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Abstract

In this paper we describe a factorization-based method for Euclidean recon-
struction with a perspective camera model. It iteratively recovers shape and
motion by weak perspective factorization method and converges to a per-
spective model. We discuss the approach of solving the reversal shape am-
biguity and analyze its convergence. We also present a factorization-based
method to recover Euclidean shape and camera focal lengths from multiple
semi-calibrated perspective views. The focal lengths are the only unknown
intrinsic camera parameters and they are not necessarily constant among dif-
ferent views. The method first performs projective reconstruction by using
iterative factorization, then converts the projective solution to the Euclidean
one and generates the focal lengths by using normalization constraints. This
method introduces a new way of camera self-calibration. Experiments of
shape reconstruction and camera calibration are presented. We design a cri-
terion called back projection compactness to quantify the calibration results.
It measures the radius of the minimum sphere through which all back projec-
tion rays from the image positions of the same object point pass. We discuss
the validity of this criterion and use it to compare the calibration results with
other methods.

Keywords: structure from motion, calibration, computer vision



1 Introduction

The problem of recovering shape and motion from an image sequence has
received a lot of attention. Previous approaches include recursive methods
(e.g., [12]) and batch methods (e.g., [17] and [14]). The factorization method,
first developed by Tomasi and Kanade [17], recovers the shape of the object
and the motion of the camera from a sequence of images given tracking of
many feature points. This method achieves its robustness and accuracy by
applying the singular value decomposition (SVD) to a large number of im-
ages and feature points. However, it assumes the orthographic projection and
known intrinsic parameters. Poelman and Kanade [14] presented a factoriza-
tion method based on the weak perspective and paraperspective projection
models assuming known intrinsic parameters. They also used the result from
the paraperspective method as an initial value of non-linear optimization
process to recover Euclidean shape and motion under a perspective camera
model.

In this paper we first describe a perspective factorization method for Eu-
clidean reconstruction. It iteratively recovers shape and motion by weak per-
spective factorization method and converges to a perspective model. Com-
pared with Poelman and Kanade’s method, we do not apply non-linear opti-
mization which is computation intensive and converges very slowly if started
far from the true solution. In our method we solve the reconstruction prob-
lem in a quasi linear way by taking advantage of the lower order projection
approximation (like weak perspective) factorization methods. We also dis-
cuss the approach of solving the reversal shape ambiguity and analyze its
convergence.

Secondly, we deal with the problem of recovering Euclidean shape and
camera calibration simultaneously. Given tracking of feature points, our
factorization-based method recovers the shape of the object, the motion of
the camera (i.e., positions and orientations of multiple cameras), and focal
lengths of cameras. We assume other intrinsic parameters are known or can
be taken as generic values. The method first performs projective reconstruc-
tion by using iterative factorization, then converts the projective solution to
the Euclidean one and generates the focal lengths by using normalization
constraints. This method introduces a new way of camera self-calibration.
Experiments of shape reconstruction and camera calibration are presented.

We design a criterion called back projection compactness to quantify the
calibration results. It measures the radius of the minimum sphere through



which all back projection rays from the image positions of the same object
point pass. We discuss the validity of this criterion and use it to compare
the calibration results with other methods.

2 Related Work

Tomasi and Kanade [17] developed a robust and efficient method to recover
the shape of the object and the motion of the camera from a sequence of
images, called the factorization method. Like most traditional methods, the
factorization method requires that the image positions of point features first
be tracked throughout the stream. This method processes the feature tra-
jectory information using the singular value decomposition (SVD) to these
feature points. However, the method’s applicability is somewhat limited due
to its use of an orthographic projection model. Poelman and Kanade [14]
presented a factorization method based on the weak perspective and para-
perspective projection models assuming known intrinsic parameters. They
also used the result from the paraperspective method as an initial value of
non-linear optimization process to recover Euclidean shape and motion under
perspective camera models. The non-linear process is computation intensive
and requires good initial values to converge.

Szeliski and Kang [16] used a non-linear least squares technique for per-
spective projection models. Their method can work on partial or uncertain
feature tracks. They also initialized the alternative representation of focal
length as scale factor and perspective distortion factor which improved sta-
bility and accuracy of recovery results.

