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Abstract

Transforming software requirements into a software de-
sign involves the iterative partition of a solution into soft-
ware components. The process is human-intensive and
does not guarantee that design objectives such as reusabil-
ity, evolvability, and reliable performance are satisfied.
The costly process of designing, building, and modifying
high assurance systems motivates the need for precise
methods and tools to generate designs whose correspond-
ing implementations are reusable, evolvable, and reliable.
This paper demonstrates an analytical approach for parti-
tioning basic elements of a software solution into reusable
and evolvable software components. First, we briefly over-
view the role of partitioning in current design methods and
explain why computer-aided design (CAD) tools to auto-
mate the design of microelectromechanical systems
(MEMS) are high assurance applications. Then we present
our approach and apply it to the design of CAD software to
layout an optimized design of a MEMS accelerometer to be
used in the navigational units of aircraft. Lastly, we discuss
the implications of our approach and future research direc-
tions.

1. Introduction

The process of designing the software for a high assur-
ance system is a tedious and human-intensive process. De-
sign is a transformation from software requirements into a
specification of the modules to be built. Software design in-
volves the repeated partition of a solution into components.
The partition process starts with the identification of basic
system and subsystem (high-level design) components and
concludes with the identification of modules (low-level de-
sign components) to be implemented. For our discussion,
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the term partition has two related but different definitions:
(1) the process of dividing into parts, and (2) the process
of grouping elements into disjoint sets. We specifically
apply the first definition to the decomposition of a soft-
ware solution and the second definition to the logical
grouping of solution elements such as data and operations.

Prevailing design methods provide guidelines but mini-
mal automated support for the systematic partition of a
software solution into components that satisfy design con-
straints. Commercial tools support the documentation of
software designs but provide only limited support for ana-
lyzing the “goodness” of a design. A good software design
not only satisfies the required business objectives but also
promotes design objectives such as reuse of software com-
ponents over time and evolution of the resulting software
system. In this paper, we analyze the design and evolution
of a new class of high assurance systems: the computer-aid-
ed design (CAD) tools for designing microelectromechan-
ical systems (MEMS) devices.

CAD software is a high assurance application because
its failure to generate suitable MEMS designs would in-
crease the cost of prototyping a MEMS device and could
potentially impact the performance of the device. MEMS
devices are used in automobile air bags and experimentally
in aircraft navigational units. The construction of acceler-
ometers and gyroscopes from MEMS devices could poten-
tially yield a reduction in cost, weight, volume, and power
consumption in comparison to those built using traditional
laser and fiber optic technologies.

In the case of CAD tools to design MEMS, “goodness”
refers to a CAD tool’s capability to generate a blueprint for
a device that performs accurately without modification.
The high cost of prototyping MEMS devices mandates
simulation of the device behavior [17]. During the design
of a MEMS device, the human uses the CAD tool to itera-
tively layout and simulate different blueprints. The human
may follow design rules such as those defined by the Multi-
User MEMS Processes or MUMPs [15]. Current software
tools help automate different parts of the MEMS design



process, but they are not fully automatic and are not well
integrated. For instance, some research tools generate opti-
mized designs for MEMS accelerometers with fixed shapes
but require another tool to simulate the behavior of the de-
vice. Future CAD tools should be able to automatically
generate and test blueprints for accelerometers whose
shapes are determined by a randomized search of the de-
sign space. The question is how to design the CAD soft-
ware to support an integrated process for designing MEMS
devices and to enable the evolution of MEMS design tech-
nology.

As introduced in a seminal paper [18], many design
methods recommend that the designer isolate in separate
modules those parts of the system which are to be reused or
changed. For an example application, the reader should re-
fer to a case study of the guidelines used by the U.S. Naval
Research Laboratory (NRL) to modularize the A-7E avion-
ics systems [2]. This study is based on the original NRL re-
port by [6]. The problem is that the burden of determining
how to best localize solution elements for reuse and evolu-
tion is on the designer: commercial tools for automatically
partitioning solution elements do not exist.

