose
an optimal plan.

Theorem 1 The algorithmruns intime O(n?) and finds plans
oflength O(n).

7 Completeness

Theorem 2 For any polygonal part, we can always find a
stochastically o pimal plan.

Proof As described earlier, any polygonal part will generate
a squeeze function s(-) where all step widths have positive
measure and s(@ + T) = s(f) + T. All values are taken
modulo 27. We prove the claim by showing that for any
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squeeze function, we can always find a sequence of sets <
®9,01, ...,03 > such that: the first set contains only a single
point, each set has an image that is smaller than the previous
set, and the last set corresponds to a period of symmetry in
the step function.

The trick is to show that for any set we can always find a
way to generate a larger set (unless the set corresponds to a
period of symmetry in the step function). We show that for
any squeeze function and any h, Either we can find a larger
preimage:

30, s(6 + h) — s(6) < b, (6)
Or h is a period of symmetry in s(-):
V0,s(6 + h) = s(6) + h, )

where the quantifiers range over the interval [0, T').

To understand formula 6, consider that we’ve reached a
point in the algorithm where the current set is © = [8,6 + h).
Formula 6 says that there is some set, [0, 6 + h], larger than
@, whose image, [ s(0), s(8 + h) ], is smaller than 8. We
can also interpret this with reference to figure 6. Formula 6
says that we can always find a position for the lower left hand
corner of the box such that the squeeze function enters on the
left edge of the box and exits on the right edge.

To show that for any s(-) and any h, either formula 6 or
formula 7 must hold, consider the integral of the function
s(8 + h) — s(6) — h over the domain [0, T').

T
pr+m_4m_mw

i

T+h T
/ swwo—/ 5(0)d6 — hT ®)
h 0

h T+h
-/smw+/ s@)d0—hT ()
0

T

h h
—/sww+/p@+ﬂw-m~um
0 0

h h
-i/SWMO+/ s(8)d0+hT — KT (1)
0 0
= 0. (12)

Since this integral is zero, then by the mean value theorem,
either the function is uniformly zero (formula 7, i.e. h =T)
or there is some point in the domain where the function is less
than zero (formula 6).

Hence we can always continue to find larger sets until we
reach a period of symmetry in the step function. We have
shown earlier that we can transform this sequence of sets into
a plan to orient the part up to symmetry. ll



8 Implementation
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Figure 7: Geometric analysis of 4-sided part (4gon),
showing diameter and squeeze functions. The horizon-
tal bars show the preimage at each stage.

We implemented the algorithm in Common Lisp using exact
(rational) arithmetic to express vertices and angles. For 1000
random parts, we compared the plans generated by the algo-
rithm to the plans found by brute-force search. In all cases
where the forward search was able to run to completion, the
plans found by the two planners were equivalent. Another
example is shown in figures 7 and 8.

We implemented the programmable parts feeder with a
linear bearing and a Lord parallel-jaw gripper attached to
a PUMA arm. For the two parts described in this report,
the plans usually work as expected. Exceptions occur when
Assumption 6 is violated; i.e. the jaws do not make contact
simultaneously.

9 Discussion

We presented an algorithm to find stochastically optimal parts-
feeding plans. The analysisdepends on the fact that all actions
can be described by cyclic shifts of a transfer function, s
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S! x 51, that is piecewise constant and monotonically non-
decreasing on the half-open interval [0,27). The class of
squeeze actions meet these criteria, as does the class of push-
grasp actions, where the part is pushed by one jaw prior to
grasping [2]. Push-graspactions do not require Assumption6.
The planning algorithm works for either class of actions [5].
When we physically tested plans that use push-grasp actions,
we observed no failures.

Perhaps we can find other classes of actions that meet the
criteria above. It would also be useful to extend thisalgorithm
lo actions that are not deterministic, such as the class of fence-
push actions considered by [13].
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