Yu [21] presented a new approach based on a higher-order approximation
of perspective projection by using Taylor expansion of depth. A method
called “back-projection” is used to determine the Fuclidean shape and mo-
tion instead of normalization constraints. This method approximates the
perspective projection effects by higher order Taylor expansion which does
not solve the projective depth literally. The accuracy of the approximation
depends on the order of Taylor expansion and the computation increases
exponentially as the order increases.

Christy and Horaud [1] [2] described a method for solving the Euclidean
reconstruction problem with a perspective camera model by incrementally
performing FEuclidean reconstruction with either a weak or a paraperspective
camera model. Given a sequence of images with a calibrated camera, this



method converges in a few iterations, is computationally efficient. To deal
with the reversal shape ambiguity problem, the method keeps two shapes (the
shape and its mirror shape) to refine and postpones the decision between the
two shapes at the end. At each iteration, weak or paraperspective method
generates two shapes with sign ambiguity for every one of the two shapes
being kept. The method checks the consistency of the two newly generated
ambiguous shapes with the current shape being refined and chooses the more
consistent one as the refined shape. In this way the method avoids the
explosion of the number of solutions. The drawback is that it still keeps two
lines of shapes to converge which doubles the computation cost.

There has been considerable progress on projective reconstruction in the
last few years. One can start with uncalibrated cameras and unknown metric
structure, initially recovering the scene up to an projective transformation [3]
[13]. Triggs [18] viewed the projective reconstruction as a matter of recover-
ing a coherent set of projective depths — projective scale factors that represent
the depth information lost during image projection. It is a well-known fact
that it is only possible to make reconstruction up to an unknown projective
transformations when nothing about the intrinsic parameters, extrinsic pa-
rameters or the object is known. Thus it is necessary to have some additional
information about either the intrinsic parameters, the extrinsic parameters
or the object in order to obtain the desired Euclidean reconstruction.

Hartley recovered the Fuclidean shape by a global optimization technique
assuming the intrinsic parameters are constant [5]. In [8] Heyden showed that
theoretically Euclidean reconstruction is possible even when the focal length
and principal point are unknown and varying. The proof is based on the as-
sumption of generic camera motion and known skew and aspect ratio. They
developed a bundle adjustment algorithm to estimate all the unknown pa-
rameters, including focal lengths, principle points, camera motion and object
shape. However, if the camera motion is not sufficiently general, then this
is not possible. Pollefeys assumed the focal length as the only varying in-
trinsic parameter and presented a linear method to recover focal length [15].
Then they used the epipolar geometry to obtain a pair-wise image rectifica-
tion to get the dense correspondence matches based on which the dense 3D
model is generated. Maybank and Faugeras [11] gave a detailed discussion of
the connection between the calibration of a single camera and the epipolar
transformation obtained when the camera undergoes a displacement.

Most current reconstruction methods either work only for minimal num-
ber of views, or single out a few views for initialization to the multiple views.



To achieve robustness and accuracy, it is necessary to uniformly take account
of all the data in all the images like in factorization methods. Triggs pro-
posed a projective factorization method in [19] which recovered the projective
depths by estimating a set of fundamental matrices and epipoles to chain all
the images together. Based on the reconstruction of projective depths, a fac-
torization is applied to the rescaled measurement matrix to generate shape
and motion. Strictly speaking, the first step which recovers the projective
depths is not a uniform batch approach.

Heyden [6] [7] presented methods of using subspace multilinear constraints
to perform projective structure from motion. In [6] Heyden proposed an
iterative algorithm based on SVD of the projective shape matrices. The
algorithm is similar to our bilinear projective recovery method while ours
performs SVD on the scaled measurement matrix which is more direct and
simpler.

3 Perspective Factorization Method with Cal-
ibrated Cameras

Assuming the intrinsic parameters of the cameras are known, perspective fac-
torization method reconstructs the Euclidean object shape and the camera
motion from the feature points correspondences under a perspective projec-
tion model.

3.1 Algorithm description
3.1.1 Perspective projection

We denote by s; = (2 y; z;) a 3D point represented in the world coordinate
system (', whose origin is usually chosen at the gravity center of the object.
The representations of points in the camera coordinate systems C. are (I, -
s;+te Ji-s;j+t,; K;-sj+1.,) where (I; J; K;) are the rotations of the ith
camera represented in Cy, and (¢, t,; t.;) are the translations.