In this paper, we present an analytical method that we
developed to partition basic elements of a software solution
into reusable and evolvable design components that can be
mapped to implementable modules. Our approach directs
the designer to carefully denote elements for potential re-
use or change and uses this information to mathematically

determine a partition. In Section 2, we briefly overview the
role of partitioning in two popular types of design methods:
structured design and object-oriented design. Section 3 is a
brief review of research related to our work. In Sections 4
and 3, we discuss the application of our approach to the de-
sign of a software package for laying out and simulating
MEMS accelerometers. Section 6 includes a discussion of
the results of applying our approach, and Section 7 con-
cludes with future research directions.

2. Background

In this section, we discuss the importance of partitioning
(decomposition and grouping) in the design process. Fig-
ures I and 2 show a macro-level view of the transformation
from requirements to design for structured and object-ori-
ented types of design. With both types of methods, the de-
signer is responsible for determining the appropriate level
of decomposition and the grouping of solution elements to
best satisfy design objectives. The two specific methods
that we reference, Ward and Mellor’s structured develop-
ment method and Booch’s object-oriented analysis and de-
sign method, are widely used and representative of each
type of design method [23], [5]. The terms decomposition,
allocation, and grouping indicate the extensive and itera-
tive role of partitioning in the transformation from require-
ments to design.

Essential Models: Context Diagram Definition of Modules,
Software Data and Control Flow Diagrams Tasks, and Processor
Requirements Entity-Relationship Diagrams Assignments

Essential modeling of the data transformations and
operations. Involves recursive decomposition of the
transformations.

Figure 1: Transformation from requirements to design - Structured Analysis and Design.

Modeling of modules and tasks. Involves allocation
of data and operations to modules, modules to tasks,
and tasks to processors.
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Macro Process Steps

Design Model (Solution-Oriented

Software Analysis Model (Domain-Oriented Class and Object Diagrams
Requirements Class and Object Diagrams) Logical and Physical Groupings)
TNE
Development of a model of the system_s destfed  Creation of an architecture for the implementatian
behavior (analysis). _ — — — of the system (design). |
- - Micro Process Steps (Design)

and objects (discovery and
decomposition).

and objects.

Identification of additional classes Semantic definition of classes

Figure 2: Transformation from requirements to design - Object-Oriented Approach.

Identification of relationships among classes
and objects. Involves partitioning of classes
and objects into logical and physical groups.

The identification of user-oriented objects (classes) and
solution-oriented objects (classes) involves abstraction as
well as partitioning. MEMS accelerometers consist of four
basic structures: (1) a frame, (2) a mass, (3) a set of parallel
metal teeth (combs) that outline part of the mass, and (4)
springs attached to the mass and the frame of the device.
Figure 3 shows an electron micrograph of a MEMS accel-
erometer.

Combs Springs
Figure 3: Electron micrograph of a MEMS
accelerometer.

Some background information about accelerometers
follows. In an accelerometer, the springs allow the mass to
move within the stationary frame. When the mass is sub-
Jjected to an acceleration, it moves and causes the springs to
expand or contract. The springs, in turn, exert a restoring
force on the mass, where the spring constant £ depends on
the material of the springs and their shape [9]. The net re-
sult is that the distance moved by the mass is proportional
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to the external acceleration. The ensuing change in capaci-
tance of combs is proportional to the distance moved and
therefore proportional to the acceleration [16].

In Figure 4 on the next page, we show the transforma-
tion from a user-oriented view of a generic MEMS acceler-
ometer to the solution-oriented view of this device.
Following the Booch method, the designer might decom-
pose the user-oriented Mass, Combs, and Springs objects
into a generic SuperStructure and more specialized objects
which hide the details of the specific structures used in a
MEMS accelerometer. The decision to decompose objects
into generic super-objects (classes) and more detailed ob-
jects (classes) is solely dependent on the view-point of the
designer. There are guidelines but no precise process for
making such decisions.

For an in-depth report on an object-oriented analysis of
another high assurance application, the air traffic control
domain, the reader should see [24]. The report outlines the
results of a research project which applied the Booch meth-
od to model the data for advanced flight plan processing
systems. The Computer Information Systems group at the
Technical University of Berlin and the EUROCONTROL
Experimental Center (EEC) jointly performed the work.



Superstructure

Density Dimensions

Position
Copy  Move Select
Draw  Paint

Meander

Springs

Set of Meander

separates the generic classes and related objects from the more specific classes and objects.
refers to a super class relationship hetween the higher and lower levels of abstraction (e.g. Mass, Comb Finger,
Meanders, Comb Sensor, and Springs inherit the properties of the SuperStructure).

Figure 4: Transformation from user-oriented to solution-oriented objects and classes.

Determine no. of meander.
Calculate spring constant

3. Related Research

The research and development of styles or patterns of
architecture are efforts to codify the knowledge of the ex-
pert designer. Novice designers would use a handbook of
patterns or styles to guide them in the seiection of a type of
design that has been successively used to solve a similar
problem ([22], [10], and [7]). The description of the style
or pattern includes a definition of the problem, the forces
which guide or constrain the solution to the problem, and
the solution. The solution or software design consists of
components and their interactions. Some researchers are
developing languages for describing patterns. For instance,
the ROOM approach defines a model and language for doc-
umenting architectural patterns for real-time systems [21].
The styles or patterns approaches depend upon the expert
designer to synthesize and codify good designs.

The SAAM, Software Architecture Analysis Method, is
a technique for evaluating a candidate software architec-
ture with respect to quality attributes such as modifiability
and performance. The human evaluator measures an archi-
tectural description with respect to an agreed upon set of
scenarios of how the system will be used. In effect, the can-
didate architecture is given a qualitative rating based on its
perceived ability to support each scenario. Candidate archi-
tectures are then compared to each other with respect to
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how they “perform” for similar scenarios [2]. Like the
styles or patterns approach, SAAM requires the designer to
synthesize the candidate architectures.

Our goal is to make the process of synthesizing a soft-
ware architecture more systematic and automatable. We
mathematically model the relationships between basic so-
lution elements according to design objectives such as re-
use, evolution, and reliability. Then we use these
relationships to determine a good partition of the solution
elements. Similarly the hardware-software codesign com-
munity partitions basic functional units for implementation
in hardware or software and for allocation to different pro-
cessing elements [1]. But unlike the codesign approach, we
do not start with a set of predefined functional units. In-
stead, we transform a high-level definition of a software so-
lution into design components that can be mapped to
implementation modules. Our design space is more diverse
and not so well defined.

4, Partitioning Data and Operations

The goal for our study is to apply our partitioning ap-
proach to the synthesis of an architecture for a MEMS de-
sign tool that could be easily upgraded as the MEMS
technology evolves. The expectation is that CAD tools will
become increasingly automatic as research in MEMS de-



sign provides mathematical models for relating the struc-
tural features of a MEMS design to the performance of the
corresponding device. For this paper, we focus on the soft-
ware tool support needed to design MEMS accelerometers.
We show how this support will evolve and the impact that
this evolution will have on the architecture of the design
tool.

Basic elements of a software solution include data, op-
erations, and control flow. Following a structured ap-
proach, the designer identifies the primary data elements
(denoted as data stores) and processes that transform the
data. In the object-oriented approach, the designer identi-
fies objects, some or all of which encapsulate key data for
the software solution. Encapsulating data and operations,
or information hiding, supports the localization of solution
elements that change together. The problem is that the de-
signer is solely responsible for determining the composi-
tion of the basic system components or objects. Prevalently
used design methods do not guarantee that the designer will
consider the appropriate level of reuse or group together
those elements which change together. Our approach has
two primary features: (1) a manual but guided reuse and
change analytic process and (2) a mathematical model and
automatable algorithm for localizing solution features that
change together. Shown below are the six basic process
steps adapted from our original approach discussed in [13].

1. Identify the basic data and operational features of the
software solution.

2. Recursively decompose the large-effect operations
and identify additional data elements.

3. Enumerate the feasible or expected changes to the
software solution.

4. Determine the change set of data and operations for
each expected change.

3. Combine and componentize the overlapping change
sets.

6. Add other necessary components.

Step 1: Identify the basic data and operations.

The first step in our approach is to identify the basic data
and operational features of the software solution. The
MEMS designer will interact with the tool to perform the
following basic operations.

1. Assign the structural parameters for the accelerome-
ter (e.g. Young's modulus of material for the springs,
the densities of the mass and the springs, and the
workspace area).

2. Create an initial blueprint for the accelerometer.

3. Simulate the sensitivity of the accelerometer as
determined by its ability to detect the change in
capacitance of the combs as the mass accelerates.
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4. Compare the calculated sensitivity resulting from the
simulation to the required sensitivity.
5. Adjust the blueprint for the accelerometer.