Assuming the camera intrinsic parameters are known, the relationship
between the object points and the image coordinates can be written as:

L -sj + tu
K;-sj+1

uij



JZ"S‘ ti
vy = St (1)

K;-sj+1
We divide both the numerator and the denominator of the above equations
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3.1.2 Weak perspective iterations

Given feature points correspondence matches, i.e., (u;; v;;), shape and mo-
tion reconstruction of perspective projection can be regarded as non-linear
parameter fitting of equation (2) with camera motions and object points as
parameters.

The numerators in equation (2) are weak perspective projections. When-
ever the object is at some reasonable distance from the camera, the ¢;;’s
are very small compared to 1. We start the parameter fitting by iterations
of weak perspective approximations starting with ¢;; = 0. Put the image
coordinates in a matrix W called measurement matrix:

Uy U1 - Urm
Upl Up2 * Upm
W = o (4)
V11 V12 VUim
L Un1 Un2 ** Unm |

where n is the number of cameras and m is the number of feature points.
Taking the denominators 1 + ¢;; as scales of the measurement (u;; v;;), we
are performing weak perspective factorization on a scaled measurement



matrix W, to get motion and shape parameters:

A1t Ar2taz o Apm Ui
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where \;; = 1+¢;;. The current motion parameters are denoted as (I'; J'; K';)
and (1), t,; t.;). The current points are denoted as s'; = (2} y; 2}). Then we
use these current parameters to generate a new measurement matrix W'

r 7 7 7 T
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7 7 7
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W= N (6)
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The process of computing the new measurement matrix is equivalent to the
back projection process in many non-linear optimization methods. The new
measurement matrix W’ provides a criterion to choose between the two am-
biguous shapes which are up to an mirror-symmetry transformation and its
difference from the original measurement matrix W also gives the convergence
error. Refined scales \;; are calculated from the current parameters and a
new scaled measurement matrix is generated on which another iteration of
weak perspective factorization is performed. The goal of parameter fitting is
to iteratively find the scales which make the back projection consistent with
the measurement.

3.1.3 Reconstruction algorithm

The perspective factorization method can be summarized by the following
algorithm.



1. set ¢, =0, for Vi,i € {1---n}and V5,5 € {1 ---m};
2. compute \;; = 1 + ¢; and scaled W by equation (5);

3. perform weak perspective factorization method on W, generate a pair
of motions and shapes which are mirror symmetric;

4. calculate two new measurement matrices with the sign reversal motions
and shapes by equations (6) and (7);

5. check the difference between the new measurement matrix and the
original W, take error £ as the Frobenius norm of the difference matrix;

6. choose the set of parameters with smaller error as the refined motion
and shape;

7. if the smaller error is close to zero, stop; else reset the values of ¢;; and
go to step 2.

3.2 Algorithm analysis
3.2.1 Approximation by weak perspective projection

Weak perspective assumes that the object points lie in a plane parallel to
the image plane passing through the origin of the world coordinate system.
That is, weak perspective is a zero-order approximation [2] of perspective
projection model:

1
~ 1 (8)
1 + €5

In the first iteration, weak perspective factorization performs a zero-order

approximation reconstruction. As the ¢;;’s are refined, iterations of weak
perspective factorization figure out a consistent set of motion and shape
parameters for the equations of (2).

3.2.2 Choice between mirror-symmetric shapes

It is well known that there is an inherent ambiguity problem with any affine
reconstruction method, that is, after any affine reconstruction we can get



two mirror-symmetric shapes and corresponding “mirror-symmetric” mo-
tions. As

K. gl
e = ;y] [=1,2 (9)
and 1 2 1 2 1 2
J J y] y] J J
SO
621]‘ = _G?j (11)

For objects at reasonable distance from the camera, the weak perspective
factorization method generates relatively correct shape without considering
the perspective effects. In the two new measurement matrices computed by
equations (6) and (7), perspective effects are taken care of by ¢;;’s. The ratio
between the corresponding items of two W''s is i_—zj which is large enough
to distinguish the right shape with its mirror one. ‘Based on this analysis,
we keep only one set of the motion and shape parameters in each iteration

which is computation efficient.

3.2.3 Error measurement

We use the Frobenius norm of the difference matrix of the selected new mea-
surement matrix and the original one as error £ during the iteration. Fol-
lowing theorem proves that the convergence of F guarantees the convergence

of )\Z']‘7S.

Definition Matrix Error F is defined as the Frobenius norm of the difference
matrix of the selected new measurement matrix W’ and the original one W.