The basic data includes the structural parameters and the
description of the blueprint. As discussed in Section 2, the
essential elements of a MEMS device are the mass, combs,
and springs. Therefore, the blueprint will also contain data
representations for each of these structural elements.

Step 2: Decompose the large-effect operations and
identify additional data elements.

The second step involves the decomposition of the
large-effect operations into smaller-effect operations. The
process repeats recursively until further decomposition re-
sults in operations which are trivial and therefore not reus-
able or which do not help to make the solution easier to
understand and design. For instance, MEMS design opera-
tions 2 and 5, creating and adjusting the blueprint for an ac-
celerometer can both be decomposed into the sub-
operations of laying out the mass, laying out the combs,
and laying out the springs. The process of laying out each
of the essential structures will vary depending on the shape
that the designer draws for the mass. The layout operations
should be changeable for differently shaped masses and re-
usable across other blueprints requiring similarly shaped
masses. The layout operations are reusable but are also
complex and contain sub-operations which are reusable.
Therefore, we decompose the layout operations to deter-
mine the reusable sub-operations. In the case of laying out
the mass, we discover basic graphical operations and the
operations to calculate the mid-point or the center of mass.
The graphical operations inherent in all of the layout oper-
ations are the following.

* Positioning the cursor.

* Drawing a structural body.
* Painting a structural body.

¢ Selecting a structural body.
* Copying a structural body.

* Inverting a structural body.

The related data are the cursor and a generic structural
body.

Here our approach goes beyond that used in our previ-
ous study [13]. Previously, we decomposed an operation 7'
into a set of sub-operations if and only if all of the sub-op-
erations of 7 are reusable. Now we decompose 7 if and
only if at least one sub-operation ¢ is reusable. We add T to
the set of reusable operations if at least one sub-operation ¢
of 7 is not reusable. The result is that we include larger-ef-
fect operations with definite potential for reuse along with
the smaller-effect operations in the resulting set of opera-
tions.



Likewise in another example, decompositicn of the
MEMS design operation to simulate the sensitivity of the
accelerometer yields the reusable sub-operation of input-
ting the frequency and amplitude of the sinusoidal wave
and the number of cycles. The other sub-operations result-
ing from the decomposition, listed below, are not reusable.

* Determine the displacement per unit of time and use
this value to calculate the change in capacitance of the
combs.

* Calculate the signal-to-noise ratio and alter the input
signal appropriately.

Therefore we include the sensitivity calculation and the
input of the simulation parameters in the set of reusable op-
erations, but we do not include the calculation of the
change in capacitance of the combs or the calculation of the
signal-to-noise ratio which will be encapsulated by the sen-
sitivity calculation.The resulting sets of data and operations
are represented mathematically in Figure 5.

D = {d 0 Dataltem}
= {mass, combs,springs, structuralBody, cursor, ..}
O = {o0operator}

= {InputStructParms, LayoutMass, LayoutCombs, ...}
x O xtype means that x is of type xtype.
Figure 5: Mathematical representation of steps
1 and 2 results.

Step 1 - Identify basic data and operations.
Step 2 - Decompose large-effect operations and
identify additional data elements.

Step 3: Enumerate the feasible or expected changes to
the software solution.

The third step is to enumerate the types of changes that
the researcher would expect to make to the software solu-
tion. Prime candidates are changes to the data and opera-
tions that were identified in steps one and two. Determining
expected or feasible changes to a software solution requires
the designer to think critically about both the problem and
the solution domains. Enumerating these changes is more
than a prediction activity. The designer should talk with the
domain expert or requirements analyst about chaages in re-
quirements that may be planned as well as those which are
feasible though not specifically planned. The designer can
then consider the changes to the solution that would be nec-
essary to support the changes in requirements.

Changes that are likely to be made to the process of lay-
ing out a MEMS accelerometer include the following.
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¢ Change the representation of the mass (e.g. change in
shape).

* Change the representation of the springs.

* Change the representation of the combs.

* Construct a spring with more than one anchor point to
the mass.

* Change from a table-driven to a calculated spring
constant.

* Replace a calculation of the mid-point of a
rectangular mass with a calculation of the center of
mass for a non-rectangular mass.

¢ Change the layout of the mass.

* Change the layout of the combs.

* Change the layout of the springs.

* Modify the calculation of the change in capacitance
of the combs.

* Replace the manual layouts of the mass, combs, and
springs with an automatically generated layout of the
whole MEMS device.

¢ Change mechanism for the input/output of the
structural parameters.

¢ Change mechanism for the input/output of the
parameters for simulating the sensitivity of the
accelerometer.

* Change the graphics operations.

We then represent these mathematically as a set C of ex-
pected changes as shown in Figure 6.

C = {c0change}
= {ChgMassShape ChgSpringsRep, ChgCombsRep, ..}

Figure 6: Step 3 - Enumerate the expected
changes to the software solution and create
a set of changes.

Step 4: Determine the change set of data and opera-
tions for each expected change.

The fourth step involves the partition of the data and
small-effect operations into software components based on
the analysis of anticipated changes to the software solution.
The goal is to group data and operations affected by the
same changes into the same components. The expected
changes to the software design or its implementation can
then be made simply by replacing whole components or by
modifying a minimal number of components whose con-
tents are affected by the changes. The idea is to mathemat-
ically relate the parts of the software solution that would
actually have to be modified in order to accomplish a spe-
cific change. Those parts related to the same change either
directly or transitively will be localized in the same compo-
nent.



Step four consists of two substeps, 4.1 and 4.2, as out-
lined in Figure 7. First we combine the data and operations
into a set DO. Then we relate each anticipated change to the
software solution to the data and operations whose imple-
mentations would be affected by this change via a change
impact relation CI. Applying the relation CI, we obtain a
set of data and operations for each expected change. We
will call these change sets. In totality, we now have a set of
change sets CS.

4.1 DO = {do 0 (DU O)}
Combine the set of data and operations.

4.2 CI = {(c,do) 0 Cx DO|(c - impact(do))}
For each anticipated, create a change set of data
and operations affected by the change.

(0 Cl(es = CI{cINA }

cs = {Cs < DO\(V(do e ¢5),3((cdo) € CI)

CS is the set of all change sets.

Figure 7: Step 4 - Identify the change sets.

A data or operation is related via the impact relation C/
to a proposed change in requirements if it will need to be
modified to satisfy the change. The designer can start by
considering how the data or operations might change. The
table in Appendix A: Impact of Feasible Changes contains
a list of the changes that are feasible to support the evolu-
tion of MEMS design technology. For each change c in the
table, we list the set cs of data and operations whose design
and corresponding implementation would have to be mod-
ified to support the corresponding change in requirements.
Each change set cs is labeled with a change signature such
as CSM which represents changing the shape of the mass.

Step 5: Combine and componentize the overlapping
change sets.

We might think that we are done in that each set of data
and operations affected by a change could be the contents
of a software component. Then in the future, all we would
have to do to make the expected change is to exchange or
modify the related software component. But such composi-
tions could result in duplicate copies of data or operations.
In the above table, CRS, CSAP, and CSC impact the “cal-
culate spring constant” operation. What is needed is a way
to combine change sets that intersect one another. In the
fifth step, we define a relation called Overlap that associ-
ates two change sets that have a non-empty intersection.
The formal representation of this relation appears in Figure
9.

We must also consider the case when change sets are re-
lated transitively through repeated application of the Over-
lap relation. As shown in Figure 8, the change set CRS is

related to the change set CRC because they both intersect
CSM. The two-directional arrows indicate overlapping (in-
tersecting) change sets.

CRS

{Springs,CalcSpringConst,
LayoutSprings

5 CSM .
. {Mass,CalcCentMas
CRC LayoutMass,

{Combs,CalcCap, LayoutSrpings,
LayoutCombs} LayoutCombs}

To relate those change sets which overlap directly or
transitively, we define an 4ffinity relation (shown in Figure
9). By applying the Affinity relation, we analytically group
change sets CRS, CRC, and CSM. The union of these sets
guarantees that we will have no duplicate copies of the re-
sulting data and operations. Now we encapsulate these data
and operations into a software component. The resulting
software component contains the data elements as well as
operations on it. By applying the Affinity relation (an equiv-
alence relation) across all of our change sets, we effectively
partition the change sets. The equivalence class described
above contains CRS, CRC, and CSM. Each equivalence
class becomes a software component. The formal defini-
tion for this partition of change sets into software compo-
nents follows in Figure 9.