Theorem If the matrix error £ converges, the X;;’s converge.

Proof. The convergence of ¥ means that the difference matrix of W’ and W
converges to zero:
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Using the above A;;’s to get the scaled measurement matrix on which an
iteration of weak perspective factorization is performed, from equation (12)
it is obvious that this iteration generates the same motion and shape as the
last iteration. Therefore, A;;’s stay constant according to equation (13), i.e.,
Ai;j’s converge.

4 Perspective Factorization Method with Un-
known Focal Lengths

Assuming the cameras are semi-calibrated, i.e., the intrinsic parameters are
known or taken as generic values (like skew = 0, principle point is in the
middle of the image) except the focal lengths, the perspective factorization
method reconstructs the Euclidean object shape, the camera motion and the
focal lengths given the feature points correspondences under a perspective
projection model. This method first recovers projective shape and motion by
iterative factorization and projective depths refinement, then reconstructs the
Euclidean shape, the camera motion and the focal lengths by normalization
process.

4.1 Projective Reconstruction

Suppose there are n perspective cameras: P;, 2 = 1---n and m object points
X;, 7 = 1---m represented by homogeneous coordinates. The image coordi-
nates are represented by (u;; v;;). Using the symbol ~ to denote equality up
to a scale, the following holds

Uiy
Vg4 ~ PZ'X]' (14)
1
or
Uiy
)\ij Vg4 = PZ'X]' (15)
1



where A;; is a non-zero scale factor which is commonly called projective depth.
The equivalent matrix form is:

U1 Utm
A1 | vn o M | Vi
! ! P
W, = : : : = ¢ | xa] o (16)
[ T P,
A1 | U o A | vem
L ! 1 |

W, is the scaled measurement matrix. Quite similar to the iterative
algorithm described in the previous section, projective factorization method
is summarized as:

L. set Ay =1, for Vi,i € {l---n}and ¥j, 5 € {1---m};
2. get the scaled measurement matrix W by equation (16);

3. perform rank4 factorization method on W, generate projective shape
and motion;

4. reset the values of A\;; = P»(S)X]‘ where PZ»(S) denotes the third row of the

K3
projection matrix F;;

5. if A;;’s are the same as the previous iteration, stop; else go to step 2.

The goal of the projective reconstruction process is to estimate the values
of the projective depths ();;’s) which make the equation (16) consistent. The
reconstruction results are iteratively improved by back projecting the pro-
jective reconstruction of an iteration to refine the depth estimates. Triggs
pointed out in [19] that the iteration turned out to be extremely stable even
starting with arbitrary initial depths. In practice we use rough knowledge of
the focal lengths and the perspective factorization method with calibrated
cameras to get the initial values of A;;’s which drastically improve the con-
vergence speed.

10



4.2 Normalization

The factorization of equation (16) is only determined up to a linear transfor-
mation Byy4:

W,=PX = PBB'X = PX (17)
where P = PB and X = B!X. P and X are referred to as the projective

motion and the projective shape. Any non-singular 4 x 4 matrix B could be
inserted between P and X to get another pair of motion and shape. With the
assumption that the focal lengths are the only unknown intrinsic parameters,
we have the projective motion matrix F;,

where
fi 00 il Lai
Ki=|0 fi 0| R=|iJ| ti=]ty
0 0 1 k! b

The upper triangular calibration matrix K; encodes the intrinsic parameters
of the ith camera: f; represents the focal length, the principal point is (0,0)
and the aspect ratio is 1. R; is the ith rotation matrix with i;, j; and k;
denoting the rotation axes. t; is the ith translation vector. Combining
Equation (18) for ¢ = 1---n into one matrix equation, we get,

— [(M|T] (19)
where

M = [macl My My - Mgy My, mzn]T
T = [Tacl Tyl Tzl T Txn Tyn Tzn]T

and

mg; = Mifiii m,,; = /Mfijz' m.; = i;k; (20)
Toi = pifitee Tyi = pifityi T = pit

The shape matrix is represented by:

]

11



where

S [Sl S2 Sm]
and
T
s; = [v; y; 2]
T T
X; = {I/]‘Sj I/]}

We put the origin of the world coordinate system at the center of gravity of

the scaled object points to enforce

m
Z I/]‘S]‘ =0
=1

We get,

(22)

Z)\”u” = Z (M vsj4viTy) = my,;- ZV]S]—I-TMZI/] = TmZz/] 23)

7=1

Similarly,

m

m m m
Y Ngvy =Ty ) v D N =Tu) v
=1 == =1

Define the 4 x 4 projective transformation H as:

= [A|B]
whereAisflx?)andBisllxl.
Since P = PH, )
[M[T] = P[A]B]
we have,

T,,=P,B T,=P,B T.,=P,B
d (2

From Equations (23) and (24) we know,

Toi _ o Xm Ay Ty _ 2Ty vy
1. YA T 2e1 A

(24)

(25)

(28)

we set up 2n linear equations of the 4 unknown elements of the matrix B.

Linear least squares solutions are then computed.

12



As m,;, m,; and m,; are scaled rotation axes, we get the following con-
straints from Equation (20):

;| |y, |?
my; - Mmy; = 0
my, -1m;, = 0

We can add one more constraint assuming py = 1:
m.; > =1 (29)
The above constraints are linear constraints on M M7T. Since
MM"' = PAATPT (30)

Totally we have 4n 4+ 1 linear equations of the 10 unknown elements of the
symmetric 4 x 4 matrix Q = AAT. Least squares solutions are computed, we
then get the matrix A from ) by rank3 matrix decomposition.

4.3 Reconstruction of shape, motion and focal lengths

Once the matrix A has been found, the projective transformation is [A|B].
The shape is computed as X = H~'X and the motion matrix as P = PH.
We first compute the scales p;:

pi = |my| (31)
We then compute the focal lengths as

;| 4 |1,
_ M| 1 My

i 32
o= el 3
Therefore, the motion parameters are

= e =2 k= Ba

t.. = Mffi i _Mﬂﬂ' to: _MQ (33)

T g fi Ve wifi 2T
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5 Applications

5.1 Scene Reconstruction

The perspective factorization method described in section 3 provides an ef-
ficient and robust way to recover the object shape and the camera motion
under a perspective projection model. It takes care of the perspective ef-
fects by incremental reconstruction using the weak perspective factorization
methods. The method assumes the intrinsic parameters are known and the
feature points trajectories in image sequences are given. In this section we
apply the perspective factorization method with calibrated cameras on in-
door and outdoor scenes, analyze the results and compare with non-linear
optimization approaches.

5.1.1 LED reconstruction

We take the data at the virtualized reality lab. The setup includes a bar of
LEDs which moves around and works as object points (we have 232 feature
points), and 51 cameras arranged in a dome above the LEDs. Tsai’s approach
[20] is used to calibrate intrinsic and extrinsic camera parameters. In this
experiment we use intrinsic parameters calibrated by Tsai’s method as known
values. The perspective factorization method described in section 3 is applied
on the feature points correspondences in 51 images.

e perspective effects

Figure 1(a) shows the recovered object by the weak perspective factor-
ization method. The distortions are obvious which are caused by the
approximation of perspective projection with weak perspective projec-
tion. Figure 1(b) gives the recovered object by the perspective factor-
ization method which takes care of the perspective effects by iterative
weak perspective reconstruction.

e reconstruction result

The reconstruction results include the object shape (LEDs positions)
and the camera extrinsic parameters which are the camera orientations
and locations. The result is shown in figure 2. Figure 2(a) is the top
view and (b) is the side view. Each camera is represented by its three
axes where red, green and blue denoting x, y and z axis respectively.
The intersections of the axes are the locations of the cameras.

14



(b)

Figure 1: (a) Weak perspective (b) perspective reconstruction of LED posi-
tions.

(a) (b)

Figure 2: (a) Top view (b) side view of the LED reconstruction result. Red
points denote the recovered LED positions. Red, green and blue lines denote
the recovered x, y and z axes of the cameras.
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Figure 3(a) and 3(b) are the comparisons of our reconstruction results
with “known” LED positions and Tsai’s extrinsic calibration results.
As the perspective factorization recovers shape and motion up to a
similarity transformation, it is necessary to find the transformation
in order to compare the reconstruction results. There are two ways
of finding the similarity transformation. One way is to set the scale
and the orientation in the weak perspective factorization by giving the
orientation and the position of any one of the cameras. Second way
to handle this is to use Horn’s absolute method [9] to compute the
orientation between the recovered shape and the known shape since
the correspondences are known between the two shapes.