It

Overlap = {(cs],¢55) 0 CS x CSI(cs1 Nesy = D)}

I

Affinity = {(cs,,c5,) 0 CSx% CS|
((csy.c8,) € Overlap)v(3(esy © CS)
s((es,c84) € Afffinity A (cs3,es,) € Affinily))}
SameComponent = {(ec < CS)|(Ves|,csy € CS
((cs; e ec)A
;[ (csy € ec)) < ((es),c59) € Aﬁim‘zy)j]}

Figure 9: Step 5 - Combine and
componentize overlapping change sets.

Step 6: Add other necessary components.

Lastly in step six, we add software components to en-
capsulate those parts of the software solution not delineated
in the previous steps. We need control logic to iterate the



basic steps of laying out the mass, combs, and springs and
to simulate the sensitivity of the resulting accelerometer
design to changes in capacitance of the combs. Good de-
sign principles dictate that a controller component not be
cognizant of the internal details of the operations that it ac-
tivates [19]. In addition, though the control logic is impact-
ed by changes in the order by which small-effect operations
are activated, an operation’s implementation should not be
affected by these changes. It is therefore reasonable for the
control logic to be logically separate from the small-effect
operations with respect to anticipated changes it the soft-
ware solution or in its implementation.

Our analysis of CAD software for designing a MEMS
accelerometer resulted in the software design components
shown below in Figure 10. Each component has a boldface
change signature which represents the anticipated changes
associated with that component. Any encapsulated data is
shown on the next line of the component diagram. The op-
erations contained within the component are displayed in
italics. We would make the expected changes either by re-
placing or by modifying only the software component as-
sociated with a particular change. As was discussed in step
five, the mass, combs, and springs components are related
transitively through the layout operations. The hashed line
represents this grouping of the mass, combs, and springs
sub-components into a larger component or package.

CSMuCCMyu CLM

(change shape of mass,
change calculation of center of mass,
change layout of mass)

Representation of Mass

Calculate center of mass
Layout mass

(change representation of spring,
change spring anchor points,

change from table-driven to calculated|
spring constant,

change layout of springs)

Representation of Spring

Calculate spring constant
Determine number of meanders
Layout springs

|
!
!
|
!
!
1
|
CRSU CSAP U CSC U CLS :
|
!
|
!
|
!
r
|
|
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CRCuCCCucCLC

(change representation of combs,
change calculation of capacitance,
change layout of combs)

Representation of Combs

Calculate capacitance of combs
Layout Combs

CSMuUCCMUCLM \JCRSUCSAP U CSCUCLS

\UCRCuCCCuUCLC
Basic MEMS Structures and Operations

CIOS
(change mechanism for input/output
of structural parameters)

Representation of Structural Parameters

Input/output structural parameters

CIOSS

(change mechanism for input/output
of structural parameters)

Representation of Simulation Parameters

Input/output simulation parameters

CGO
(change display mechanism)

Representation of Cursor
Representation of Graphical Bodies

Copy body, Invert body, Position cursor
Draw body, Paint body, Select body

CAS
(change calculation of accelerometer
sensitivity)

Calculate accelerometer sensitivity.

Master Control Logic

Figure 10: Components resulting from the

analysis of the MEMS design tool.
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5. Partitioning Control Flow

In the previous section, we discussed the decomposition
of large-effect operations into reusable small-effect opera-
tions and the partition of data and operations into compo-
nents that localize anticipated changes to these
components. In this section, we analyze change with re-
spect to control flow. By control flow, we mean the order
of execution of a set of tasks. For instance, in our MEMS
design software example, the Master Controller activates a
sequence of tasks <t;,15,13,14,t5151 7,519t ;o> In Which each
task ¢ is defined as presented below.

Input the structural parameters.

Layout mass.

Layout combs.

Layout springs.

Input simulation parameters.

Calculate sensitivity of the MEMS accelerometer.
Compare the calculated sensitivity to the required
sensitivity.

tg Adjust layout of mass.

to Adjust layout of combs.

t;p Adjustlayout of springs.

Ly
[y
3
Iy
ls
lg
7

Application requirements may vary over time thereby
requiring changes to the original control flow. In some cas-
es, the domain expert may specify a list of alternative acti-
vation sequences in the requirements specification. For
instance, alternative sequences for the software design of
the MEMS accelerometer are </5,15,5,13,4,t6.t715191 5>,
SUpts i ialplelyleglo g™, <Uplntelslstelnlglol 19>,
Stslplptplslelntalo g™, <tplsinlalzlslslglol 0™,
<l[,lz,[3,14,15,t6,l‘7,18,l]0,19>, <15,11,t2,l3, t4’[6’t7’ lg,tjg,l9>,
SUplslzlplsitelntsliplo™s <Upinlelslsialstst plo™,
<Us oy lpl3lg gl o.lg>, <t tsttal305 105t 10l0>.

In our HASE’97 paper, we show that localizing invari-
ant control sequences in separate control components heu-
ristically reduces the complexity of making changes to the
control flow [14]. The invariant control sequence for the
master controller of the MEMS design software is
<i4t7,tg>. The complexity of determining the invariant
subsequences is of the order O(m *n), where m is the num-
ber of alternative sequnces and # is the length of the re-
quired sequence.

We then partition the master controller into separate
control flow components that localize the invariant subse-
quence as shown in Figure 11. A discussion of the conse-
quences of this partition continues in the next section.
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Figure 11: Control components which
localize invariant subsequences.
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6. Discussion of Results

Our analytical approach supports the fundamental de-
sign principles of decomposition, partitioning, and encap-
sulation as advocated for the modularization of complex
systems [19]. One distinguishing feature about our ap-
proach is that the designer must critically consider what it
means for an operation to be reusable. For instance, the op-
eration of laying out the mass encompasses the reusable op-
eration of calculating the center of mass as well as very
small-effect operations which are trivial and therefore not
reusable from our point of view. Likewise, decomposition
of the large-effect layout of springs operation is necessary
to better understand the details of this operation and to elic-
it reusable and smaller-effect operations such as the spring
constant calculation. Here our method goes beyond our
original approach in that we include not only the reusable
smaller-effect operations but also the larger-effect opera-
tions that we think are reusable.

The other distinguishing feature of our approach is the
systematic identification of feasible or anticipated changes
to the solution and the analytical relationship of the data
and operations that would be impacted by these changes.
Our approach requires the designer to carefully specify the
solution elements that would have to be modified to satisfy
a particular change. This specification becomes the mathe-
matical model for partitioning these solution elements into
components. The algorithmic complexity of the partition-
ing process is polynomial.

Our approach complements existing methods by mak-
ing more precise and systematic the process of partitioning
a solution into components. Of note is the fact that the
Booch analysis shown in Figure 4 resulted in the abstrac-
tions of fingers for the combs and meanders for the springs.
Our decomposition of the layout of combs and layout of
springs operations also indicates that the basic combs and
springs structural bodies consist of sub-bodies. The Booch
method expects the designer to independently think of the
useful abstractions, while our approach specifically directs
the designer to separate the design of the “smaller bodies”
from the design of the “bigger” bodies if the operations re-
lated to the smaller bodies are reusable.



Our analysis of feasible changes to the MEMS design
tool solution helped us to identify those parts of the solu-
tion which fit into the randomized search algorithms that
we studied previously [13]. The large component from Fig-
ure 10 which encapsulates the mass, combs, springs, and
layout operations is the population component of a genetic
algorithm solution. Calculating the sensitivity of the accel-
erometer is the fitness or cost function, and the master con-
troller provides the control logic as in the genetic
optimization solution. This componentization will support
the expected evolution of the MEMS design tools towards
a more extensive use of optimization techniques for deter-
mining a good layout of accelerometers and other MEMS
devices. As designers experiment with differently shaped
structural components (masses, combs, etc.), the design
space will become more complex. This comp:exity will
motivate the application of randomized search techniques
such as genetic algorithms which are suitable for encodable
but complex search spaces [12].

In turn, the layout functions may merge into one opera-
tion for determining a new point (MEMS accelerometer
layout) in the solution space. Likewise, the simwlation of
the sensitivity of the device may automatically iterate
through a variety of simulation parameters. We would then
replace the control flow components from Figure 11 witha
master controller consisting of one invariant sequence
<tj,ty131,> where ¢, is the input of the structural parame-
ters, ¢, is the automated generation of a new layo'at, 3 is the
simulation of the accelerometer sensitivity, and ¢, is the
comparison of the required to the calculated sensitivity.
The master controller would loop to generate a new layout
if the previously generated layout did not yield an accept-
able sensitivity value. In the next section, we summarize
our paper and discuss future research.