Figure 3 shows the comparison results after rotating and scaling the
recovered shape. Figure 3(a) shows the differences of the recovered
object points from the “known” positions. The recovered points are
shown in red while the “known” ones shown in green. The maximal
distance between the two sets of points is 8mm which is about 0.25
percent of the object size. The errors are partly due to the inaccurate
“known” points positions. Figure 3(b) demonstrates the differences of
the recovered camera orientations and the locations from the results
generated by Tsai’s extrinsic calibration method. The red, green and
blue lines are the recovered camera axes and the pink, yellow and cyan
ones the Tsai’s results. The maximal distance between the two sets
of camera locations is 21mm which is about 0.7 percent of the object
size. The errors exist partly because of the calibration errors both
in intrinsic and extrinsic parameters. The perspective factorization
method converges in 8 iterations in this experiment.

5.1.2 Building reconstruction

We apply the perspective factorization method to campus building recon-
struction. The images are taken by a hand-held camera whose intrinsic pa-

rameters are pre-calibrated. Figure 4 are the three images we use to recover

the building. Feature points are manually selected, which are overlaid in the

images . 34 feature points are used.

e reconstruction result

Figure 5 shows the reconstruction result including the feature point
positions, and the camera locations and orientatiaons. Figure 6 (a)

16



(a) (b)

Figure 3: Comparison of (a) shape (b) motion of LED reconstruction. In (a)
red dots denote the recovered LED positions by the perspective factorization
method and green dots denote the “known” positions. In (b) red, green and
blue lines represent the recovered z, y and z axes of the cameras by the
perspective factorization method and pink, yellow and cyan lines represent
the “known” x, y and z axes of the cameras.

Figure 4: Images for building reconstruction. Manually selected feature
points are overlaid in the images.

17



is the top view of the building and (b) is the side view. It converges
within 10 iterations and uses 0.69 seconds CPU time.

(a) (b)

Figure 5: (a) Top view (b) side view of the building reconstruction result.

Red points denote the recovered feature point positions. Red, green and blue
lines denote the recovered x, y and z axes of the cameras.

e comparison with non-linear optimization

We compare our results with non-linear optimization method. The
non-linear method we use is starting with weak perspective factoriza-
tion results as initial values then using bundle adjustment to refine the
shape and motion. The method deals with the reversal shape ambigu-
ity by comparing the optimization errors after two sweeps of non-linear
optimizations on both shapes. The final result is the one with the
smaller error. This brute force way at least doubles the computation
cost. The non-linear method takes 18 steps to converge and the CPU
time it uses is 38.83 seconds.

Figure 7 shows the comparison results after putting the two recovered
shapes together by a similarity transformation. Figure 7(a) shows the
differences of the recovered feature points by the perspective factoriza-
tion method and by the non-linear method. The perspective recovered
points are shown in red while the non-linear recovered ones shown in
green. The maximal distance between the two sets of points is about

18



(a) (b)

Figure 6: (a) Top view (b) side view of the reconstructed building with
texture mapping.

1.52 percent of the size of the recovered partial building. Figure 7(b)
shows the differences of the perspective recovered camera orientations
and locations from the results generated by the non-linear method. The
red, green and blue lines are the perspective recovered camera axes and
the pink, yellow and cyan ones the non-linear results. The maximal dis-
tance between the two sets of camera locations is about 5.36 percent
of the size of the recovered partial building. The results of the two
methods are comparable.

5.1.3 Terrain reconstruction

An aerial image sequence was taken from an airplane flying over the Grand
Canyon area. The plane changed its altitude as well as the roll, pitch and
yaw angles during the sequence. The intrinsic parameters of the camera are
pre-calibrated. The sequence consists of 97 images and 86 feature points are
tracked through the sequence. Several images from the sequence are shown
in Figure 8.

e reconstruction result

Figure 9 shows the reconstruction result including the feature point
positions, and the camera orientations and the locations. Figure 10 (a)
is the top view of the Grand Canyon terrain map and (b) is the side
view. It converges within 18 steps and uses 41.13 seconds CPU time.

e comparison with non-linear optimization

19



(a) (b)

Figure 7: Comparison of (a) shape (b) motion of building reconstruction. In
(a) red dots denote the recovered feature points positions by the perspective
factorization method and green dots denote the positions recovered by the
non-linear method. In (b) red, green and blue lines represent the recovered
x, y and z axes of the cameras by the perspective factorization method and
pink, yellow and cyan lines represent the recovered x, y and z axes of the
cameras by the non-linear method.

()

Figure 8: (a) Ist (b) 46th (c) 91st image of the Grand Canyon sequence.
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(a) (b)

Figure 9: (a) Top view (b) side view of the Grand Canyon reconstruction
result. Red points denote the recovered feature point positions. Red, green
and blue lines denote the recovered x, y and z axes of the cameras.

(a) (b)

Figure 10: (a) Top view (b) side view of the reconstructed Grand Canyon
with texture mapping.
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We compare our results with the non-linear optimization method as
well. The non-linear method is described in section 5.1.2. It takes 38

steps to converge and the CPU time it uses is 9264 seconds.

Figure 11 shows the comparison results after putting the two recovered
shapes together by a similarity transformation. Figure 11(a) shows the
differences of the recovered feature points by the perspective factoriza-
tion method and by the non-linear method. The perspective recovered
points are shown in red while the non-linear recovered ones shown in
green. The maximal distance between the two sets of points is about
5.16 percent of the terrain size of the recovered part. Figure 11(b)
shows the differences of the perspective recovered camera orientations
and the locations from the results generated by the non-linear method.
The red, green and blue lines are the perspective recovered camera axes
and the pink, yellow and cyan ones the non-linear results. The max-
imal distance between the two sets of camera locations is about 9.12
percent of the terrain size of the recovered part.

(a)

Figure 11: Comparison of (a) shape (b) motion of Grand Canyon recon-
struction. In (a) red dots denote the recovered feature points positions by
the perspective factorization method and green dots denote the positions re-
covered by the non-linear method. In (b) red, green and blue lines represent
the recovered x, y and z axes of the cameras by the perspective factorization
method and pink, yellow and cyan lines represent the recovered z, y and z
axes of the cameras by the non-linear method.
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5.2 Self-Calibration

In this section we apply the perspective factorization method with unknown
focal lengths to perform camera self-calibration. Given feature correspon-
dences from multiple views, the perspective factorization method recovers
feature points positions, camera locations and orientations as well as camera
focal lengths. We introduce a measurement called back projection compact-
ness to compare the calibration results.

5.2.1 Back Projection Compactness

e Definition

Definition Back projection compactness is the radius of the minimum
sphere through which all back projection rays from the image positions
of the same object point pass.

Back projection compactness measures quantitatively how well the back
projection rays from multiple views converge. The smaller the back
projection compactness is, the better the convergence is.

e Analysis

We design the concept of back projection compactness to measure the
calibration results quantitatively. Calibration is to find a set of parame-
ters to transfer the object point position to its image coordinates. How
to quantify the calibration results depends on the calibration applica-
tions. For applications including structure from motion, image based
rendering, and augmented reality, measuring the compactness of the
back projection rays provides a value to quantify how consistent the
camera calibrations are.

In our experiments we compare our self-calibration results with the re-
sults of the Tsai’s method [20]. For Tsai’s method, the object point
positions in 3D are known and the corresponding image coordinates
are given. The Tsai’s method outputs the camera locations and ori-
entations as well as the camera intrinsic parameters. Calibration er-
ror is caused by the pinhole projection assumption, the inaccurate 3D
point positions and the noises of the image measurements. For the per-
spective method, only the feature correspondences among the multiple
views are given. It outputs the camera locations and orientations, the
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5.2.2

object point positions and the camera focal lengths. The perspective
method assumes the other intrinsic camera parameters except the fo-
cal lengths are generic. Comparing with the Tsai’s method, it has the
same error sources from the pinhole camera assumption and the image
measurement noises. However, it avoids the inaccuracy of 3D point
positions which are taken as hard constraints in the Tsai’s calibration
method.

The goal of the Tsai’s method is to make each back projection ray of
the same point to pass the known 3D position no matter whether it
is accurate or not. The perspective factorization method is to make
the back projection rays of the same point to converge to one position
which is the recovered object point position. It takes far less constraints
than the Tsai’s method and distributes the reconstruction error to the
calibration results and the recovered shape.

Algorithm

1. start with a cubic space and divide it into 8 cubes of equal size;

2. for each small cube, compute the distance D(C}, L;) of its center C;
to every back projection ray L;, where1 =1---8and j=1---m,
m is the number of the cameras;

3. take D; = max; D(Cy, Lj);

4. choose the cube with the smallest D;, start with this cube and

divide it into 8 cubes of equal size;

5. if the size of the small cube is close to zero, stop, set C; as the
center of the sphere and D; as the back projection compactness;
else go to step 2.