7. Summary and Future Research

The purpose of this paper was to demonstrate our ap-
proach for partitioning a software solution into components
that reduce the impact of change thereby helping to pre-
serve performance reliability and that support component
reuse. First we discussed the role of partitioning in the
transformation from requirements to design and showed
via example that this process is highly dependent on the ex-
pertise of the human designer. The background s:ction pro-
vided information about MEMS accelerometers and the
software tools used to design them. We outlined our change
analytic approach of grouping together data and operations
that are impacted by the same changes and applied it to the
synthesis of a high-level architecture for software tools to
design MEMS components.
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Three important features characterized our design ap-
proach: (1) the recursive decomposition of large-effect op-
erations into small-effect operations, (2) the enumeration
of anticipated or feasible changes to the software solution
and the analytical grouping of solution elements impacted
by the same changes, and (3) the identification of a heuris-
tically good way to organize control flow elements. The
process of decomposing for reuse and the identification of
the impact of change are qualitatively dependent on human
judgment: at present, the best we can do is to program the
computer to remember our decomposition decisions and
identification of changes. We can mathematically model
and therefore automate the process of grouping together
change dependent data and operations. Likewise, we can
formally model and automate the identification of invariant
subsequences in control flow sequences: a fact which leads
us to an important observation and direction for our future
work.

The representation of change dependencies as a set of
related elements and control flow as a “sequence of sym-
bols” is analogous to the work of information theorists who
search for relationships between data in order to determine
a “good” organization of the data. Similarly, we are re-
searching ways to symbolically and mathematically repre-
sent what we know about “good” designs. Algorithms
developed by researchers working in the areas of data anal-
ysis and clustering theory may help us to model and auto-
mate additional features of the design process. The reader
should see [8] for an extensive collection of data clustering
algorithms and [20] for a review of the literature on cluster-
ing theory. Though the idea of applying information-theo-
retical models to the analysis of software structural
complexity is not new [4], our search of the literature
shows that the systematic application of information theory
to software design is an open area of study. We intend to
further research and develop methods to systematically and
semi-automatically synthesize designs that satisfy system
design constraints such as evolvability and adaptability to
available system resources.
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Appendix A: Impact of Feasible Changes

Data impacted

Operations impacted

Expected or Feasible changes by the change by the change
Calculate center of mass.
Layout the mass.
CSM: Change the shape of the mass from Mass (Add list of compo- Layout the combs.

a rectangle (as is currently used).

nent shapes.)

Layout the springs.

Calculate spring constant.

CRS: Change the representation of the springs. | Springs Layout the springs.
Calculate the capacitance of the combs.
CRC: Change the representation of the combs. | Combs Layout of combs.

CSAP: Change the number of spring anchor
points.

Springs (Add list of
anchor points.)

Calculate spring constant.
Layout the springs.

CSC: Change from a table-driven to a calcu-
lated spring constant.

Calculate spring constant.

CCM: Replace calculation for the mid-point of
a rectangular mass with calculation of the cen-
ter of mass for a non-rectangular mass.

Add: Calculate center of mass.

CLM: Change the layout of the mass opera-
tion.

Layout the mass.

CLC: Change the layout of the combs opera-
tion.

Layout the combs.

CLS: Change the layout of the springs opera-
tion.

Layout the springs.

CCC: Change the calculation of the capaci-
tance of the combs.

Calculate the capacitance of the combs.

ALS: Automate layout of mass, combs, and
springs structures.

Replace layout of mass, layout of
combs, and layout of springs with auto-
mated operation.

CIOS: Change mechanism for
input/output of the structural parameters.

Input/output structural parameters.

CIOSS: Change mechanism for input/output of
the parameters for simulating the sensitivity of
the accelerometer.

Input/output simulation parameters.

CGO: Change graphical operations.

Cursor, Body

Position cursor; draw, paint, select,
copy, and invert structural body.

CAS: Change calculation of the accelerometer
sensitivity.

Calculate accelerometer sensitivity.
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