Experiments

We use the data from the virtualized reality lab for the self-calibration ex-
periments. The setup includes a bar of LEDs which moves around and works
as object points, and cameras above the LEDs. Taking the camera intrinsic
parameters except the focal lengths as generic (like skew = 0, aspect = 1,

the principle point is in the middle of the image), we apply the perspective
factorization method with unknown focal lengths to the feature points cor-
respondences. The outputs of our method include the camera focal lengths,
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Tsai Perspl Persp?2

Initi Init2 Init3
mazx b.p.c. 13.4421 | 14.3017 | 15.3703 | 15.3543 | 15.5826
mean b.p.c. 7.0366 | 7.1496 | 8.2491 | 8.1238 | 8.3107

median b.p.c. | 7.1092 | 7.4294 | 7.7700 | 7.6798 | 7.8294
mazx shapeD —— | 79137 | 7.4042 | 7.3847 | 7.3730

mazx sphereD1 —— | 8.1359 | 8.6033 | T7.7878 | 7.3842

mazx sphereD2 | 8.3386 | 8.4666 | 8.8477 | 9.1947 | 10.0894

Table 1: calibration results

the camera locations and orientations and the object point positions. To
compare the calibration results, Tsai’s approach [20] is used to calibrate the
intrinsic and extrinsic camera parameters. The back projection compactness
is calculated from both of the calibration results to quantify the calibration
quality.

In this experiment 223 feature points are used for both of the calibration
methods. The image number is 51. Table 1 shows the comparison results.
Tsai denotes the Tsai’s calibration method. Perspl and Persp2 represent the
perspective factorization method with calibrated cameras and with unknown
focal lengths respectively. Init! and Init2 indicate that the perspective fac-
torization method start with the mean value and the median value of the
“known” focal lengths from the Tsai’s method as initial values. [Init3 indi-
cate the initial focal lengths are any random numbers within the range (in
this example the range is 365 to 385). It shows that the three results are very
close which means that the rough knowledge of the focal lengths is enough
for the perspective calibration method to converge.

The 5 values we compare are the maximal back projection compactness
of 223 object points (denoted as max b.p.c. in Table 1), the mean and the
median values of the back projection compactnesses (denoted as mean b.p.c.
and median b.p.c. respectively), the maximal distance of the recovered object
points and the “known” object point positions (denoted as max shapeD), the
maximal distance of the recovered object points and the back projection
compactness centers (denoted as max shapeD1) and the maximal distance
of the “known” object point positions and the back projection compactness
centers (denoted as max shapeD2). The unit representing the distances is
mm.
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6 Discussion

In this paper we first describe a perspective factorization method for Eu-
clidean reconstruction. It iteratively recovers shape and motion by the weak
perspective factorization method and converges to a perspective model. We
solve the reconstruction problem in a quasi linear way by taking advantage of
the factorization methods of the lower order projection. Compared with non-
linear methods, our method is efficient and robust. We also present a new
way of dealing with the sign ambiguity problem. However, the perspective
factorization method is conceptually non-linear parameter fitting process.
Common problems, such as local minima, still exist. We are working on
theoretical analysis of its convergence.

We successfully recover the shape of the object and the camera calibra-
tions simultaneously given tracking of feature points. The factorization-based
method first performs projective reconstruction by using iterative factoriza-
tion, then converts the projective solution to the Fuclidean one and generates
the focal lengths by using normalization constraints. This method intro-
duces a new way of camera self-calibration which has various applications
in autonomous navigation, virtual reality systems and video editing. The
projective factorization method requires the rough range of focal lengths to
generate an estimate of the projective depths for fast convergence. Accuracy
of the calibrations and their effects on applications provide further research
topics.

Freeman [4] described various bilinear model fitting problems in computer
vision. Koenderink [10] also analyzed the bilinear algebra applied to camera
calibration problem. They both indicated that the self-calibration of per-
spective camera is a “hard” problem. We are going to focus on application
oriented bilinear algebra analysis.

We also design a criterion called back projection compactness to quantify
the calibration results. It measures the radius of the minimum sphere through
which all back projection rays of the same object point pass.We use it to
compare the calibration results with other methods. The divide and conquer
algorithm to compute the back projection compactness is efficient. However,
it is still an open problem to prove the algorithm.
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